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An expression is developed for the rotational dependence of (32V/dz%)a for asymmetric top
molecules. The expression is valid for all rotational energy levels, and requires only a knowledge
of the reduced energy spectrum as a function of asymmetry of the rotor.

The application of three distinct methods of approximating the energy of the asymmetric
rotor to the expression for (32V/d2%) is described. This permits the calculation of quadrupolar
interactions for certain rotational states (in particular, those of high J) for which energies

have not yet been tabulated.

The expressions which are derived will usually prove to be at least as accurate as the first-
order approximation to the quadrupolar interaction, in which (82V /322 is involved.

I. INTRODUCTION

N the first paper of this series,! hereinafter

referred to as I, the general theory of nuclear
quadrupole coupling in asymmetric top mole-
cules was outlined. The only part of the first-
order problem which differs significantly from
previous treatments for linear molecules® and
symmetric top molecules? is the evaluation of the
rotational dependence of (82V/dz%)an. In this
quantity V is the electrostatic potential at the
quadrupolar nucleus, z is a space-fixed axis, and
the average is taken in the representation which
diagonalizes the rotational energy of the molecule
in question. In I, two expressions were given for
{82V /028, in asymmetric top problems; one,
Eq. (8), makes use of published line strengths of
pure rotation transitions® of the asymmetric rotor
for /<12, and the other, Eq. (10), involves
explicity the coefficients of the transformation
from a symmetric rotor basis to one which
diagonalizes the energy of the rotor in question.

It is the purpose of the present work to
provide an expression which is applicable for all
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J, the use of which involves little labor.* The
method is based on a suggestion of J. H. Van
Vleck, and its essential result is that the de-
pendence upon rotational state of the quadrupole
coupling can, to first order, be obtained from a
knowledge of the reduced energy spectrum of
the asymmetric rotor as a function of the asym-
metry of the rotor.

Tables of the reduced energies for /<10 have
been published :* the method is extended to all J
in the regions of asymmetry for which certain
approximations to the reduced energies have
been developed.t—3

II. GENERAL DEVELOPMENT OF THE METHOD

It may be verified by reference to Eq. (10) of
I that (32V/92%) may be expressed in terms of
the average values of the angular momentum
operators P,, P;, and P, about the principal axis
of inertia, a, b, and ¢. As is customary, a, b, and
¢ are chosen so that the moments of inertia
satisfy I,<I,<I,. Matrices of these operators
are given, for example, in reference 5 (see Eq.

(6)).

* A method applicable to slightly asymmetric tops has
l()eezs?escribed by Knight and FeK‘l, Phys. Rev. 74, 354
1948).
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TaBLE L.*
quanti&ﬂl‘%emmion Ir It IIIr I
F $(x—1) $(x—1) 3(x+1) 3(x+1)
G—F —3(x=3) —43(k—3 —3(x+3) —3(x+-3)
H/(G—F) (x+1)/(x—3) (k+1)/(3—«) (1=x)/(x+3) (k—1)/(xk+3)
(8/dx)[H/(G—F)] —4/(x—3) 4/(k—3) —4/(x+3) 4/(x+3)

* This table has been derived from Table III of reference 5. The various representations are identified in Table II of that paper.

The expression is:
(02V /32w = AP +BP+CP2. (1)

The angular brackets indicate an average taken
in the basis in which the energy of the rotor is
diagonal. 4, B, and C are the ea, bb, and cc
components of the dyadic VE, multiplied by
2/(J+1)(2T+3).

Equation (1) makes possible the expression of
(62V /2% in terms of the energy and one of the
quantities (P;?) alone. The energy of the rotor
is given by:

E=aP2)+bP2)+c(P2); (2)

in this equation the averages are indicated only
for comparison with (1). a, b, and ¢ are the
rotational constants #2/21,, */21,, and A*/21,.

Using the relation (P.2)+(P:2)+ (P2 =J(J+1)
and substituting Eq. (2), one may write for
Eq. (1),

(82V/o2)=[(B—A4)/(b—a)]E
+[[A(b—a)—a(B—4)]/(b—0a)]
XJ(T+1)+[[(C-A4)(b—a)

—(c—a)(B—A4)1/(b—a) XP2). (3)

The quantity (P2 may be set equal to
(0E/dc) { this relation is justified in the appendix.
The energy may be expressed as®

E=[(a+¢)/2]JJ(J+1)+[(a—¢)/2]E.(x), (4)
leading to:

PH=(1/2)J(J+1)—(1/2)E(x)
+[(a—c)/2](8E(x)/dc). (5)

E(x) is the reduced energy of the rotor; « is

? This substitution, suggested by J. H. Van Vleck, is
also applicable to the determination of the proportionality
factor arising in electron spin multiplets in polyatomic
molecules. (R. S. Henderson and J. H. Van Vleck, Phys.
Rev. 74, 106 (1948).) This application will be discussed
by Henderson in a forthcoming publication.

Ray’s asymmetry parameter, defined by
k=(2b—a—c)/(a—c).
Equation (5) may thus be rewritten as

®PH=01/2)7(J+1)—(1/2)E(x)
+(1/2)(k—1)(9E(x)/3x).  (6)

Substitution of (4) and (6) into (3), and
simplification, leads to:

(82V /029 =(A/2)[T(J+1)+E(x)
—(x4+1)(8E(x)/dx) J+B(3E(x)/9x)
+(C/)LI(T+1) — E(x)

+(k=1)(9E(k)/96) 1. (7)

Equation (7) may be obtained in a variety of
forms by use of the relation A+B+4C=0,
stemming from V2V =0. In particular, one of the
parameters 4, B, C may be eliminated.

The problem thus reduces to that of deter-
mining E(x) and (dE(kx)/d«). The accuracy with
which these quantities may be calculated by
present methods determines, therefore, the accu-
racy with which (32V/82%)s may be evaluated.
For J<10, Eq. (7), together with the reduced
energy tables of reference (5), should prove more
accurate, in most cases, than Eq. (8) of 1.

In the following section the use of approxima-
tion methods will be discussed.

III. APPROXIMATION METHODS!

In this section equations for E(x) and
(0E(x)/0k) will be given, as derived from the
approximation methods of references 6, 7, and 8.
The range of applicability of each is indicated.
The accuracy of the results is at least what is
warranted by the first-order nature of the
quadrupole calculation involving (92V /2% and

10 Since the space required to summarize the three
distinct approximation methods to asymmetric rotor
energies here used would be prohibitive, a familiarity with
the notation and results of these methods will be assumed.
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by present precision in measurements of quadru-
pole effects of asymmetric rotors.

A. The Mathieu Function Approximation

This method is applicable for those levels
whose energies are lowest for a given J (near-
prolate rotor) or highest (near-oblate rotor).
The computation of E(x) is described in detail
in reference (7). A first approximation to the
reduced energies is given by

E()=FJ(J+1)+(G—F)a, (8)

where « is the characteristic value of Mathieu's
equation appropriate to the level and value of «
in question, and F and G — F are constants which
depend on « in a manner determined by the way
in which a, b, and ¢ are identified with molecule-
fixed cartesian axes x’, y’, 2. Then:

dE(x)/dk=(dF/dx)J(J+1)+(d(G— F)/dx)a
+(G—F)(9a/3x). (9)

By reference to Table I, which gives H, G—F,
H/(G—F), and (d/dx)[H/(G— F)] for the perti-
nent ways of assigning a, b, ¢ to x/, ¥/, g, it may
be seen that dF/dk=% and d(G—F)/dx=—1%
regardless of axis choice. Furthermore, one has
(0a/3k) = (8ct/80)(d6/dk), where 8 is the constant
appearing in Mathieu’s equation :

(d*y/dx*) 4+ (a—26 cos2x)y =0,

given, for this approximation method, closely
enough by

0=[H/(G—-F)][J(J+1)/2]. (10)
Equation (9) becomes, finally,
AE(x)/ox=3[J(J+1)—a+(G—F)J(J+1)

X (da/d8)(d/dx)[H/(G—F)]]. (11)

In order to use this method, one determines 6
from Eq. (10) and Table I. From tables of
characteristic values of Mathieu’s equation,! «
and an approximate value of da/30 may be

1t Tables of Characteristic Values of Mathieu's Differential
Equation, a report prepared for the Applied Mathematics
Panel, NDRC, by the Mathematical Tables Project,
National Bureau of Standards, AMP report 165.1R. In
these tables certain differences in notation occur: the
characteristic values b are given in terms of a parameter s;
these are related to « and 8 by 8=1%s and a=b—13s.
Therefore, 0at/30=4(3b/ds)—2.
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obtained. E(x) and dE(x)/0x may then be com-
puted, and inserted in Eq. (7).

It is wise, in using Eq. (8) for E(k), to investi-
gate whether sufficient accuracy is attained.
First- and second-order corrections are tabulated
in reference (7), and may be used if necessary.
The value of 0E(x)/d« given by Eq. (11) should
be sufficiently accurate for the present purpose
without inclusion of these corrections.

B. The “Harmonic Oscillator Approximation”

This method, and the one to follow, the
“correspondence principle”’ approach, are valid
for those energy levels which are essentially
degenerate in the sign of the limiting symmetric
rotor quantum number K ; i.e., those levels which
are highest for a given J (near-prolate rotor) or
lowest (near-oblate rotor). The present method
yields an explicit expression for both E(x) and
dE(k)/d«, which is, however, rather cumbersome,
whereas the correspondence principle approach
involves tabulated quantities from which compu-
tations are easily made. Therefore, each method
should prove useful in certain cases.

The reduced energy E(x) is, up to and includ-
ing first-order terms (see reference 8),

E(x) = FJ(J+1)+(G— F)E',? (x)
where

E' ()= +3)+(m+3)—2J(m+3HW
—(68/WH[B—p'(1+(1/27))]
X (m*+m+3).

Here m=J—K_, for a type I representation,
m=J—K, for a type III representation, and
K_, and K, refer to the limiting K of the prolate
and oblate symmetric tops, respectively. Also

W=[(1+(1/27)) -4 1}

B=1/2)[H/(G—-F)][1+(1/27)
—(1/3279)+(1/647°) 1;

B'=01/)[H/(G—F)][1+(1/3277)]

The expressions for F, G—F, etc., in terms of «
are those of Table I. With sufficient accuracy
for the present purpose,

BlB—p'[1+(1/27)]1=—[1/64T*[H/(G— F) I,

and

(12)

w=[1+1/27) 11 -3[H/(G— F) ]
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Then
SE(X) /o [T(J+1) —E'(1)]
+2J+1) (m+3) H(d/dx) (H/ (G~ F))
 3(m+m-+(1/2)HL(@/dw) (H/(G~ F))]
162(1+(1/2)*(1 —[H/ G- ) )

The results of Egs. (12) and (13) are to be
substituted in Eq. (7).

(13)

C. The Correspondence Principle
Approximation

The result of reference (6) of primary interest
in the present work is the tabulation (Table I)
of a “‘reduced energy ratio,” 1, as a function of a
quantum number ratio \, and «. n and \ are
defined by

1(0) 7.k =E(K)5.x/T(T+1),

K here is the limiting (prolate or oblate) sym-
metric top quantum number. 5(«x) and dn(«x)/d«

A=K/[J(T+1) T

WICK

can be taken from the table, and
AE(k) /o= J(J+1)[an(x)/0«].

The derivative d1(x)/d« is evaluated for constant
A, and must not be confused with the derivative
d1/9X which is given, together with 7, in the table.

(14)

APPENDIX
Let
Ho=aP,2+bPs2+cP.2?, (15)
H'=5cP2. (16)

Then, if E(a, b, c) is an eigenvalue of the unperturbed
problem (15), and E’ the first-order energy correction due
to (16), E'=8c(P.2, where the angular brackets denote an
average over the (unperturbed) eigenstate corresponding
to E(a, b, c).

Let E(a, b, c+6c) be the corresponding eigenvalue of
the Hamiltonian,

H=0aP2+bPy2+ (c+8c)P.2,

and define ¢ such that E(a, b, c+68c)=E(a, b, ¢)+E' +e.
Then

0E(a,b,c) ,. E'+e
=lim ,
ac s5c—0 OC

but e=0(3¢c?), so dE(a, b, ¢)/dc=(P2).
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The behavior of the neutron density about a plane- or point-source of fast neutrons within a
homogeneous slowing-down medium has been re-investigated. For the case of constant mean
free path a known analytical expression for the neutron density has been reduced to a form,
which is valid for slow neutrons and for any distance from the source. The feasibility of a
numerical evaluation of the formula is demonstrated for M =1 (hydrogen). In particular, the
asymptotic behavior at very large distances has been studied. For the more realistic example
of a medium in which the mean free path decreases with decreasing energy of the neutrons,
formulae are presented describing the asymptotic density and the asymptotic energy spectrum

at large distances from the source.

1. INTRODUCTION

HE present paper is an extension, in two
directions, of previous work! on the trans-

port equation for the diffusion and slowing-down
of neutrons about a point source in an infinite
homogeneous medium. First, the formal solution
for the case of constant mean free path has been

1 M. Verde and G. C. Wick, Phys. Rev. 71, 852 (1947),
henceforward referred to as “A.”

reduced to a numerically manageable form for
sufficiently slow neutrons at all distances from
the source. Secondly, for the case of a mean free
path that decreases as the energy of the neutrons
decreases, an asymptotic formula valid at large
distances from the source has been derived.

A partial result for the first case, namely the
asymptotic form of the constant-mean-free-path
solution at very large distances was communi-



