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The phase method and the Born approximation is used
to calculate the cross sections of high energy neutrons scat-
tered by protons and neutrons. Various exchange theories
are considered for both, central and tensor forces of rec-
tangular and Yukawa well shape.

For the tensor case the phase method leads to general
formulas for the differential and total cross sections in
terms of rea/ phase shifts. The reality of the phase shifts
is a direct consequence of the use of the asymptotic form
of the eigenfunctions of the tensor force Hamiltonian. The
differential cross section in this case also contains the
"amounts of admixture" which measure the coupling of
states of diBerent orbital angular momentum which have
the same total angular momentum and the same parity.
The real phase shifts and the amounts of admixture are
derived from a variational principle. The total cross sections
thus obtained are within a few percent of the exact values.

The Born approximation is not satisfactory at 100 Mev.
At this energy, tensor forces of a rectangular well shape

with Rarita-Schwinger constants yield 0.2113, 0.1497, and
0.1271 barns for the n-p cross section, and 0.2566, 0.1381,
and 0.0359 barns for the n-n cross section, in the neutral,
charged, and symmetrical exchange theory, respectively.
The observed n-p cross section at 90 Mev, 0.083+0.004
barns, agrees best with the theoretical value of ~0.080
barns at 100 Mev, derived from a tensor interaction poten-
tial of equal amounts of neutral and charged exchange. It is
concluded, however, that a Yukawa tensor potential of the
symmetrical exchange type can be in agreement with the
experiments, if relativistic corrections of the n-p cross
section at 100 Mev are negative and of the order of 5-10
percent. The differential cross section needs considerably
larger corrections unless a diferent tensor force range is
used.

INTRODUCTION served data with central and with tensor forces,
and with a variety of diferent potential well

shapes. ' Recently, Sleator' measured the total
tt-p cross section at energies between 6 and 22
Mev. He found that six diR'erent theories are in
fair agreement with the experiments at least on
some part of the energy range, but that only the
charged and the symmetrical tensor theory 6t
within the whole range considered. Proton-proton
scattering experiments' at 14.5 Mev show a
negative I'-wave contribution to the angular dis-
tribution which indicates exchange forces. Neu-

HE phenomenological theories of nuclear
forces could be compared until recently

only with scattering data up to about 10 Mev.
Neutron-proton and neutron-neutron scattering
in this energy range is practically spherically
symmetrical. No conclusion could, therefore, be
reached about the exchange character of nuclear
forces. Similarly, it was possible to 6t the ob-
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calculations of scattering cross sections for
tensor forces' and all those published since' '"

yielded complex phase shifts, because the asymp-
totic form postulated for the eigenfunctions did
not correspond to the partial waves which are
characterized by constants of motion. The for-
mulation in terms of real phase shifts appears to
be more satisfactory from a theoretical point of
view. Together with real phase shifts, it is neces-
sary to introduce the amounts of admixture
which measure the coupling between two states
of diR'erent orbital angular momentum, but
same total angular momentum and same parity.
This coupling is due to the non-central character.
of tensor forces, and is introduced in a natural
way by a unitary transformation from the
I53EI,Mg scheme, in which the central force
Hamiltonian is diagonal, to the (—I)~SJAl
scheme, in which the tensor force Hamiltonian is
diagonal.

The phase shifts and the amounts of admixture
are found by a variational procedure, since it is
not possible to solve the occurring simultaneous
differential equations in a closed form. The
variational principle for the phase shifts was
first given by Schwinger in his course on nuclear
physics" where it was applied to S and D wave
scattering.

We published some of our numerical results
previously. "Meanwhile, a number of papers have
appeared which deal with scattering by central" "
or tensor forces, ""some of which overlap partly
with our own calculations. This enables us to
shorten certain parts of this report. " In partic-
ular, we refer to Ashkin and Wu" for the deriva-
tion of the scattering cross-section formulas for
tensor forces in Born approximation.

The first part deals with central forces. The
exact results which are obtained from the phase
method (Section IA), are compared with the
Born approximation (Section IB). The second

W. Rarita and J. Schwinger, Phys. Rev. 59, 436 and
556 (1941).

9 J. Jauch, Phys. Rev. 6'7, 125 (1945).
''I J. Ashkin and T. Y. Wu, Phys. Rev. 73, 972 (1948).
"See also: J. Schwinger, Phys. Rev. 72, 742 (1947)A."J.Fisenstein and F. Rohrlich, Phys. Rev. 73, 641 and

1411 (1948).
'3 M. Camac and H. A. Bethe, Phys. Rev. 73, 191 (1948)."T. Y. Wu, Phys. Rev. 73, 934, and 1132L (1948).
'~ H. S. W. Massey, E. H. S. Burhop, and T. M. Hu,

Phys. Rev. 73, 1403 (1948)L.
''I For full details we refer to our theses (see the first

note of this paper).

tron-proton scattering experiments' at 12—13
Mev are in agreement with symmetrical tensor
forces, but do not compare with the results ob-
tained for a tensor force of the neutral or charged
type.

Scattering experiments of 90-Mev neutrons by
protons and deuterons were recently carried out
in Berkeley. ~' These data should enable one to
still further eliminate phenomenological theories
which are consistent with low energy scattering
data. It should be mentioned here that the
analysis of high energy scattering cross sections
suffers from the serious drawback that, while
relativistic eEects may be important at energies
as high as 100 Mev, the corresponding correc-
tions of the non-relativistic calculations are yet
unknown. 'b

The present investigation pursues a twofold
aim. Firstly, cross sections for high energy scat-
tering are calculated for rectangular and Yukawa
well shapes. The constants employed fit the
binding energy of the deuteron, the epithermal
n-p cross section, and the low energy p-p cross
sections. This involves the assumption that p-p
and n-p forces are essentially the same. It is
investigated how the results change when difer-
ent constants are assumed. ' The first part deals
with central forces, the second part with tensor
forces. Actually, only tensor forces have sig-
nificance, since it is not possible to account for
the electric quadrupole moment of the deuteron
under the assumption of central forces. Nu-
merical results are obtained for various energies,
including j.00 Mev, and are compared with the
Berkeley experiments.

Secondly, the phase method is applied to rcp-
and m-n scattering with tensor forces and —as in

the case of central forces—the cross sections are
given in terms of reo/ phase shifts. The first

' J. S. Laughlin and P. G. Kruger, Phys. Rev. 73, 197
(1948).' Cook, McMillan, Peterson, and Sewell, Phys. Rev. 72,
1264 (1948)L."Hadley, Kelly, Leith, Segrh, Wiegand, and York,
Phys. Rev. 73, 1114 (1948)L.

~ For an estimate see: H. Snyder and R. E. Marshak,
Phys. Rev. 72, 1253 (1947).

~ This is important, because recent experiments on the
scattering of slow neutrons by ortho- and parahydrogen
(R. B. Sutton et al. Phys. Rev. 72, 1147 (1947)) and hy
hydrogen in crystals (C. G. Shull et al. Phys. Rev. 73, 842
(1948)) indicate that the ranges of singlet and triplet
forces may be much shorter than was commonly accepted,
and may also be unequal to each other. See also: J. M.
Blatt, Phys. Rev. 74, 92 (1948).



NEUTRON-P ROTON SCATTERING 707

TABLE I. Total cross sections for neutron-proton scat- TABLE II. Total cross sections for neutron-neutron scat-
tering at 100 Mev. Central forces, exact calculations. (Al) tering at 100 Mev. Central forces, exact calculations. (All
values are in barns, i.e., 10~4 cm'. ) values are in barns, i.e. , 10~4 cm'. )

Theory

Neutral
Charged
Symmetric

0.0645
0.0552
0.1692

0.1939
0.1582
0.0921

Pr&,p Theory

0.1616 Neutral
0.1325 Charged
0.1114* Symmetric

0.0464
0.0464
0.0464

0.2289
0.1575
0.0252

0.1832
0.1297
0.0305

*The value 0.094 obtained by Ta-You Wu (see reference 14, Table
III) is due to a numerical error.

part is devoted to tensor forces. The results in

Born approximation (Section I IA) are discussed,
and the formulas for the differential and total
cross section of n pand n r&,-scatt-ering are derived
with the phase method (Section IIB). Numerical
results are obtained by the aid of the variational
principle for real phase shifts (Section IIC),
and the comparison with the experiments is
summarized. A list of formulas for n pan-d n n-
cross sections according to different theories is

given in the appendix.

the potential energy. With a rectangular poten-
tial well of depth Vo and range ro we can
introduce the dimensionless quantities

x = r/r p, K = MEr '/I&,"= (kr )'
X = MUprp'/l&P

and find for the wave function interior and
exterior of the well,

I. CENTRAL FORCES

A. The Phase Method

The assumption of central forces permits the
direct application of the method of partial
waves'~" or phase method. For each of the two
spin states the space dependent part of the wave
function can be written as the sum of the wave
functions of fixed orbital angular momentum I..
These functions are the solutions of a Schrodinger
equation which, after separation of variables

ul, (r)I r, (cosO)

The & sign corresponds to attractive and re-
pulsive potential, respectively. The boundary
conditions

~I.
ur, &"(0) =0, up&'&(~) sinl Kx+ +&1&

I (7)

are fulfilled by the solutions

uI. &"(x) =xj r, («gx),

uq&'(x) =Ax[jr(«x) —tanbznr(Kx) j, (9)

where

lead to the radial equations
and

«& = («p &X)~ (10)

(I.=O, 1, 2 ), (2)

O' = ME/h'.

.V is the mass of the nucleon, 8 is the total
energy in the center of mass system, and U(r) is

'7 H. Faxen and J. Holtsmark, Zeits. f. Physik. 45, 307
(1927).

's N. F. Mott and H. S. K. Massey, Theory of Atomic
Collisions (The Clarendon Press, Oxford, 1935).

( s' ) ~ s&n(Kx KL/2)
g.(.x) —

~ ~
J„;(.x)—

&2~xI KX

( x'

ef.(«x) —
~ ( Xg+, («x)
E 2KXi

(11)
cos(«x —s L/2)

'9 See for example: J. Stratton, Electromagnetic Theory
(McGraw-Hill Book Company, Inc. , New York, 1941).

are the spherical Bessel and Neumann func-
tions, " respectively. Smoothness of the wave
functions at the edge of the well requires the
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equality of the logarithmic derivatives

d—logul, &'&(x)
dx

—logur, &'(x)
dx

(12)

K1JL 1(K1)
j~-&(&)—— . i I, (&)

K jI,(K&)
tanbr, ——(—1)i

~1 jl,-l (&1)j L(K) +—— j I. 1(K)——
rc jz, (a&)

(13)

where we made use of the identity

&&.~(x) =(—1)~+'j r, &(x).

Introducing (8) and (9) into (12), we And easily

The Eqs. (13) and (14) seem to us somewhat
more convenient to use than the corresponding
Eqs. (12) and (13) of Camac and Bethe."

For the given well depths V0 and for the even
singlet and triplet states, we obtain from (4) two
values, X, and X~, respectively. The value of
in (10) will in general depend on the parity ( —1)~

of the state and on the spin,

&'&&=(~'+)t,g&'&)1 ~ &&'&=(~'+l&,r, &'&)&. (15)

For the neutral theory'

Xg ' =X„Xg' =Kg,

for the charged theory

The phase shifts can be evaluated from (13) by
means of the tables" for j& and j &. For strongly
repulsive potentials as occur in the exchange
theories, ~& of Eq. (10) may become imaginary.
In this case (13) has to be replaced by

"= (—1)iX», "'= (—1)i», ,

and for the symmetrical theory

= —(1—2(—1)')X

Xg "& = —',(1+2(—1)~)», .
(18)

tanbr, =(—1)~

jz,-&(a) — jz.(~)
Ir+~(l ~&l)

The phase shifts for these theories can now be
calculated from (13) and (14). The differential
cross section for n-p scattering is given by the
well-known formu1a" "

where"
Il, (~) =i ~Jg(ix)

STNNETElCAL KXCHA!CATE ICE'IAC
QKCT4IÃcMLAR WELL POTE NT & AL

waaf, R.so ~&O '*Ce
l l

3 y () y & e&(y) (E PH4$ES)

2

0„,(8) = —Q (2L+1)e*'& sinb~Pr, (cos8), (19)
k L-0

and the total cross section by

g„„=2~, I ~„,(a) sin@do
0

4x
=—P (2I +1) sin'br, . (20)

p 2 I.-o

From these equations the n-n cross sections are
obtained by the aid of the exclusion principle

1+(—1)'
-'t'&(&) = (2L+ 1)

k

+So 104
SCAT TE a& NC A NCLa

l$$4 & SOo

FIG. 1. Differential scattering cross section at 100 Mev.

National Bureau of Standards, MathematicaI Tables
Project, Tables of Spherical Bessel Functions, Vol. I and II
(Columbia University Press, New' York, 1947)."G. N. Watson, Thewy of Bessel Functions (The Mac-
millan Company, New York, 1944).

Xexp(ib~&'&) sinbr. &'P~(cos8)

~ 1 —(—1)~
0-"&(&)= (2I.+1)

L 0

(21)

Xexp(ibz, "&) sinb~&"Pz, (cosd), (21)
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Txsr.z IIIa. Variation of triplet e-p cross section with range
at 25 Mev (central forces, exact calculations).

0 .=-', 2s 0 (0) sini5d&5 (22) rg
(l P-xa cm) Neutral

Charged
{barns) Symmetric

(r(&5) = 'a &'-&(0)+ 43o &'&(&'&), 0 = ,'a &'&+-,'(r "&,-(23)

with &&&'& and 0&'& from (20) or (22).
We adopted the ranges and well depths

r, = 2.80X10 " cm, Vo' ——11.904 Mev, and r &

=2.80)&10 " cm, Vo'=21.213 Mev. For neu-
trons of 100-Mev energy in the laboratory system
we 6nd the total scattering cross sections as
tabulated in Table I for n pcolli-sions and in
Table I I for n-n collisions. The angular dis-
tribution for n-p scattering in the symmetrical
theory is plotted in Fig. 1. Its triplet part can be
seen from Fig. 3.

It can be seen from Tables I and II that the
magnitude of the potential inAuences the cross
section much more than does its sign. In Table II
only odd phases enter the triplet cross sections.

0.$

NOIl KWACHA HOR iRTKRACT&OR
RRCTAIlROLAh '4fgLL POWRtlAL

RAROR ROO ilO Cia

a. 51RQLET DKPTll ILOOV MV
1&. vR1PLOr Of, Pry RLais wv

NIACIN CAL&LATIOR—RONI IPPROXIRAl&OR

O, '5

O, R

TRIPLRT

A go
INMOST lN l%+

since only half the number of deviated neutrons
are scattered neutrons, the other half being recoi1
neutrons. When the two spin states are taken
into account, one finds from (19) or (21) the two
angular distributions 0 &'&(&1) and &r&'&(il&). They
combine in their respective weight 1:3 to give
the total cross section

1.8
2.3
2.8

0.4250
0.4657
0.6042

0.4130
0.4014
0.3891

0.4111
0.3931
0.3656

Txm, a IIIb. Variation of triplet n-p cross section with
range at 100 Mev (central forces, exact calculations).

r~
{ip»cm)

1.8
2.8

Neutral

0.1351
0.1939

Charged
i,'barns)

0.0749
0.1582

Symmetric

0.0613
0.0921

In the neutral and charged theory the magnitude
of the potential is the same, but the odd states of
the latter are repulsive rather than attractive.
This causes a decrease of 0„„&')by one third,
approximately. On the other hand, the charged
and the symmetric theory have both repulsive
odd states, but the magnitude of the potential
in the latter is by two thirds smaller. This causes
a decrease of cr„„&')by more than 80 percent.
Qualitatively, the same behavior can be seen

from 0„„"in Table I. In this case, however, it is

less pronounced, because of the presence of even
states which contribute equally in all three
theories. As expected, the charged theory gives
a somewhat smaller singlet cross section, 0„„~',
than does the neutral theory. The strong increase
in O„„t'~as we pass from the neutral to the sym-
metrical theory is due to the competition between
a factor three and a minus sign. The repulsive
P-state contributes 85 percent of the singlet np-
cross section in the symmetrical theory.

The total singlet and triplet n-p cross sections
were calculated in the neutral theory for various
energies between 25 and 200 Mev. They are
plotted" in Fig. 2 and are in agreement with the
results of Camac and Bethe."

When we decrease the triplet range the triplet
depth has to be increased correspondingly in

order to account for the binding energy of the
deuteron. We used Wiedenbeck and Marhoefer's

FIG. 2. Variation of singlet and triplet cross sections with
energy.

~ It should be noted here that the singlet cross sections
given in Fig. 2 were calculated with a potential well of
11.457 Mev rather than 11.904 Mev. The difference is
practically negligible.
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TABLE IV. Total cross sections for neutron-proton scat-
tering at 100 Mev for central forces in Born approximation
(rectangular well). A11 values are in barns (10~' cm3).

TABLE V. Variation of triplet n-p cross section with
range for central forces in Born approximation (rectangular
well). All values are in barns.

Theory

Neutral and
charged

Symmetric

rrxp&'3

0.0641
0.3872

rr„p(13

0.2034
0.0894

0.1686
0.1639*

Energy
rg

1.8X10 "cm
2.3X10 "cm
2.8X10» cm

25 Mev.
neutral and

charged

0.3578
0.5522
0.7449

100 Mev
neutral and

charged

0.1351

0.2034

Symmetric

0.1121
0.0945
0.0894

+ The value 0.140 obtained by Ta-You Wu (see reference 14, Table
III) is due to a numerical error (private communication of Dr. Wu).

value" of 2.185 Mev. The mell depths for three
different triplet ranges are as follows:

f g

1.80X10 "cm
2.30X10 "cm
2.80X10 "cm

p (&)

43.476 Mev
28.963 Mev
21.213 Mev.

The variation of the triplet cross section mith

range is shown in Table IIIa for 25 Mev and in
Table IIIb for 100 Mev.

Tables IIIa and IIIb show that the neutral
theory leads to a smaller cross section when the
range is reduced, independent of the energy. The
charged and the symmetrical theory also give
smaller cross sections for a reduced range, but
only at higher energies (e.g. , 100 Mev); at lower

energies (e.g. , 25 Mev) they lead to larger values.
'Ihese results are in agreement mith those ob-
tained by Camac and Bethe (Table III)."The
combined singlet and triplet cross section is seen
from their table to increase with decreasing

range (r, =rg) for energies below ~50 Mev for
the charged theory and below 60 Mev for the
symmetrical theory. "

Equation (15) shows that the decrease of the
cross section due to the presence of exchange
forces (charged or symmetric type) is relatively
smaller the higher the energy. This effect can be
so large that the cross section may even increase
with energy. For example, the triplet n pcross-
section in the charged theory is 0.155 barn at
80 Mev (r& ——2.80 X 10 "cm), as calculated from
the phase shifts of Camac and Bethe, " but is
0.158 barn at 100 Mev (Table I). On the other
hand, the symmetrical theory increases the con-
tribution to the singlet cross section of the odd
states. Where an increase in energy leads to a
strong increase in the contribution from an odd
state, this may again lead to an increase of the
cross section with energy. Thus we find
0„„'&=0.164 barn at 80 Mev (Camac and
Bethe's phase shifts) and ~„„&'=0.169 barn at
100 Mev (Table I).

C
cs 3
I-
V
~0

O

IJ

STtlN4TRICAL EXCIIANOI INTCRACT1OH
RSCTAtLGULAR MELL P4~4NT IAL

RAN%4 g.44x 10 ~ CK~

OEPTII tIR13 NE&

fXACT CALCN. ATION (3 PHASES)---- 40RN APPROX IIlATION

B. The Born Approximation

The formulas for the Born approximation are
well known and need not be derived here. They
are summarized in the Appendix.

Total cross sections for n pscatteri-ng were
calculated for a rectangular well mith the con-
stants given in IA. The results are shown in Fig.
2 for the neutral theory. The singlet cross section
above 25 Mev and the triplet cross section
above 40 Mev agree mell mith the exact calcu-
lations. At these neutron energies the total

0—0 %0~
5CATTERlllG AN&H

I

1334 1404

FIG. 3. Triplet diAerential cross section at 100 Mev.

~ M. Medenbeck and C. Marhoefer, Phys. Rev. 67, 54
(1945)L.

'4 For 80 Mev Ta-You %'u obtained an apparent increase
in the cross section with decreasing range in the sym-
metrical theory. (Phys. Rev. 73, 1132 (1948)L, Table L)
His value 0.84 and 1.17X10 ~ cm2, however, should be
interchanged. For the Gaussian potential the increase from
0.95 to 1.08X10~ cm3 is very probably only apparent,
and is due to the use of the Born approximation {see
Part I B, Table V).
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TABLE VI. Total cross sections for n-p scattering at 100
Mev for central forces (Yukawa we11, Born approxima-
tion). All values are in barns.

TABLE VII. Variation of triplet n-p cross section with
range for central forces in Born approximation (Yukawa
well} (energy: 100 Mev).

Theory

Neutral or
charged

Symmetric
0.0604
0.1545

erst(t)

0.1309
0.0932

0.1133
0.1086

10»cm

1.089
1.183
2.177
4.355

Ps(t)
Mev

78.070
67.450
24.203
8.339

Neutral or
charged

(barns)

0.110
0.131
0.191
0.374

Symmetric

0.0896
0.0932
0.1285
0.2241

energy in the center of mass system becomes
comparable with the respective well depths, and
the Born approximation ceases to hold. The
curves for the Born approximation do not
approach the curves for the exact calculations in

a monotonic fashion, but oscillate and even cross
the exact curves in the singlet case. This peculiar
behavior is due to the sharp cut-off of the rec-
tangular well.

In the Born approximation the total cross
section in the charged theory is the same as in
the neutral theory. At high energies (above ~40
Mev) the charged theory leads actually to much
smaller values than does the neutral theory. The
situation is even worse for &he symmetrical
theory. For a range of 2.80)&10 "cm the triplet
cross section is still in fair agreement with the
exact value, but the singlet cross section is too
large by a factor of two, even at 100 Mev. These
relations are evident from a comparison between
Table IV and Table I.

It folloms from these remarks that the Born
approximation is in general not reliable at 100
Mev. One obtains reasonably good approximate
values, homever, if one uses the combination

0 = -', &r" (exact) + -,'o &"(Born) (25)

for the symmetrical theory. If we decrease the
triplet range, the well depth increases (see (24)),
and for r&=1.8X10 "cm becomes nearly equal
to the total energy in the center of mass system
at 100-Mev neutron energy. The Born approxi-
mation will, therefore, not give good values.
This is exhibited in Table V from mhich we
drew first the erroneous conclusion that the cross
section increases mith decreasing range in the
symmetrical theory at 100 Mev". (See also
reference 24.) On the other hand, the oscillatory
character of the curves for the Born approxima-
tion (Fig. 2) may lead to relatively good agree-
ment for energies as lorn as 25 Mev, as can be

seen from a comparison of Table V with Table
IIIa.

Although the total triplet cross section at 100
Mev, symmetrical theory, is in Born approxi-
mation not very far off the exact value, the
triplet differential cross section may lead to
entirely erroneous quantitative conclusions.
fair qualitative agreement can be seen from
Fig. 3. We find a ratio of backward to sideward
scattering R&'&(Born) = &r &'&(s)/o &'&(s/2) = 900,
whereas the exa.ct value is R«'(exact) = 78.

It is of interest to examine horn the assump-
tion of different well shapes infIuences the cross
section. A. Yukama potential of the type

V= Vp(e */x), —(x = r/r„), (26)

was, therefore, assumed, where ry is the "range"
of the Yukawa potential. An analysis of proton-
proton scattering" leads to a singlet range of
0.42 e'/mc'=1. 183&(10 " cm, and to a singlet
depth Vo'& =89.65 mc'=45. 80 Mev. The triplet
depths for various ranges follow from the binding.

energy of the deuteron by the use of a variational
procedure. "They are listed in Table VII. If one
assumes the triplet and singlet ranges to be
equal, and chooses the above value of 1.183
X10 "cm, one finds in Born approximation the
cross sections of Table VI.

For this Yukawa well the reduction of the
neutral cross section due to symmetrical ex-
change forces is much smaller than for a rec-
tangular well of ranges 2.80&10 " cm. The
Born approximation for the neutral theory mill

not be far off the exact value. From calculations
by Chew and Goldberger" we may conclude that

~ L. E. Hoisington, S. S. Share, and G. Breit, Phys. Rev
56, 884 (1939).

~ L. Hulthen, Arkiv. f. ) Iat. , Astr. o. Fys. 28A, No. 5
(1942)."G. F. Chew and M. L. Goldberger, Phys. Rev. 73, 1409
(1948)L. For 80 Mev the Born approximation for a
Yukawa well gives 0.131 barn; their value of 0.150 barn is
due to an error (private communication).
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TABLE VIII. Total e-p cross sections for a rectangular TABLE IX. Variation of triplet n-p cross section with
well at 100 Mev (tensor forces, Born approximation). All range for 100 Mev (tensor forces, Born approximation,
values in barns. rectangular well).

ago
$~sg(&)

&Son +&&aor '" cr(~3
R=

o (sri23

rg
1Q 1$

cm

Q sym-
1Q-&7 D state Neutral metric

'Y Mev cm~ percent barns

Neutral or
charged

Symmetric
0.2516
0.0939

0.2047
0.1672

0.2048
0.1127

0.30 or 3.75
7.9

2.80 0.775
2.30 1.564
2.30 1.292

13.89 2.73 3.9 0.2516 0.0939
15.92 2.73 6.9 0.4216
13.55 2.16 4.0 0.1835 0.102

the cross section in the symmetrical theory is at
100 Mev smaller than the exact value by about
6 percent or less. It follows that this well leads
to considerably smaller neutral cross sections
than the rectangular well (r, =r& ——2.80X10 "
cm) at 100 Mev, and to about equal or somewhat
larger values for the symmetrical theory. At 80
Mev the symmetrical theory leads to much
larger cross sections with a Yukawa we11,"0.140
barns instead of 0.111 barn.

As in the case of a rectangular well a range
reduction causes a decrease of the cross section.
Since the error made in the Born approximation
for the symmetrical theory is much smaller for
a Yukawa well than it is for a rectangular well,
we can be sure that the qualitative behavior
exhibited by the Born approximation is correct;
the various triplet cross sections are given in

Table VI I.
II. TENSOR FORCES

A. The Born Approximation

The inclusion of tensor forces in the nucleon
interaction effects only the triplet states, since

the tensor operator

5(2 ——3(og r, ogr/r') —0..g a (27)

and for the symmetrical theory

f 1301' P2) %1' 72.

Let
(31)

1+0'1 0'2 1+F1 72
R= (—1)i 5= — &= (32)

be the space, spin, and isotopic spin symmetry
operator, respectively. Then the exclusion prin-
ciple requires that the wave function be anti-

vanishes for singlet states. The triplet potential
lS

V(r) =f(0y02, T'y' T2)(J(r)+&S&2K(r)], (28)

where y is a constant and f(o~ am, r~ rm) is for
the neutral theory

(29)

for the charged theory

f=(1 +gader/2)(1+1, ~2/2),

RECTAHOVLAR WELL &&E'NTIALS Wl&H
RAIL1TA SCH&lOLQ I lt CONSTAkjY$

ee
K'

t
O

a

hit llTR AL

Nf MTRAL &&&'lY y ~g ~14RN)+ ~ +'g&ORSt)
SfNNfTR1CAL &RE4+Y—

$ ~ csosN) + - os csgAcv)

O

lJ

g

FIG. 4. Differential cross sections
at 100 Mev for tensor force
theories.
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symmetric in the, operator RST, i.e.,

(33)

If, furthermore, the particles are identical, i.e. ,

they are two neutrons or two protons, 1=1.
These relations determine f(oj og, r~ r2) uniquely
and in agreement with Eqs. (16)—(18).

The constant y can be so determined that

l(r) = VOF(x), K(r) = VpG(x),
x=r/ro. (34)

With this potential the diAerential and total
cross section can easily be derived in Born ap-
proximation. ' The results are given in the

appendix.
In what follows we will assume that the two

shape factors F(x) and G(x) are equal. For this
case and a rectangular well shape

the constants were determined by Rarita and
Schwinger r0=2.80X10 "cm, V0=13.89 Mev,
y =0.775. The triplet cross sections obtained with
these constants are shown in Table VIII. The
singlet cross sections are, of course, the same as
without tensor forces, and are known exactly
(Table I) and in Born approximation (Table
IV). It is, therefore, easy to obtain the com-
bination (25) for the total cross section which is

much closer to the exact solution, especially for
the symmetrical theory. This is also given in

Table VI II.
The results in column 2 of Table VIII are in

agreement with those of Ashkin and Wu. "The
differential cross section in Born approximation
was also given by these authors. Since the com-
bination (25), however, gives much better results
than the actual Born approximation, we have
plotted the angular distribution for this com-
bination (Fig. 4). We observe an appreciable
increase of the scattering at right angles as a
result of the tensor force. (Compare Figs. 1 and
4.) The backward scattering in the symmetrical
theory decreased strongly. The total cross sec-
tions are larger for tensor forces than for central
forces.

In order to examine the efIect of a reduced
triplet range we proceed as follows. Since it is
not possible to fit both, the quadrupole moment
of the deuteron and the amount of D-state, with

TABLE X. Constants for a Yukawa tensor potential. ~

Meson Meson
mass mass

r~(central) electron ri(tensor) electron Vo«&
10-» cm masses 10» cm masses Mev

(I) 1.202 321
(II) 1.202 321

1.400 276
1.556 248

30.817 1.459
45.286 0.618

+ See reference 28.

TABLE XI. Total e-p cross section for a Yukawa we11
and a symmetrical theory at 100 Mev (tensor forces, Born
approximation). All values are in barns.

Constants y«)

0.0674
0.0760

0.0892
0.0956

R =cr(Ã) jo (%./2)

9.08
12.2

g (TENSOR) ~ i@40 jt IO CYCNl--- 'st (TENSOR) I.55S x lO~CN

Ci

b

Fro. 5. Differential cross sections at 100 Mev for tensor
forces and a Yukawa potential (symmetrical theory).

other constants than those given by Rarita and
Schwinger, ' we evaluated two sets of constants,
one that fits the quadrupole moment and another
that fits the D-state. We assumed a reduced
range of 2.3X10-" cm and used a variational
procedure to determine the constants. The results
are given in the following Table IX. Since a
reduced range makes the angular distribution
more isotropic (less contributions from higher
angular momenta), it is clear that more D-state
is required to fit the same quadrupole moment.
The constant p increases very strongly with de-
creasing range. As was pointed out in our Letter, "
this effectively decreases the ratio of backward to
sideward scattering. The cross section, however,
reduces strongly in the neutral theory only, and
increases even there if we try to fit the quadrupole
moment.

For a Yukawa tensor potential constants
were calculated by Feshbach, Eisenstein, and
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Schwinger. '8 They assumed a Yukawa well

shape (26) for both shape functions (34), but
different ranges, r, (central) and r, (tensor), for
the central and tensor part of the triplet poten-
tial, respectively. They found two diAerent sets
of constants which fit the quadrupole moment of
the deuteron (Table X). The singlet range and

depth are the same as in the non-tensor case.
Using the Born approximation one obtains from
these constants the differential cross sections of
Fig. 5 and the total cross sections as given in

Table XI above. These total cross sections are
smaller than those obtained for a rectangular
tensor potential or for a Yukawa non-tensor
potential. The ratios R are about the same as for
the rectangular tensor potential, but they cannot
be trusted too much because of the Born ap-
proximation.

1—(xi'+xi '), —(xi'-xi '), xi'
K2 W2

The vector +I„J"was discussed in detail by
Corben and Schwinger" and by Rarita and
Schwin ger. '

In complete analogy to the case of central
forces we separate the Schrodinger equation

M
V'+—(Z —V) 4=0, (36)

into partial waves, according to the LSJm
scheme, first,

states the function p~J can be regarded as a
vector, @~,J" in the three-dimensional ortho-
normal space spanned by the vectors

B. The Phase Method for Tensor Forces
4= p Cq+J. tpJ Q ci4'L

In the case of central forces the spin and the
orbital angular momentum are constants of
motion. One uses, therefore, the representation
which is characterized by the four quantum
numbers LSDI,Mq. When tensor forces are
present the magnitude and the s-component of
the orbital angular momentum are no longer
constants of motion; neither is the 2,'-component

of the spin angular momentum. Only the square
of the spin angular momentum commutes with
the tensor Hamiltonian. It follows that a trans-
formation to the LSD scheme, where J and

e characterize the magnitude and the s-com-

ponent of the total angular momentum, will not
diagonalize the tensor Hamiltonian. A further
transformation to the (—1)~SJrl scheme is

required. The parity operator, whose eigenvalues

are (—1)~, commutes with the tensor Hamil-

tonian.
Again, the tensor force operator SI2 enters

only in triplet states. In the LSMI.M8 scheme

the angular dependence is described by the
spherical harmonics F~~~(0, p). A transforma-
tion to the LSJ3E scheme yields

4i, z"(~, v)= Z ~~ '(~ v)xs '
hfi. , M8

X (I.SMz, Ms/I. SJm), (35)

where X8~8 is the spin wave function. For triplet
'8 H. Feshbach, J. Eisenstein, and J.S. Schvringer, Phys.

Rev. N, 1223 (1948).

(L, =J—1, I, 1+1). (37)

Separation of variables can now be achieved by
putting

ug(r) Vg (7)
O'J —1, J' ~ J—1, J~ 4'J, J ~ J, J™i

4'J+1, J (38)

The operator S» will couple states of equal
parity'

J—i
SI24'J I, J = —2 O'J I, J

21+1
L&(&+1)3'-

+6 +J+I, JyJ

S124'J, J =24 J,J

J+2—2 4 J+1,J)
2J+1

When we introduce (37) and (38) into the
Schrodinger equation (36) and observe (39), we

» H. C. Corben and J. S. Schminger, Phys. Rev. 58, 953
(1940).
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obtain three radial equations for each value of J.
The case J=O is a trivial exception. Kith the
potential (28) we find with the dimensionless
quantities (4) and (34)

( d' J(J—1)q

Jug�(x)

(dx' x' )
0'y'0'2, Ty' V'2

X) (fz(x)ug(x)+gg(x)wg(x)),

(J+1)(J+2))+.—
Edx' x-"

1
Gj (x, x') = ——«x&j& i(«x&) «x&n J i(«x&),

1
Gg" (x, x') = —— jgpi(«x&) «x&ng+i(«x&), (43)

1
Gg "(x, x') = ——«x&jg(«x&) «x&ng(«x&).

K

are the appropriate symmetrical Green's func-
tions. They satisfy the equations

02~ Tl ' 7 2

XX(gz(x) ug(x) +hg(x) wg (x)),

p
d' J(J+1)i+.'- — iv, (x)

&dx-' x' )
~f(vl ' v2y r1' r2)~I(x)v J(x) i

fg(x) = F(x) —2 yG(x),
2J+1

LJ(J+1)3'
gg(x) 6 -vG(x)

2J+1
J+2

hg(x) = F(x) —2 yG(x),
2J+1

(41)

+.~- iG,.(x, x)
(dx' x'

= —b(x —x'), etc. (44)

and vanish at x& =0. The notation x& and x& is
convenient to designate respectively the smaller
and the larger of x and x'.

It follows from the asymptotic relations (11)
that for large x the Eqs. (42) become

ug(x) Ag sin~ «x —(J—1)—
~2j

X

f cos~ —«x——(J—1)—
~

~~ «x'Jq i(«x')«I 2)~0

X (fzus+gzwz)dx,

l(x) = F(x)+2yG(x).

The first two differential equations are coupled,
the third one is uncoupled. They are equivalent
to the three integral equations

x')
wg(x) Cg sin~ «x —(J+1)—~2j

(43)
X (f cos~ «x ——(J-+1)—

~
i «j'ski(«x')

2) J,
ug(x) =Ay«xf g i(«x) —fX) Gg" (x, x')

X [fz(x') ug(x') +gz(x') wz(x') ]dx',

X (genug+ hgwg) dx',

Jvr i
v, (x)-Bg sin( «x-

wg(x) = Cg«xgpi(«x) —jX ~~ Gg (x, x')
0

X [gg (x')up (x') +hg(x') wg (x') $dx',

vg(x) =By«xj z(«x) fh Gz'(x, x—')
Jo

X l(x') vg(x')dx',

(42) I Jv)f ' 'I «x
(

i Kxj'g(«x')$qv, dx'.
2 )&0

The asymptotic form required for our solutions
may be written)

f In this form the phase shifts will in general also depend
on m (see reference 30b).



F. ROH RI. I CH AN D J. E I SENSTEI N

(
+AJ tanbJ" cosl Kx (J—1)—l,

2)

CJ (
wJ(x) sinl Kx (J—+1)—+bJ I,

cos5J 2 )'
BJ P Jw

vJ(x) sinl Kx ——+bJ" l.
cosbJ' & 2 )

'

(46)

J1J= —cotbJ" fh) gJ 1(KX')[jJ(x')uJ(x')
0

A comparison of (45) and (46) yields to the deter-
mination of the constants

Since L, can take on the values J—1, J, and
J+1, the wave functions in the (—1)cSJm
scheme will either be the same as those in the
ISA scheme, namely when I =J, or they will

be linear combinations of pJ 1, J" and pJ+1, J,
which have the same parity. In the latter case
there will be two independent wave functions for
each value of J. We denote them by fJ, and

&, respectively.

SL 1 fQ

0J m
= 11J (x)~ J—1 J 1CJ (x)~ J+1 Jr

x x

1
4'J, m NJ (x)@'J—1, J n'J (x)~ J+I, Ji (49)

X x

O'J, m 11J(x)+ J, J —(l'J, J
x

+gJ(x')wJ(x') ]x'dx',

CJ ———cotbJ f71 l jJ+,(Kx')[gJ(x')uJ(x')

+3(x')mJ(x') ]x'dx',

BJ= cotbJ" f—h)I jJ(KX')l(x')vJ(x')x'dx'

(47)

O'J CalPJ, m +CONJ mP+CylPJ m (37')

These are the three eigenfunctions of the tensor
Hamiltonian in the (—1)cSJm representation.
If we want to write the total wave function + of
(36) as the sum of partial waves which are all
"eigenwaves, " as in the case of central forces, we
have to replace the second sum in (37) by

With the aid of these equations we can express
the formal solutions (42) in terms of the phase
shifts

uJ(x) = —cotbJ"17%. KxjJ 1(Kx)

X gJ 1(KX') [jJ11J+gJtsJ]x'dx'

j71] GJ"(X, X )[fJSJ+gJWJjdx,

'NJ(x) = cot5J —fX ' KxjJ+1(Kx)

X jJ+1(KX )l gJQJ+kJWJ]x dx

Each of these partial waves is, therefore, defined

by J, m, and one of the three indices n, P, p. The
wave function p„1,1 which is the sum of the wave
functions for the incident and the scattered
wave, will also be the sum of partial waves
dehned by these quantum numbers. For any one
of these waves we now require that its radial
part differ asymptotically from the radial part
of the corresponding incoming partial wave only
by a phase shift. In other words, the asymptotic
forms (46) have to be chosen such that (49)
becomes —apart from constant factors

1
—sin (Kx —(J—1)m /2+ 6J~)

Jf7 GJ (x,—x')t„gJuJ+hJwJ]dx',

vJ(x) = cotbJ'f7 .Kxj J(KX—)

X)t jJ(Kx') 1v J (x')x'dx'
0

GJ'(x, x')LvJdx'.
0

X (O'J 1, J+ 'QJ + J+1 J),
1
—sin(Kx —(J+1)K/2+bJ&)

X(4J 1, J+1JJ eJ~, J),
j.

sin(Kx JK/2+—hJ&)eJ—J"'.
x

(5o)
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The function sq(x) is, therefore, not eEected
(bgs=bz'). For Ng(x) and wg(x), however, bg"

equals bq for each set a and y, respectively.

u,««(x)-sin(~ —(J—1)~/2+b, ),

wg~ «(x) gg~ «sin(xx —(J+1)«r/2+by'«)
(46')

w~(x) ) C~
qq =asymptotic form of{ —

{=, (51)
ug(x) ) Ag

The eigenfunctions Pq, and Pg, «of (49) are

uniquely determined by this requirement of
equal phase shifts for uz(x) and wz(x). It cor-
responds to a diagonalization of the scattering
matrix which would otherwise be diagonal only

for the states L=J, i.e. , for the wave functions
~. The phase shifts bq, by~, and bq«, which

are defined by (46') and (50) are all real.
The constants gq follow from (46) and (46')

with 6&"= 8&

denote the numerically smaller of them by q& .
In the limit, as the tensor part of the potential
goes to zero, g~ ~+0 and qJ&—+W ~; the eigen-

functions, fg, and Pg, „«,become identical with

Pq i, g" and Pq+i, g", respectively, in this limit. ff
It follows that gq measures the amount of ad-
mixture of the state I.=J+1 to the state
I.=J—1, and that 1/«1~« = —gq is the amount of
admixture of the state L=J—1 to the state
I =J+1.

We may now derive the formulas for the dif-

ferential and total triplet cross section. For this
purpose we transform the incident plane wave
into the LSD representation which is the same
as the (—1)~SJm scheme in the absence of a
potential. In the LSMI.Mq representation

'= Qr(2L+1)i jr(~x)PI (cos(xx))xi~'.

The inverse of the transformation (35) with the
appropriate normalization factor gives

and can easily be evaluated from (47) as will be
shown in Section C. Since the orthogonality
integrals of the wave functions (49) exist only in

the limit

X Qg Nl, z (L1Jm
~
L10m)

(4«r) ~

P g(2L+1)&i~

only the asymptotic forms (50) will contribute,
and one finds that the constants gq satisfy the
identity

gJ~ — 1o (52)

These constants are called the amounts of
admixture. For definiteness we shall always

lim{ u. (x)u, (x)dx {
~IXI ( 0 )

( ~& ) k (
u '(x)dx

i { u, '(x)dx {,
E~,

X sin { ~x —
{%r,g (I-1Jm

~

I.10m), (53)
2 i

where we used again the vector notation
4 i, q" Since m .= Mi, +Ms is a constant of
motion and M~ =0 for the plane wave, one has
always m =MB'"'. The transformation matrix
(L1JM~L10m) is given in Table XII.3O'

The asymptotic form of the total wave, i.e. ,

the incident wave and the scattered wave will

contain the tensor force eigenfunctions (49) in
their asymptotic form (50)

(4ir)&
Q {ay"exp(ibg )[6 'sin(xx —(J—1)«l/2+by )eg i g

NC

+g~ i~+' sin(~x (J+1)«r/2—+ b~ )+q+, , q j+P~" exp(ibq~)i sin(~x —J«r/2+ bq&)+q, J
m

+rJ exp(ibJ'«)Li ' sin(~x —(J—1)w/2+ 4«)4J i, J

+ «ig«i +' sin(~x —(J+1)«r/2+ by«)equi, g]. (55)

ff Actually, yJ is always positive or zero.
~"E. U. Condon and G. H. Shortley, Theory of Atom& Spectra (The Macmillan Company, New York, 1935},p. 76.

Note, however, that the table is written in terms of J rather than L, and that the phases are chosen diferent in order to
comply with the choice of phases in the deanitions of CL,~ (reference 29).
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Lgn

J—1J
J+1

~((J—1)/2)'
{{21+1)/2'&

~(J12)~

Jk
0 (54)

(J+1)'

TABLE XII. (2I.+I}&(LIJttt iL 10))t}. The differential cross section for polarized
beams of neutrons and protons (fixed m) is the
square of the absolute value of the coefficient of
e'""/r of the scattered wave (57)

(58)

(59)

If the incident neutrons are unpolarized we have

The constants, ""a~, Pg", and yq are found by
to average over m

comparing this expression for vanishing potential «(+) = (4~/3&') 2- I Z~L
(hg = bye= by~=0) with the plane wave (53)

(J+1)'—)Ig Jt
0.'J

~2J+1q I
(56)

JI+tIg (J+1)'
AJ

&I I+ ()Iz~) '] 1+(tie~) '

The total cross section is found by integration
over all the angles. The cross terms vanish,
because of the orthogonality of the CI„J and
because of (52), and one finds with (56) after
summation over m for the triplet total cross
section

(J+1)& —)Ig&J&

PJ VJ
v2LI+(~~")']

JI+ tIg&(J+1)'*

1+()I ')'

4x 21+1
(c) (sin'4 +sin-'b~e+ sin'-t) ~)').

k'J 3
(60)

The factors e't& in (55) have been chosen such
that the scattered wave is a purely outgoing
wave. It is found by subtracting the incident
wave (53) from the total wave (55),

e*"' (4tr) '
fttatt PL+,"exp(ib, .)

k

X sin 8j (4'z- 1, J+ )IJ O' J+ l, J)

+pq" exp(idge) sinlq @q

+yJ'" exp(id'&) sinbJ&

m m

X (+ z le+ sz'+ z+), z) ]. (57),

The triplet differential and total cross sections
for tensor forces are completely analogous to
the well-known formulas for cen tral forces. "
The differential cross section contains the phase
shifts and the amounts of admixture, the total
cross section contains the phase shifts only. In
the following section we will derive these quan-
tities from a variational principle.

C. Variational Principle for Phase Shifts

We start with the formal solutions (48), and
consider first the phase shifts bJ& of the uncoupled
states. Multiplication of the third equation by

O

CO

a)o
C

FIG. 6. Comparison of phase
shifts: exact and variational
calculations.

3 wgo

3 b The dependence on es of these constants permits one to assume the boundary conditions (46') with 5J and 5J~ in-
dependent of m.
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l(x)vq(x) and integration leads readily to

l(x)sg'(x)dx+fk "l(x)sg(x)dxGg'(x, x')dx'l(x')sg(x')
J—cot5g~ =

lF ~.
gg(«)l(x)sg(x)xdx l

(61)

x
l

' xJz+ihjwgdx

v&=~l ' xj& i(«)-f»~dx I)gJ

which is easily seen to be stationary with respect ( t' . f
to variations of the radial function v~(x). The l~J ~ ' "

l&J
"~

resulting phase shift will have an error of the
second order for any first order error in a trial

~ ~

K 'xJ gN dgxJz+gzN J x
function aq(x).

In a similar way the phase shifts for coupled
states are obtained. Multiplication of the first
Eq. (48) by fz(x)uz(x)+gz(x)wq(x), and of the
second by gq(x)uq(x)+hg(x)wg(x), addition and
integration yields because of bq" ——bg = bq,

—cotb~ ——(aq+2bq+cz)/(nq+2llq+yq), (62)

where we used the following abbreviations:

ag ——(1/Q) t hgwg'dx

+ gywgdxGg"dx ggwg

+
J

hgwgdxGg dx hgwg,

bg = (1/foal ) ggugwgdx

+ ' fgugdxGg"dx ggwg

+ hJwJdxGJ dx gjuj,

t' 1
2

+Kl xjg+i(«)ggugdxJ j
The expression (62) for cotbq is stationary with
respect to variations of u~(x) and wq(x). Both
variational principles, (61) and (62), were first
given by Schwinger. "

Equation (62) is homogeneous in uz(x) and
wz(x), i.e. , it depends only on the ratio of any
constant factors multiplying these functions.
Suppose we choose trial functions uq(x) and
g~q(x), where gq is a yet undetermined con-
stant. The integrals (63) can then be evaluated
with uq(x) and wg(x) replacing ug(x) and w~(x),
respectively, and one finds from (62)

—cot8g = ($g sg+2 gg5 g+ cg)/
(b'~z+2&zPz+vz) (62').

cg = (1/fh) fgug'dx
TABLE XIIIa. Triplet phase shifts and amounts of

admixture at 15.3 Mev. {Tensor forces, rectangular we11,
variational calculation of coupled phases. )

+ I gJuJdxGJ dx gjug

+J~fgugdxGg "dx'fgug

(63)
neutral

0 charged
symmetric

CL

—0.1030
0.5378
0.0751

2

xj~-i(«)g~~dx l
&J )

l 2

+~l I xfg+i(«)hgwgdx l,
EJ )

neutral
1 charged

symmetric
—1.4129

neutral 0.1390
2 charged —0.0200

symmetric —0.0142

1.008
0.1153—0.0549

0.0145

0.0086 0.0/12

—0.0004 0.0600
0.0015 0.2645
0.0002 0.1259
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TABLE XIIlb. Triplet phase shifts and amounts of
admixture at 100 Mev. (Tensor forces, rectangular well,
variational calcu'ation of coupled phases. )

The exact solution is

—cotta =
i 1+—cot»' cot»

i

neutral
0 charged

symmetric

—0.6567
0.8450 0
0.3024

i
cot» ——cot»' ). (68)E» )

neutral
1 charged

symmetric

0.9795
0.4031 —0.7428 —0.1794 0.1984—0.3222

neutral 0.5820
2 charged —0.2196

symmetric —0.1 118
0.6812

—0.0794 0.3320
0.2231 0.9754
0,0504 0.6478

neutral
3 charged

symmetric

4 any

0.1071
0, 1918 -0.0555 —0.0147 0.3016—0.0221

0.0098

+ji(2»)/(I —jo(2»))' (6&)

This expression has now to be stationary with
respect to $g. We find

gg= —(pg cotbg+6g)/(ag cot4+us). (64)

From (62') and (64)

(agog —Pg') cot'by+(agyg+ugeg —25gPg)
Xcot4+cxz4 —bg'= 0. (65)

The two solutions of this equation give the two
phase shifts 8~ and 8~&. The constants g~ and
$g& follow then from (64), and the amounts of
admixture from (51) and (47), where one puts
b~" 8q"=8~&& =and replaces u~(x) and w~(x)

by ug(x) and g~ &ui~(x). The identity (52)
provides for a valuable check of the calculations.

We used this variational procedure to calculate
the cross sections for a rectangular well with the
constants of Rarita and Schwinger' at 15 and
100 Mev. The trial functions were those which

correspond to the Born-approximation

ug(x) = »xj g i(»x), az(x) = »xj g(»x),
eg(x) = »xjg+i(»x). (66)

These trial functions will give better results the
higher the energy and the higher the value of J.
In order to obtain an estimate of the error we
calculated the phase shift for the S-state in the
non-tensor case with these trial functions (i 0(x))
and the variational principle (61)~ One finds

t'2» cos»)—cotbo =
l

—— — I/(I —jo(2»))

Energy
Mev Exact

'Po
Var.

OPI

Var.

15.3

100.3

neutral
charged
symmetric

neutral
charged
symmetric

-0.1030
0.5378
0.07514

-0.6567
0.8450
0.3024

-0.1023
0.5104
0.07496

-0.6422
0.8149
0.3009

1.0081
0.1153-0.05489

0.9795-0.7428-0.3222

0.9151
0.1141—0.05483

0.9328—0.7219-0.3205

Figure 6 shows how the results compare for the
triplet state at various energies. The error
vanishes near 10 Mev (» 1) where the S-phase
shift passes through —90'. It has a maximum
near 130 Mev (»-3.5) and decreases for higher
energies as expected. The variational value of

~
80~ is always larger than the exact value, and,

therefore, the diR'erence of the squares of sinbo

has to change sign near —90'. The small error
below 40 Mev (» 2) is due to the fact that the
first term of the expansion of the trial function
with respect to ax becomes more and more im-

portant, and that this term is the same as in the
exact solution. At zero energy the exact and
variational phase shifts are zero, and the function
plotted in Fig. 6 becomes indeterminate; it
approaches the finite limit —11.37 percent.

A great number of the integrals (63) could be
evaluated analytically, when the trial functions
(66) were used. The results for the phase shifts
and the amounts of admixture for n pscattering-
at 15 and 100 Mev are shown in Tables XIIIa
and XII lb. Since the phase shifts for the un-

coupled states can also be found by the exact
formulas (13) and (14), it is easy to find the error
of the variational procedure. A comparison of the
exact and the variational 'Po and 'P1 phases is
made in Table XIV.

The singlet, triplet, and total cross sections at
15 and 100 Mev for n-P scattering are tabulated
in Table XV. The cross sections at 100 Mev for
n-e scattering are given in Table XVI.

Since the partial wave fL„~ismainly an 5-state
as can be seen from the amounts of admixture
we will expect its contribution to the triplet

TABLE XIV. Comparison of P-phases.
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Neutral
Charged
Symmetric

15 Mev
crap( ) oag «) crap

0.4369 1.1145 0.9833
0.4236 0.7262 0.6657
0.4445 0.6663 0.6108

100 Mev
ap(s) crap(t) cra p

0.06455 0.2602 0.2113
0.05523 0.1812 0.1497
0.16916 0.1131 0.1271

cross sections to be off the exact value by about
the same amount as the 5-state of the corre-
sponding non-tensor case (Fig. 6). For 15 Mev
(~ 1.2) and 100 Mev (~=3.08) this error is 2

percent and 22 percent, respectively. It amounts
to a maximum correction of 0.01 barn and 0.0025
barn for the total cross sections at these two
energies (Table Xv). The total cross sections at
15.3 Mev are in excellent agreement with the
exact calculations of Rarita and Schwinger'
which obtained 0.621, 0.666, and 0.983 barn for
the symmetrical, charged, and neutral theory,
respectively. Exact calculations at 100 Mev by
Ashkin and %u' give 0.129 barn for the total
n pcross -section which is to be compared with
our value of 0.1271(+0.0025 max. ) barn of the
symmetrical theory. All three theories give n p-
cross sections at 100 Mev which compare mell

with the calculations at 83 Mev of Massey,
Burhop, and Hu, '~ namely 0.14l0, 0.1577, and
0.2388 barn for the symmetrical, charged, and
neutral theory, respectively.

CONCLUSIONS

Recent experiments' "on neutron-proton scat-
tering at 90 Mev gave a cross section 0„„=0.083
&0,004 barn. The angular distribution in the
center of mass system seems to be symmetrical
around 90' and yields a ratio R=o„„(s)/o„~(s/2)
of about 3. None of the phenomenological theories
discussed so far in this paper yield these results.
Qualitatively, the neutral theory is ruled out,
because it leads to R &1; the charged theory
leads to too large values of R; closest to the
observations comes the symmetrical theory. The
non-tensor theory leads to practically no sideward
scattering, in contradiction to the experiments.
A large increase of o(v/2) is obtained by the
addition of a tensor part to the potential (com-
pare Fig. 1 with Figs. 4 and 5.)

At 100 Mev in the symmetrical theory, the
tensor force increases the total cross section for
a rectangular mell, but decreases it for a Yukawa

TABLE XV. Cross sections for n-p scattering at 15 and
100 Mev. (Tensor forces, rectangular vrell potential, vari-
ational calculation of phases. )

Tzsr.E XVI. Cross sections for e-e scattering at 100
Mev. {Tensor forces, rectangular me11, variational calcu-
lation of coupled states. )

Neutral
Charged
Symmetric

craa(')

0.04636
0.04636
0.04636

era a(t)

0.32661
0.16864
0.03239

0.25655
0.13807
0.03588

TABLE XVII. Neutron-proton cross sections at 100 Mev
for an even interaction potential. {Rectangular weH, phase
method. )

Force

Central
Tensor

crap(e)

0.02318
0.02318

crap(t)

0,06543
0.09688

crap

0.05487
0.07831

From our exact and variational calculations we
find for a rectangular well of ranges 2.80&( j.0 "
cm the n pcross section-s at 100 Mev as shown
in Table XVII. The total tensor cross section

«'Ashkin and Nu (reference 10) quote Serber on this
point.

well. The latter yields o„„(Born)=0.089 barn
with the better set of constants (Table X); the
exact value may be larger by an error of the
order of 5 percent. The Born approximation
value of R is three times too large. A decrease of
the tensor range could sufficiently decrease the
total cross section and would make the angular
distribution more isotropic. On the other hand,
a relativistic correction mould have to account
for a decrease in the total cross section by 5—10
percent; this is not impossible. ' It would also
have to account for a large decrease of R. S"e
conclude, that the symmetrical tensor theory with a
Yukawa well may be in agreement with the experi
ments, if the relativistic corrections at 100 M'ev

are taken into account and the tensor range is re-

duced.
Under the assumption that the symmetry of

the angular distribution around 90' can be ex-
perimentally established, a new type of exchange
force suggests itself. It would consist of equal
amounts of neutral and charged exchange poten-
tial, such that only even states contribute to the
cross section. " The exchange operator in (28)
would be in this case, as follows from (33),

1 t' 1+o, o21+ri. r2)
f(ol. oh r~ r2) =

I
1—

2E 2 2 )
= —k(1+ (—1)') - (69)
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may again be too small by less or about 0.0025
barn. Since the odd states do not contribute much
to the scattering at 90', the di6'erential cross
section at this angle will be not much smaller
than in the symmetrical tensor theory, where the
odd states are reduced to one third in their
potential. This will be close to the observed
value. From the symmetry and the strongly
reduced total cross section it then follows that
R will be much smaller than in the symmetrical
tensor theory.

Two neutrons interact only in odd triplet and
even singlet states. With the exchange force (69)
they wi11 interact only in singlet states. We hnd
from (22): o =2o „"=0.04636 barn. The sym-
metrical tensor theory gives (Table XV) o„„
=0.03588 barn. The experimental value of the
diA'erence between the n dand -the n pcross-
section at 90 Mev is' 0.034~0.003 barn. How-
ever, Wu and Ashkin" have shown that the n-n
cross section may be appreciably larger than
this diR'erence. Therefore, either theory can be
correct.

Finally, one should mention that a potential
of the exchange type (69) is also in agreement
with the measurements of Laughlin and Kruger. 4

The ratio R= I.05 which follows from the calcu-
lations of Rarita and Schwinger' for 15 Mev is
certainly within the experimental error.

We conclude, therefore, that, if relativistic cor
rections at 100 Mev are negligible, the scattering
experiments are consistent with a nucleon tensor
force which acts only in even states.
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APPENDIX: FORMULAS FOR THE DIFFEREN-
TIAL AND TOTAL CROSS SECTIONS

A. Born Approximation

a. E-I' Cross Sections

With the notation used in this paper and the symbols

(=2tt: sin8/2, x = 2» cos8/2,
~ T. Y. Wu and J.Ashkin, Phys. Rev. "13, 986 (1948).

charged:

symmetric:

.,8)=~".j '(x)/x'
(singlet or triplet), (A3)

""(O)=X.'ro'C7' (f)/5 —2i (x)/x3', (A4)

~-~"'{~)=~t»«'U~(()/4+2j~(x)/x1» (A5)

Total cross section,

neutral and charged:

yn~ ———)»$1-gp»(2tt:) —gj»(2tt;) j2k»

(singlet or triplet), (A6)
symmetric:

a„„'=—,),'I (5/4) I 1 —jp'(2a)
2Ã

—j&»(2') j—Rp(a) }, (A7)

12m.,« =-—~ ((5/4)t1-j"(2 )9k»
—j&»(2a') j+Rp{&)}, {A~)

where

t4(N') = I ii(f)i|(x)d~

(—1)~(2I +1)DL»(a) —j I, &(~)j I+~{~)j. {A9)
lM

For central forces and a Yukawa well:

neutral:

charged:

~„„(e)=X»r„»/{1+g»)»
(singlet or triplet), (A10)

~.,(~) = ~»r.»/(1+x»)»
(singlet or triplet), (A11)

symmetric:

~n~" (O) =~I'r~'L1/(1+8)' —2/(1+x')'j (A12)

o,„«&(O)=

ikey

r„'[1/(1+@)'+2/(1+x') 'g. (A13)

Total cross section,

neutral and charged:

y „~=—,X»(2g)»/L1+ (2x) 'j
(singlet or triplet) (A14)

symmetric:

(,) g, {2~)' 4
X 5

1 +(2 ) 1+2 lnL1 +(2 )
(A15)

(, 1 m (2a)» 4
g„~' =9~,Xt' 51 (2 )»+1 2, lnL1+(2a)'g .

{A16)
For tensor forces and a rectangular well:

Dig'erential cross section,

neutral

(A17)

the cross sections are found to have the following con-
venient forms:

For central forces and a rectangular well:

Di8'erential cross section,

neutral: o„~(8)=)»rp»jg»{p)/g»
(singlet or triplet), (A2)
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charged: same with g replaced by g.
symmetric:

~.o'"= 'ol ('& oo ([j&(t)/i+2j)(x)/x]o
+8vo[)'oo(t) —2)'o(t))'o(x)+4)'o'(x)] I. (A18)

b. N-N Cross Section

The singlet cross section is the same for all exchange
theories, central or tensor forces. It is for a rectangular well

where ~-"(d)= }&.')'o'D~(t)/(+j)(x)/x]' (A29)
1

r»(&) = j»(&x)x»dh = (3$ig—4 sing+& cosp)/&'. (A19)
0

Total cross section,

neutral and charged:

a &'& =—»4»t 1—jp»(2ct) —j~»(2') +2Ro(ct) g, (A30)

and for a Yukawa well

r„o&')=—ox(o ()[1—joo(2o) —j)o(2o)]

+Sy»R»(2') I, (A20)
.»& &(~) =~.".'L1/(1+~ )+1/(1+x') 3, {A31)

symmetric: ( &
m

»
(2')»

k'}&' 1+(2 }'+1+2,in[1+(2o}'] . (A32)

where

o'~ & =- —4o -[1—joo{2o)—jF{2o)]+Ro(o}
12~ 5
9k» 4

+R' Bo (2 ) f ~ —(o (x)ix&8 }, (A2&)
0

The triplet cross section in the charged theory is the
same as in the neutral theory, and in the symmetrical
theory it is /th of that in the neutral theory. The neutral
triplet cross section is—

R,(2o) =f'
r,o(g) cd t. (A22)

The integral over the cross term and the integral R»(2')
of (A22) can be evaluated analytically, but the resulting
expressions are too complicated to be given here.

For tensor forces and a Yukawa well:

for central forces and a rectangular well:

"'(&)=4')'o'[ji(k)/( —j)(x)/x]o, (A33)

for central forces and a Yukawa well:

(o„„&')=—X(o[1-joo(2o) j)o(2—o) —2Ro(o)], (A34)

Differential cross section,

neutral: '"(+)=X 'o' o[1/(1+t') —1/(1+x')]' (A35)

.,~'&=~t".'P1/(1+&')'+Sr*a»»(S) 3,

charged: same with g replaced by X.

symmetric:

o.p«& = o&t'ry' Ii1/(1+8)+2/(1+x») 3»

+16v*[y '(i) —2yo(t)y (x)+4y o(x)] l (A24)

where

yo(t) = f jo(to:)o 'o(do:

=—,(1—tan-Ig/g) —1/(1+g»), (A25)
3

Total cross section,

neutral and charged:

ap =—&c
( )

+16' Y»(2')
(2')'

symmetric:

(2')» 1
}&' 1+(2 )' 1+2,In[1+{2")']; (A36)

for tensor forces and a rectangular well:

~-"'(&)=}«oo'o' t Dx(c)/t —j~(x)/x]o

+Sr'Lr»'(4)+r»($)r»(x)+r»'(x) 3 I (A3'I)

«& =—Xt» 1 —jo»(2') —ji»(2') —2Ro(ci)tL%

+Sy» 4R»(2')+ r»($)r»(g) gxd8, (A38)
0

where Rp, r», and R» are defined in (A9), (A1.9), and (A22);

for tensor forces and a Yukawa well:

where

«&
1 x {2I~)» 4" '"=9 ~~"' '1+(2,) +1+2, '"~'+('")'~

+16vo 3 Yo(2o}—j yolk)yo(x)kxd(1, (A21)
i p

cr„„(c)(0) = 'Ac»rt, »
I I 1/(1+5») —1/(1+x») 3

+Sv'[y"(t)+yo{1)yo(x)+yo'(x)]). (A39)

(„21,(2')' 1
k'~c 1+(2 )»+1+2' ln)1+(2x)'3

Yo(2o) =J yoo(S) &d1= 2 kl/[1+(2o) o]—

—(9/4)1/(2~)» —~(tan '2~)»(1+3/(2~)')
—$ tan '2'(l —3/(2a)»)/2'. (A28)

+Sp» 2 Y»(2~)+- y»(g)y»(x) gxda, (A40)
1

2 p

where y» and Y» are defined in (A25) and in (A28).
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B. Phase Method for Tensor Forces

The differential cross section (59) can be written
3 (8)& 3,(3S&)+-(3p))
2 cosh~fg

1 eh
{8)k+- (D )+-(P,)——(D,)2 cosh'g~ ' 4 ' 4

2{»)+3 (sinh+2/{8) )'(3g +3D )2 2 cosh 3fy

9 15+ ( P0+ P2) +—{'P)+'P2)——('D2+'D3)4 2

Se (2+v2e ")'(,D
8 cosh/i

—e ~i —N ——e~~
7 19

+ ('Dx+'D3)
2 2

2 cosh fi
5 e (1 vje )
8 cosh&i

-er +K——e
7 29
2 2

2 cosllgy

9e-&I 5 5
C3 = ( Sy+3P2) +—( PQ+ D3) +-( Pg+ D2)4 coshgg 2 2

9efg
+5('Pi+'D3)+4

h~
('Px+'D~)

+5('P + D )+3('P.+'D.) I,

1
~~&&(y) =—Z c„cosV.k' ~

(A42)

When all the 5, P, and D states are taken into account,
but the coupling to higher angular momenta is neglected,
one obtains for n-p scattering

+
(8)j

co -('Po)+ 1- (3Sg)3, 2 cosh'g~

1—,e&~

+-(3P1)+—('P2)+ 1 — ('Dl)4 12 q 2 cosh'f~

25,D 19
D (sinh 3'~+1/{8)&) '

12 12 ' 2 cosh' f'~

X ('Sa+'Dx}—-('Po+3Pa) —-(3Px+'Pe)1 3
3 4

+—{'D2+'D3)— (3Di+3Da)
12 24 cosh f~

7—-e~~——+—e ~~

+ (3g~+3D )2 cosh/~

Se & (1—vie&)
24 cosh&i

e &~(e&~+K)
(3g +3p )+e &~(2 —Ke&~)'

6 coshgg 4 cosh fg

20e&~ —16e &~

X {S,+'P,)+ ( S,+ P,)12 cosh gg

e~~(e ~~ —V2)~+ ('Po+3Dg) —-('Po+'D3)
6 cosh&~

' ' 2

+ ('P +'D )—3(P +'D, )4 cosh/)
Se-&i—8e&i 5+ ('Pg+'Dg) —-('P2+'D2)

6 coshfg 2

+(3P +3D )

25 55 125« =—('D3)+—('D3)+—('D~+'D3)
3 12 12

45e 45e—h
+ 45e (.D+ D)+ 45 {S,+D)3 cosh/i ' 8 coshfi

where
gg = —lngg~,

{3Ig) =sin2bJ '~'~
a L=J—2

p~L= J~L=J+1
{3Lq+3L'g ) =2 sinbg I '& sinbq ~ '+ cos{Bg—Bg ).
The n-n cross section is obtained from this by omission of

(A42) all the even phases and multiplication by a factor of four.


