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Non-Linear Field Theories
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This is the first paper in a program concerned with the quantization of field theories which
are covariant with respect to general coordinate transformations, like the general theory of
relativity. All these theories share the property that the existence and form of the equations
of motion is a direct consequence of the covariant character of the equations. It is hoped that
in the quantization of theories of this type some of the divergences which are ordinarily en-
countered in quantum 6eld theories can be avoided. The present paper lays the classical
foundation for this program: It examines the formal properties of covariant 6eld equations,
derives the form of the conservation laws, the form of the equations of motion, and the proper-
ties of the canonical mornenturn components which can be introduced.

I. INTRODUCTION

A T the present time, two great theoretical
structures in physics can lay claim to con-

taining signi6cant parts of the "truth" which
to unearth must remain the principal aim of both
the experimental and the theoretical physicist.
One of these structures is modern quantum
physics as applied to both mechanical and field
theoretical problems; the other is the general
theory of relativity, v hich in the author's opinion
represents the least imperfect "classical" (i.e. ,

non-quantized) field theory. It is well known that
at this time each one of these structures suffers
from serious and apparently inherent weaknesses;
Quantum physics in most of its realizations still
requires a two-stage development, an underlying
classical theory (a mechanica. l system or a set of
field equations together with equations of motion)
followed by a process of quantization. The result
of this quantization process, when applied to a
combination of 6elds and particles, usually leads
to characteristic divergences. The general theory
of relativity, on the other hand, has so far not
successfully absorbed the existence of quantities
possessing half-odd spin, nor can it be quantized
in a satisfactory manner; as a result, the theory
has been completely useless in atomic and
nuclear physics.

Neither theory has as yet made any significant
contribution to the problem of the constitution
of the elementary particles. Moreover, while each
structure undeniably contains elements of truth,
their combination has so far proved unsuccessful.

The purpose of the present program is to
6

analyze each of the two theories for its essential
and, presumably, relatively permanent con-
tributions to our present knowledge and, thus, to
construct what might be called skeletonized
theories. An attempt will be made to see whether
such a covariant theory is at all susceptible to
quantization and whether the result will be an
improved theory.

Specifically, it is believed that the theory of
relativity contains two great permanent achieve-
ments: (a) it is the only theory of gravitation
which explains reasonably the equality of inertial
and gravitational mass (the so-called principle
of equivalence); (b) it is the only classical Iield

theory in which the equations of motion of par-
ticles in the field are contained in the 6eld equa-
tions, instead of being logical juxtapositions.
That is why it is possible, in the general theory of
relativity, to treat the motion of 6eld singu-
larities (which are used to represent particles)
without having to deal with infinite interaction
terms of one kind or another. It is possible that
this accomplishment will also lead to a more
satisfactory quantized theory, although the
author has little hope that such a theory would

be sufficiently powerful to attack the problem of
the constitution of elementary particles.

On the other hand, there is probably no par-
ticular reason why the theory of relativity must
appear in the form of Riemannian geometry, i.e. ,

using primarily the differential covariants of a
symmetric tensor of rank 2. The first step in the
program sketched above consists therefore, in

the setting up of a generalized classical theory
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and the examination of its properties. This is the
scope of the present paper.

The theory to be developed is essentially non-

linear, and its Hamiltonian non-quadratic. It is
impossible to envisage a set of differential equa-
tions which is covariant with respect to general
coordinate transformations, yet linear. While
this might appear to be merely an annoying
complication, the non-linear character of the
general theory of relativity is crucial for the pos-
sibility of interaction between different par-
ticles. It is possible to set up linear, Lorentz-
covariant field equations for a field similar to
gravitational potentials, which contain equations
of motion; but these turn out to represent simply
Newton's first law: Each singularity is tied
inexorably to a straight-line uniform motion,
without any interaction between pairs of par-
ticles. It is the non-linear terms in the held

equations which provide for forces, gravitational
aIld otherwise. I

II. THE FIELD VARIABLES AND THE
LAGRANGIAN

Instead of introducing a metric tensor, as is
done in the general theory of relativity, we shall
leave the exact nature of the 6eld variables
unspeci6ed, denoting them merely by the
symbol yz (A =1, , X), where N is the
number of algebraically independent components.
It will be assumed that the field equations can be
derived from a variational principle of the form

5I=0, I= L(yp, yp, „)d'x.
"v

(2.1)

' Einstein, Infeld, and Ho6man, Annals of Mathematics
39, 65 (1938).' A. Einstein and L. Infeld, Annals of Mathematics 41,
455 (1940).

3 L. Infeld and P. R. Wallace, Phys. Rev. 5'7, 797 {1940).

In other words, the 6eld equations will determine
values of the integral Iwhich are stationary with
respect to in6nitesimal changes in the field

variables; these changes are arbitrary, except
that they must remain con6ned to the interior
of the chosen four-dimensional volume V. The
Lagrangian J. is assumed to be an algebraic func-
tion of the field variables themselves and their
first partial derivatives with respect to the

More precisely, the symbol J~ mill be used for
the left-hand side of these equations, no matter
whether they are satisfied or not.

In this paper it will be assumed that the trans-
formation law of the 6eld variables is linear and
homogeneous in the field variables themselves
and that it depends algebraically on the first
derivatives of the new coordinates with respect
to the old ones. With respect to infinitesimal coor-
dinate transformations, the field variables will

transform according to a law having the form

~y~= J'~, "P,.ys —y~, ,P. (2 3)

The four functions P represent the infinitesimal
changes of the coordinate values of a fixed world
point. The F~„"are numbers, independent of
both the choice of coordinate system and the
coordinate values themselves, but characteristic
for the type of field variables representing the
field. Finally, the by& are the changes produced
in the field variables y& as functions of their

orgunzents because of the infinitesimal coordinate
transformations. Because the transformed y& are
not compared with the original values at the
same world point, but with the original values
at that world point which possesses the same
coordinate values prior to the transformation,
Eq. (2.3) contains a "transport" term, the second
term on the right-hand side. Incidentally, in this
equation, as well as throughout the paper, the
summation convention is being applied both to
the Greek indices which are associated with the
coordinates and run from 1 to 4 and to the
capital indices which run from 1 to X.

The transformation law (2.3) is, of course, not
the most general law which may be encountered
in geometrical objects, but it does include all
types of tensors and tensor densities and also
spinors. Being an infinitesimal transformation
law, it is subject to the requirement that the
commutator should again be an operator of the
same type. This condition is represented by the

coordinates. As is customary, y~, „ is short for
Byg/Bx".

The field equations which result from the vari-
ation of the field variables in the interior shall
be designated by J~,

L"= (BI/Byg) —(BL,/Byg, ),= 0. (2.2)
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'I he field equations (2.2) must be covariant,
1.C. , if they are satisfied in one coordinate system,
they must also be satisfied automatically in any
other coordinate system. They would certainly
be covariant if the integral I were an invariant,
for in that case its extremization would also be
an invariant operation. However, this condition
is too strong, as it cannot even be satisfied in the
general theory of relativity. There it is possible
to introduce either a Lagrangian of which the
integral is an invariant but which contains
explicitly second derivatives of the field vari-
ables, or one which contains only first derivatives
but which has no invariant integral. If the
Lagrangian, in the face of an infinitesimal coor-
dinate transformation, adds a divergence, then
that condition is sufficient (though possibly not
necessary) to assure covariant field equations.
Ke shall, therefore, require that

SI.= Q, „, (2.5)

where the four expressions Qp are some functions
of the P and their derivatives (including those of
higher order). In other words, it will be assumed
that the infinitesimal change in the integral J
can be expressed by means of a surface integral

1dentlty

P QpP BO' P QCrP BB
Ap, Cp Ap Cp

—g»P Ba g aP B» (24)

~I- =I-"O'A+ ((~I-/~yA. .)4 A),

Substitution of Eqs. (2.3) and (2.5) results in

(Q' —(~L/~yA. .) 4A). .
=I-"(I"A'"P.yB , yA .—P) . (3 2)

The right-hand side will be a divergence only if
the left-hand sides of the field equations satisfy
the four identities

(I"A,B"yBI-A),.+yA, ,I-A = (3 3)

In the general theory of relativity these identities
are known as the contracted Bianchi identities.
They hold no matter whether the field equations
are satisfied or not.

The expressions J~ contain the field variables
themselves and also their first and second
derivatives. The second derivatives occur only
linearly, and their coe%cients can be represented
in the form

LA LABpoy +. . .

L"'"= 'L(~'—L/-~yAp~yB, .), (3 4)

IIL IDENTITIES

Consider again the transformation law (2.5),
which specifies that in the event of an infini-
tesimal coordinate transformation the change in
the Lagrangian is a divergence. That change can
also be represented in the form of a M'riatiom
induced by the infinitesimal transformation:

fI= QpndS,
S

(2 6) + (~'I-/~yA, .~y B..)j
without being alfected by the values of the P in

the interior. The four quantities n„represent the
components of a "unit normal vector" which is

introduced so that Gauss' theorem can be for-
mulated. This is possible even without the
introduction of a metric.

By considering the transformation of a varia-
tion of the Lagrangian, 5(8I), it can easily be
shown that the field equations, because of Eq.
(2.5) or its equivalent (2.6), satisfy the trans-
formation Iaw

P Bpy gA envy —(j (3.5)

It follows that the coefficients J~~ ' must satisfy
the identities

(P BpI ACar+. P B»I ACrp

When the L,~ are substituted into the identities
(3.3), the terms containing second derivatives
will, in turn, lead to terms containing third
derivatives, and those must cancel each other,
irrespective of other terms,

»CL B — P Bvp I A (IBP) (2.7) +I'A B'I."cp')yB—=0. (3.6)

where the constants F~„~" are identical with
those introduced in Eq. (2.3).

For what follows, 4N of these identities are of
special interest, those in which p, 0., and v all
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FA„B'A.A~yB =—0,

A" c=L"c44 = —O'L/By&, 4&ye, 4.
(3 &)

Before concluding this section, it will be well

also to formulate the conservation laws which

are satisfied in a covariant theory. It is well

known that in the presence of a Lagrangian, and
provided the field equations are satisfied, there
exist 16 quantities t,", functions of the field

variables and their first derivatives only, which

satisfy four divergence relationships:

$„p p=0

t;=S."L y, (SL/—Sy, , „).
lf iiow the presence of matter in the field is

represented by continuous and differentiable
right-hand sides of the field equations,

without taking recourse to an approximation
me/bod. This is because the motions of the singu-
larities cannot be completely determined unless
such effects as spontaneous polarization and
spontaneous emission of radiation by the singu-
larities are specifically excluded. This exclusion
is accomplished by assuming that all motions
are "slow" in the sense that differentiation of a
ffeld variable with respect to x' (the time)
reduces the order of magnitude at every stage of
the approximation method.

It shall be assumed that solutions of the field

equations are to be obtained in the form of a
power series expansion with respect to some
parameter e, which might, for instance, represent
the order of magnitude of the material velocities
involved, (v/c):

0 1 2

PA gA+ 6YA+ 6 gA+ ' ' '
~

LA. PA (3.9)
Moreover, the zeroth approximation shall be the
"trivial" solution, a rigorous solution of the field

equations in which all field variables are con-
stants. (In the theory of relativity, this trivial
solution is represented by the Hat Minkowski
metric. ) The first approximation must then
satisfy the following linear, homogeneous equa-
tions:

then the right-hand side of Eq. (3.8) no longer
vanishes, but one obtains instead

]p y PA (3.10)

Because of the existence of the diAerential iden-
tities (3.3), this right-hand side can also be given
the form of a divergence. Naturally, the field

equations (3.9) can be satisffed only if the right-
hand sides satisfy the same relationships which
are satisfied identically by the left-hand sides.
Therefore, Eq. (3.10) may be written in the form

IV. EQUATIONS OF MOTION

The equations of motion are obtained by the
method initiated by Einstein and collaborators. '-
Because of the identities derived in Section I I I,
any singularities present in the field are subject
to certain restrictions which represent both the
conservation of mass (or its equivalent) and the
equations of motion. Just as in those papers, it is
impossible to formulate these conditions precisely

T,, pp=0,
(3.11)

T,"= "0,"L y~, , (BL/Byg, .) +Ii—g,s'P"ys

Only in this "strong" form are the conservation
laws useful in the consideration of situations in
which matter is represented by continuous ex-
pressions I'A, or else by discrete singularities of
the field variables.

0
LABrs~ 0 (4.2)

In this approximation, there appear no time
derivatives, because of the assumption that these

0

are of a higher order of magnitude. The LAB"' are
the coefficients (3.4), and the indices r and s are
coordinate indices running from 1 to 3, in ac-
cordance with the usual notation in the literature.
Because of the condition of "slow motion, " this
approximation mill not contain radiation, but
rather solutions corresponding to material par-
ticles, with as yet undetermined motions.

Generally, these solutions will not be defined
throughout space. There will be singularities,
probably of the (1/r) type; more precisely, at
each instant of time (x') there will be certain
three-dimensional domains in which the field

equations have no bounded solutions. However,
only such solutions will be considered in which
each one of these singular regions can be sur-
rounded by a closed surface S (in three-dimen-
sional space, S is two dimensional) on which the
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field equations are satisfied. It is this condition
of separateness of the singular regions which
makes possible the formulation of additional re-
quirements on the solutions outside.

If we proceed to the next approximation, the
equations will have the form

0 2 2 0 1I ABrayB. — I&(y+ ~y)

The right-hand sides will be the L~ of the second
order, formed from the 6rst-order solutions (the

I" vanish, of course). They will contain terms
which are linear in the first and second time
derivatives of the first approximation, and
quadratic in the purely spatial derivatives of the
first approximation.

Because of Eqs. (3.6), the left-hand sides of
the second-order equations (4.3) satisfy iden-

tically the four relationships

Fp„c'yc(I."B"'yB )
—=0 (4 4)

irrespective of the choice of the second-order
field variables. In particular, it is possible to
satisfy the field equations outside the singular
regions and to continue the second-order vari-
ables throughout the interior of the singular
regions with arbitrary continuous and three times
differentiable functions. Then the conditions
(4.4) will be satis6ed throughout (three-dimen-
sional) space and will permit the application of
Gauss" theorem to a three-dimensional domain
which includes a singular region but which is

bounded by a closed surface on which the field

equations are satisfied. On that surface, on which

Eqs. (4.3) are to be satisfied, we have then

0 0 2

0 — F cty I ABrsy

0 2 0 I
Fg„c'ycI."(y+ay)nid5,

8

(4.5)

which represent for that singularity inside 5 the
three equations of motion and the law of the con-
servation of mass (p takes all four values 1 4).
It can be shown easily that these conditions for
the first approximation are empty unless 5
encloses a singular region. The number of condi-
tions which can be obtained equals, therefore,
four times the number of separate singular

regions.

were regular, then this solution could be accom-
plished. Actually, there are four difFerent sets of
N quantities which are zero eigenvectors of that
matrix, as shown in Eq. (3.7). Conversely, there
exist four linear combinations of field equations
which are free of second time derivatives and
which, therefore, represent restrictions on the
choice of initial conditions on the hypersurface.
They are

y P B4LA 0 (5.2)

It follows that four linear combinations of the

V. UNIQUENESS OF SOLUTIONS, MOMENTA

In this section it will be shown first that if the
field variables and their first derivatives are
given on a three-dimensional hypersurface in
space-time (e.g. , throughout three-space at a
specified time), the continuation of the solution
beyond that initial hypersurface is not unique.
As a corollary, it will then be shown that if
canonical momenta are introduced in that
formalism, not all the time derivatives of the
field variables can be expressed in terms of these
momenta. Both of these results can be predicted
qualitatively from the covariance of the field
equations. Suppose that one solution were known
which satisfies the initial conditions on the hyper-
surface. Then one could always carry out a coor-
dinate transformation such that the new coor-
dinates coincide on the surface with the old ones,
up to second derivatives, but not elsewhere. Then
the solutions would be transformed into formally
difFerent solutions satisfying the same initial
conditions. Physically, one would be inclined to
call such equivalent solutions "the same solu-
tion;" in that sense, the solutions are presumably
uniquely determined by the initial conditions.

It was pointed out previously that the field
equations are linear with respect to the second
derivatives of the field variables. If we choose as
the hypersurface one with x4 constant, then the
y& as well as the yz 4 are given on that hyper-
surface. The continuation would be unique if the
field equations could be solved with respect to
the terms containing y~, 44. This, however, is not
possible. Consider the coeEEicients of these second
time derivatives. They are the quantities X~~44.

If the matrix

(5 &)
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second time derivatives remain completely
arbitrary on each space-like hypersurface. Natu-
rally, the singling out of some particular coor-
dinate as the "time" is completely arbitrary, and
the term "time" was used only to conform to
physical intuition.

The ambiguous character of the continuation
of the solution with given initial conditions leads
to pecularities of the canonical momenta which
are analogous to those encountered in quantum
electrodynamics. As is customary, the deriva-
tives of J with respect to y&, 4 are designated as
the momenta,

BL/Byg, 4 = s.". (5 3)

These E equations cannot be solved with respect
to the y~, 4, but, on the contrary, there exist four
relationships between the m and y~, y~, , First,
Eqs. (5.3) can be solved with respect to y~, 4

only if the determinant of the partial derivatives

does not. vanish. But A"~ is a singular matrix, and
its determinant is zero. It follows that an attempt
to solve with respect to the y&, 4 will result in the
establishment of four relationships which do not
contain any (erst-order) time derivatives. In
view of the 4N identities

y F "(~ "/~y, ) =—0, (5.5)

these four relationships can be obtained by

(~~'(ys, ys ., ys, 4)/~ye. 4)

= (a'r. /ay~, ,ay~, 4) = —X"' (5.4)

straightforward integration. They are

ysF&„s'm" K„(—yg, yg„) =—0, (5.6)

where the E„are functions introduced by the
integration, but actually determined in any
theory.

VII. CONCLUSION

The relationships set up in the last Section
will give rise to the usual diAiculties in quan-
tization, since the X momenta are not alge-
braically independent of each other. Four of the
Hamiltonian equations mill turn out to be
empty, as a result. When the field variables y~
and x" are reinterpreted as operators, it will not
be possible to interpret Eqs. (5.6) as linear rela-
tionships satisfied by the operators x~; such an
assumption would be incompatible with the
commutation relations. Rather, they will have
to be interpreted as initial conditions which
are imposed on the state vector and which are
preserved automatically in the course of time.
At each instant, the infinitesimal contact trans-
formation leading from the state at t to the state
at (t+dt) will contain four arbitrary functions of
the spatial coordinates. 'These arbitrary func-
tions are usually eliminated by the setting up
of so-called coordinate conditions, analogous to
the gauge condition of electrodynamics; but it is
also possible to retain this arbitrariness in the
formalism and set up a quantized theory in which
the Hamiltonian is determined only up to four
arbitrary functions. It is proposed to examine
these problems in a future paper.


