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This is the term which gives rise to the main
part of the Lamb-Retherford line shift,!° the
anomalous magnetic moment of the electron,!!
and the anomalous hyperfine splitting of the
ground state of hydrogen.!?

The above expression L is formally simpler
than the corresponding expression obtained by
Schwinger, but the two are easily seen to be
equivalent. In particular, the above expression
does not lead to any great reduction in the labor
involved in a numerical calculation of the Lamb
shift. Its advantage lies rather in the ease with
which it can be written down.

In conclusion, the author would like to ex-
press his thanks to the Commonwealth Fund of
New York for financial support, and to Pro-
fessors Schwinger and Feynman for the stimulat-
ing lectures in which they presented their re-
spective theories.

Votes added in proof (To Section II). The argument of
Section II is an over-simplification of the method of
Tomonaga,! and is unsound. There is an error in the deriva-
tion of (3); derivatives occurring in H(r) give rise to non-
commutativity between H(r) and field quantities at 7’
when 7 is a point on ¢ infinitesimally distant from #’. The

10W, E. Lamb and R. C. Retherford, Phys. Rev. 72,
241 (1947).

11 P, Kusch and H. M. Foley, Phys. Rev. 74, 250 (1948).

2] E. Nafe and E. B. Nelson, Phys. Rev. 73, 718
(1948) ; Aage Bohr, Phys. Rev. 73, 1109 (1948).
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argument should be amended as follows. ® is defined only
for flat surfaces £(r)=t¢, and for such surfaces (3) and (6)
are correct. ¥ is defined for general surfaces by (12) and
(10), and is verified to satisfy (9). For a flat surface, ® and
¥ are then shown to be related by (7). Finally, since Hy
does not involve the derivatives in H, the argument leading
to (3) can be correctly applied to prove that for general o
the state-vector ¥(o) will completely describe results of
observations of the system on o.

(To Section III). A covariant perturbation theory similar
to that of Section III has previously been developed by
E. C G. Stueckelberg, Ann. d. Phys. 21, 367 (1934);
Nature, 153, 143 (1944).

(To Section V). Schwinger's “‘effective potential’ is not
Hr given by (25), but is Hy' =QHrQ™. Here Q is a ‘‘square-
root” of S(w) obtained by expanding (S(«))} by the
binomial theorem. The physical meaning of this is that
Schwinger specifies states neither by @ nor by @, but by
an intermediate state-vector Q"' =QQ=_0Q"1Q’, whose defi-
nition is symmetrical between past and future. H7’ is also
symmetrical between past and future. For one-particle
states, Hr and Hy' are identical.

Equation (32) can most simply be obtained directly from
the product expansion of S( ).

(To Section VII). Equation (62) is incorrect. The function
Sr’ is well-behaved, but its fourier transform has a loga-
rithmic dependence on frequency, which makes an expansion
precisely of the form (62) impossible.

(To Section X). The term L still contains two divergent
parts. One is an “infra-red catastrophe’” removable by
standard methods. The other is an ‘‘ultraviolet” diverg-
ence, and has to be interpreted as an additional charge-
renormalization, or, better, cancelled by part of the charge-
renormalization calculated in Section VIII.
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Attention is called to a theorem of Bloch, from which it is shown that even when inter-
electronic interactions are taken into account, the state of lowest electronic free energy corre-
sponds to a zero net current. This result contradicts the hypothesis that superconductivity

is caused by spontaneous currents.

ANY attempts®? have been made to explain
superconductivity in terms of spontaneous
currents, which arise because there is a special
group of states of the electron gas as a whole,
for which the free energy, F=E—T.S, is lower

! W. Heisenberg, Zeits. f. Naturforschg 32, 65 (1948).
2 M. Born and K. C. Cheng, Nature 161, 1017 (1948).

when a finite current flows than when no current
flows at all. In some of the theories, it is suggested
that the current-carrying states in question may
have energies which are below that of the state
of zero current, while in others, it is suggested
that the current-carrying states may have so
high a statistical weight that their free energy is
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a minimum, even though the energy itself may
not be a minimum. It is generally realized that
the Bloch one-particle wave functions always
make the state of lowest free energy one of zero
current, but it is hoped that the inter-electronic
interactions, not taken into account completely
by these wave-functions, may change this result.
Bloch has, however, proved®** a theorem from
which one can deduce that even when these
interactions are taken into account, the state of
lowest free energy still corresponds to zero net
current. Since this result does not appear to be
widely known, and since it is not treated in
much detail in the existing literature, a brief
note on the subject is perhaps desirable here.
Let the Hamiltonian be denoted by

=20 [V(Xn) =BV?/2m ]+ 3 X motn V(Xmn).

V(X.,) represents the potential of the nth electron
in the field of the ion lattice, while V(Xna)
represents the potential energy of inter-electronic
interaction (coulomb).

Let us observe that the total current, j, is
related to the total electronic momentum, P, by
j=eP/m.

In the first part of the proof, we assume
temporarily that the lowest state carries a cur-
rent, in order to show that one is thereby led to
a contradiction. Suppose that the exact wave-
function is ¥(Xi, Xz, ++-X,---). Let us consider
a slightly different wave function,

¢=exp[ (10P/hLXs) W

where 6P is very small. This corresponds to a
state in which each electron has been given an
additional momentum, 6P. If P, is the total
electronic momentum in the state, ¢, then their
total momentum in the state, ¢, is

P=P,+ NéP,

where NV is the total number of electrons. (Note
that if ¢ is totally anti-symmetric in space and
spin coordinates of all the particles, then ¢ must
possess the same antisymmetry, because the
exponential factor is a totally symmetric function
of the particle coordinates.)

3 Appendix to L. Brillouin, J. de phys. et rad. 4, 334
(1933).

“H. G. Smith and J. O. Wilhelm, Rev. Mod. Phys. 7,
266 (1935).
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Let us now compute the mean electronic
energy for the wave function, ¢. It is clear that
the potential energy is exactly the same as when
the wave function is y. If T represents the mean
kinetic energy in the state, ¥, one obtains,
however,

T= —hﬁ/ZmZ(qu*V,.%Xmng- ~dXn- - )

N(P,-6P) N(P)?
+

m 2m
=To+mjo- 6j/e2+m(87)?/2Ne?.

One can choose 6P opposite in sign to Py, so that
P, 6P is negative. If 6P is small enough, the
term involving (8P)? can be neglected. One
concludes that for the state ¢, the kinetic energy
and therefore the total energy, is less than for
the state . Although the function, ¢, is not
necessarily a solution of Schrédinger’s equation,
it is a well-known theorem that the energy of
the lowest state must be lower than the mean
energy calculated with any other wave function.
We have thus proved that unless jo=0, the
state, ¢, cannot be the lowest.

One can conclude immediately from the above
that if superconductivity is due to spontaneous
currents, then it must disappear at absolute zero,
where the system occupies the lowest state. It
is possible to go farther, however, and to show
that states of finite current cannot be thermo-
dynamically the most stable even at non-zero
temperatures. To do this, we show that for each
solution of Schrodinger’s equation with a non-
vanishing current, there exists another solution
with a lower current and with a lower energy.

Let us denote by ¢:(Xi, Xs,-:-X,--:), the
complete set of orthonormal exact solutions of
Schriodinger’s equations, possessing energies, E;.
We then define an alternative set of functions,

¢:=exp[ (16P/h) - ZXn s,

which are also clearly orthonormal, but which
are not, in general, exact solutions of Schro-
dinger’s equation. The Hamiltonian matrix can
be expressed in terms of the functions, ¢ as
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follows

H.-j=f((¢‘.*H¢,)XmdX2...an...)

N(8P)?
- (Ei"l‘ )51‘;‘
2m

+ (k/im)oP - f(xpf}:,. Va¥)dX,- - -dXo.

If j; represents the mean current in the state ¢,
the diagonal elements are

Hﬁ =E,+N(6P)2/2m+].~ 5P/8

while the off-diagonal elements are
H;j= (h&P/i)-f(n//.«*Z,. Vayi)dXdXs o -dXae .

If 6P is small, H;; is a small perturbation, and
one can by standard perturbation procedures,
obtain a solution for the wave-functions and
energy levels. The off-diagonal elements of 3C
contribute to the energy only in second order.
Thus, one obtains for the energy of the state for
which ¢; is the zeroth approximation

Wi=E;+j:-6P/e+terms of order (6P)

By choosing 6P opposite in sign to j; and very
small, one obtains, for each ¢, another state
having an energy lower than that of y; Thus,
if we assume that there is a group of states
carrying some current, j;, they cannot have a
minimum free energy, because there is always
another group of states with the same statistical
weight, but with a lower energy, hence with a
lower free energy.

It has sometimes been suggested that super-
conductivity is always associated with circulating
currents, such as those in a superconducting ring.
Since the total current, j;, vanishes here, it is
clear that the above results do not apply. By
noting that the current for this case is propor-
tional to the total electronic angular momentum,
however, one can give a similar treatment, and
one obtains again the result that the state of
lowest free energy corresponds to zero net cur-
rent.* Even when the magnetic field caused by

*In carrying out this treatment, one multiplies the

wave function by exp[(¢m/%)Z.¢:], where m is an integer.
Since m must be at least unity, the smallest change of
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the electronic motion is taken into account, the
same result is obtained. The proof of the theorem
requires, however, that the coupling between
electron spin and orbital magnetic fields be
neglected. It would seem safe to conclude that
the spontaneous current hypothesis cannot ex-
plain superconductivity, unless one wishes to
show that the energy stabilizing the state of
finite current is due to coupling between electron
spin and orbital magnetic fields.

It would seem preferable to state that if
superconductivity is caused by interactions be-
tween electrons, it is probably due to a somewhat
localized tendency for electrons of the same
velocity to move together as a unit, which is held
together in some way by the inter-electronic
forces. In order to stop such a group of electrons,
it would be necessary to scatter all of them at
once. Such a process would be enormously less
probable than one in which electrons are scat-
tered individually by lattice vibrations, or other
irregularities in the lattice. The formation of
such localized groups of co-moving particles
would liberate energy, thus making the super-
conducting state the most stable one. Yet, it
would still remain true that a superconducting
state which was carrying a large current would
have a higher energy than one which carried no
current; the current carrying state would then
be very long-lived because of the small proba-
bility of scattering. It is possible to regard the
theories of Heisenberg and Born from this view-
point, provided that one interprets the inter-
action energy as associated with a local ordering
of velocities, rather than with the stabilization
of spontaneous currents. The author is also
planning to publish a theory shortly in which
another example of this type of explanation is
studied in detail, through the means of treating
inter-electronic interactions in terms of plasma
oscillations.

angular momentum obtainable in this way is Nk. In order
to obtain an arbitrarily small change of current, however,
one can consider a superconducting ring of radius, 7, made
of a very thin wire. The total change of current density is
then ph/mr, where p is the electron density. By going to
very large r, one can obtain arbitrarily small changes in
current. Hence, for a large enough ring, one can certainly
apply the same argument as with non-circulating currents.
Since the limiting current for a superconductor is known
to be independent of the ring diameter, it is clear that one
can, in this way, show that spontaneous currents are not
the cause of superconductivity in such a ring.



