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assisted in computations pertinent to the spec-
trum analyzer equipment itself. Finally, it must
be obvious that the success of experiments
involving extensive equipment depends upon
painstaking tests and circuit development; with-

out the able assistance of C. M. Bishop, the
equipment used in these experiments would not
have been built and operated satisfactorily.
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The mean square angular and lateral spreads in showers have been evaluated for electrons
as well as photons as functions of their energy. Analytical expressions have been obtained for
high and medium energies down to the critical shower energy. The calculations have been
extended by numerical methods for air down to low energies (~4 Mev). Radiative effects and
ionization losses have been taken into account simultaneously for a11 energies, and we believe
that no factors of physical signi6cance have been omitted.

1. INTRODUCTION

'HE calculation of the sidewise spread of a
shower constitutes a problem of impor-

tance comparable to the evaluation of its de-
velopment in depth. Particularly, the discussion
of the nature of large air showers cannot be
carried out without knowledge of their lateral
evolution.

The 6rst treatment of this problem has been
given by Euler and Wergeland. ' These authors
discussed the mechanism of the spreading and
its general features. Their numerical results, as
pointed out by Bethe' and by the present authors'
were, however, quite unsatisfactory and gave an
extension of showers far too small. L. Landau'
set up diffusion equations for the sidewise de-
velopment in extension of the well-known

*This paper is based on the Ph. D. Thesis by Jane
Roberg, Duke University, 1942. Its publication has been
delayed because of the war. The results have been an-
nounced previously at several meetings of the Am. Phys.
Soc. and have been communicated privately on request.

*~ Now at Yale University.' H. Euler and H. %'ergeland, Astrophys. Nor. 3, 165
{1940);Naturwiss. 28, 41 (1940).

2 H. A. Bethe, Phys. Rev. 59, 684 (A) (1941).
~ L. W. Nordheim, Phys. Rev. 59, 929 (A) (1941};Jane

Roberg, Phys. Rev. 62, 304 (A) (1942).' L. Landau, J. Phys. U.S.S.R. 2, 234 (1940).

Landau-Rumers treatment of shower theory.
However, his results are invalidated by numer-
ical errors. The most extensive investigation was
made by G. Moliere. ' Unfortunately, only an ab-
breviated version of his work is available,
Moliere uses an extension of Landau's method
and carries it through to an actual evaluation of
the radial density distribution in a shower. Be-
cause of the complications of the process, he is
forced to neglect ionization losses for energies
higher than the ionization limit and he takes low

energy electrons into account according to a
rather inadequate method, as he points out him-

seIf. His function will thus be subject to later
revision. An evaluation of the mean square angu-
lar spread of electrons as function of energy has
been given by S. Z. Belenky. ~ He starts with the
Landau diffusion equations and obtains from
them a set of integro-differential equations for
various moments of the distribution. They are
evaluated with the help of the method of Tamm

~ L. Landau and G. Rumer, Proc. Roy. Soc. A166, 213
(1938).

'G. Moliere, Naturwiss. 30, 87 {1942); more fully re-
ported in W. Heisenberg, Cosmic RaCkation (Dover Publi-
cations, New York, 1946).

~ S. Z. Belenky, J. Phys. U.S.S.R. 8, 9 (1944).
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and Belenky. ' His values difFer rather markedly
from those obtained here, as mill be discussed
later.

The presently reported investigation was
carried out simultaneously and independently
from Moliere's and Belenky's work and is, in
some respects, complementary to the previous
investigations. We have not attempted to evalu-
ate the distribution function itself, but concen-
trated our eAorts on the determination of the
mean square momenta under adequate considera-
tion of the low energy region. We believe that no
e6'ect of significance has been omitted in our
calculations, and that they can serve thus as
standard against which calculations of the dis-
tribution function can be measured.

In addition to the momenta of electrons, we
have also calculated the momenta of photons of
all energies which differ significantly from the
electron distribution. Our formulas can be con-
sidered as applicable to all materials for energies
above the characteristic energy of shower theory.
Calculations for lower energies have been carried
through for air for reason of its particular impor-
tance for the discussion of large showers. We
have extensively used the results of Richards and
Nordheim, ' quoted henceforth as R,N. , and we
refer to this paper for a discussion of units and
cross sections.

2. GENERAL THEORY

We choose the customary units of shower
theory. The unit of energy is the energy 8;, at
which radiation and ionization losses are equal.
The unit of length is the radiation length, that is,
the distance at which one electron would lose the
energy 8;, if it were subject only to ionization
losses. The specific energy losses for radiation and
for ionization are then

(dE/dt) „g=E; (dE/dt);, =P =1. (2.1)

The values of these units for some materials are
given in Table I.

We denote the energy of an electron by Z, the
energy of a photon for easy distinction by X.
We write further the function that describes the
longitudinal development of a shower under

' I. Tamm and S. Z. Belenky, J. Phys. U.S.S.R. 1, 177
(1939).' J. A. Richards and L. W. Nordheim, Phys. Rev. 'N,
1106 (1948).

Tsar.E I. Units of shower theory for various materials.

neglection of its sidemise spread as

f(E, E', t)dE'=number of electrons at a depth t
in the interval dE' due to a
primary of energy E,

g(E, K, t)dK=corresponding number of pho-
tons.

According to Euler and Wergeland, ' the only
important source of deRection is the multiple
Coulomb scattering of the shower electrons by
the nuclei of the traversed material. This efFect
gives on a path dt a mean square angular deQec-
tion in one particular direction of magnitude

dP = (E,/E)'dt, (2 2)

where E„acharacteristic scattering energy, is in

good approximation, for all materials"

E,= m (c2m 137)& = 15 Mev. (2.3)

We refer all our calculations to one coordinate
normal to the longitudinal direction of the
shower. Due to the axial symmetry, the total
mean square deviation in a radial direction will
be twice the value thus calculated. Otherwise Z,
has to be assumed to have a value V2 times as
1arge as in Eq. (2.3) or 21 Mev.

The extension of the path of particles due to
their deviation from straight lines can be neg-
lected for small angular deflections, i.e., in this
approximation the inQuence of scattering on the
functions f(E, E', t) and g(E, K, t) does not have
to be considered. This has been verified by an
extensive investigation by S. Belenky. "

The angular mean square deviation of electrons
of energy 8 at a distance t from the origin of the
shower due to a primary electron of energy Bo
can then be evaluated as follows. The contribu-
tion of an electron of energy B' in an intermedi-
ate position, a distance t' backwards from the
end point, to the total at S will be

de(E t) = (E,/E')'dt'f(E', E, t t'), —
' Compare B. Rossi and K. Greisen, Rev. Mod. Phys,

13, 262 (194i)."S.Belenky, J. Phys. U.S.S.R. 8, 347 (1944).

Air Water Al Fe Pb

Radiation length 300 m 43 cm 9.8 cm 1.8 cm 0.51 cm
Critical energy 86 Mev 111 Mev 52 Mev 25 Mev 6.7 Mev
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and the average over all possibihties then gives xo(E, t, P)

f(E„E,~)y'(E, ~) =~I f(E, E ~ ~)

~so
f(E„E', t —&')

f(Eo»~) "o "s

X (E./E')'f(E' E, t')dt'dE'. (2.4)

An exactly similar argument gives for the mean

square lateral deviation

j ~f )So
x'(E, t) = f(Eo, E', t —t')

f(Eo E, &) &o 4s

X (E,/E')'t"f(E', E t')dt'dE'. (2.5)

The angular distribution of guantu is equal to
the distribution of their parent electrons. Since
all photons are ultimately produced by electrons
and can be considered as being destroyed by ab-
sorption, we can express the photon distribution
g(Eo, K, to) in terms of the electron distribution
as follows:

Eo

g(E„K, t) =~ j f(E„E, t t')—
0 K

Xf(E', E, t')
~

—
~

(t'+t")'dE'dt', (2.9)
EE')

with the difference to Eq. (2.5) that the lever
arm for sidewise deflection is increased by a
constant addition t".

The above equations are exact, but unwieldy.
A considerable simplification can be achieved for
high energy showers. The principal contribution
to the scattering of an individual shower particle
will come from the last few radiation lengths of
his ancestors, due to the factor (E,/E)' in the
scattering cross section. In a large shower this
depth will be small compared to the total longi-
tudinal extension of the shower. Thus, the de-
pendence on the upper limit of the integration
will disappear asymptotically in taking the aver-
age of all quantities over the longitudinal coordi-
nate of the shower according to the definitions

Xs(E, K)e "dEdt', (2.6) f(E)
t'

f(E E )d (2.10)

where ~(E, K) is the cross section for production
of' a photon of energy E by an electron of energy
E, and 8 is the total absorption coefficient for the
photon. The angular mean square deviation of
the photons is then obtained by averaging over
the contributions of the parent electrons accord-
ing to the genetic relationship Eq. (2.6), i.e. ,

~&o

a'(K t)=
g(Eo K, &) "o "z f(E„E,t d)—

X~(E K)s "'e'(E t t')dE-dh'. (2.7)—
For the calculation of the lateral spread of pho

tons one has to take into account the extension
of the path length of the parent electron by the
photon. We can still express the lateral deviation

by an average, as in Eq. (2.7),

Sp

x'(K, &) = f(Eo, E, &
—&')

g(Eo, K, &) ~ o ~~

1
P(E) = 8'(Eo, E, t)f(Eo, E, t)dt, (2.11)

f(E) "
and so on.

The function f(E), Eq. (2.10), is called the
track length distribution, or normal distribution.
It has been determined for all energies in R.N. '

Our formulas for the scattering averaged over
the longitudinal extension of the shower can now

be written as

~ 00 00

~'(E)= ' f(E)f(E, E, &)

f(E) ~o "x
X (E /E')'dE'dt, (2.12)

P(K) = f(E')0(E', K)P(E')dE'

X 1 Jt f(E') o (E', K)dE', (2.13)
K

pcO F00

but we have to replace the deviation, Fq. (2.5),
by the "prolonged" scattering

X~(E, K)s '"x'(E, t —&', f)dEdi', (2.8) f(E')f(E', E. ~)
f(E) "x "o

X (E,/E')'(t'+t)'dt'dE'. (2.14)
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The mean square angular scattering of a shower electron is then

x'(E) =x'(E, 0).

Finally we have a prolonged lateral photon scattering,

(2.14a)

p00 p
00

f(E')~(E', K)x'(E', t'+t)e "'dE'dt'
"o 4z

CO F00

f(E')e(E', K)e '"dE'dt'
"o ~x

(2.15)

The use of these longitudinally averaged values corresponds to the physical situation insofar that
we will not know, in general, where an observed shower originated. Since the energy distribution in

a large shower near its maximum is the same as the track length distribution, the above formulas
will also be correct for the shower maximum, where there is the best chance of observing it.

It is possible and useful for later considerations to express the scattering of electrons in terms of
their photon ancestors. Ke introduce the track length distribution of photons,

g(K) = t g(K, t)dt, (2.16)

and, further, the straggling function fo(E', E, t), which denotes the probability that an electron of

energy P' arrives at the distance t with the reduced energy K The angular deflection of the shower
electrons can then be expressed as follows:

'(E)=-
00 ~00 F00

dK dE' dt'g(K)a(K, E')[P(K)+6/(E', E, t') jf(E', E, t')
z ~a ~o

dE' " dt'g(K)o(K, E')f(E', E, t')
E' ~E ~O

(2.17)

Here Oo'(E', E, t) stands for the angular dellection the electron obtains as an individual from its
birth at energy E,' to observation with energy 8 at distance t'.

In order to describe the lateral deQection in an analogous manner, v e have to introduce the pro-
longed deflection both for photons and for electrons. The expressions obtained are

x'(K, t) =
dE' dt'f(E')o(E' K)x'(E' t'+t)e

t'

dE'
I

dt'f(E')o(E' K)e "'
(2.18)

x'(E, t) =
& dK l dE
z ~z "o

dt'g (K)~(K, E') kx'(K, t'+ t) +x,'(E' E, t '+ t) jf(E', E, t')

(2.19)
00 F00 F00

dK ' dE' dt'g(K)&r(K, E')f(E', E, t')
E~ ~E ~O

Here again xg(E', E, t'+t) denotes the lateral E in the distance t' with the extension of the lever
deviation obtained by an electron as an indi- arm by a hxed constant t. The actual mean
vidual when slowed down from the energy B' to square deviations in the shower are again given
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TAM. E II. Normal ener y distribution in a shower; air.
f(& =v(~)/~.

F/'Fi oo 10 7 5 3 2 i 5 1

f(B) 1fB~ 0,0086 0.0166 0,030 0.073 0.145 0.23 0.42
q (Z) 1 0.86 0.81 0.75 0.65 O.S8 0.52 0.42

8/gi 0.75 0.5 0.3 0.2 0.15 0.1 0.05

f(P) 0 62 0 97 1.61 2.25 2.8 3.7 5.5

by x'(E, 0) and x'(E, 0). The two equations,
(2.18) and (2.19), form a simultaneous system of
integral equations, which can be solved by an
iteration process, as will be shown in Sections
5 and 6.

The mean square angular and lateral devia-
tions for electrons as well as photons have now
been expressed in terms of the functions which de-
scribe the longitudinal development of a shower,
i.e. , the normal distribution f(E) and the general
shower functions f(E, E', t) and g(X, E', t). The
problem reduces thus to the finding of suitable
approximations for these functions that permit
the evaluation of Eqs. (2.12) to (2.15) or (2.18)
to (2.19). We divide the whole energy spectrum
into three regions: (a) high energies, where ion-
ization losses can be entirely neglected, (b) inter-
mediate energies where ionization can be con-
sidered as a small correction, and (c) low energies
where ionization predominates over radiation ef-
fects. The division between (b) and (c) is made
at the critical energy of shower theory, where
ionization and radiation losses are equal ~

3. HIGH ENERGIES

EVe consider firstly the high energy region
where ionization losses can be completely neg-
lected. The track length distribution is then
given" by

f(E) = 1/&'

We require further the shower functions f(E', E, t)
for small values of the distance t and for values
of the primary energy 8' which is not much
1arger than E. The only available form which
gives a good approximation for the beginning of
small showers is the development of Bhabha and
Heitler, "quoted henceforth as B.H. Their for-

'~ L. W. Nordheim and M. H. Hebb, Phys. Rev. 56, 494
(2939)."H. J. Bhabha and %'. Heitler, Proc. Roy. Soc. 159,
432 (293/).

mulas, as described in appendix I, are based on
an adequate approximation for high energies.
The evaluation of the actual distribution func-
tions by the Bhabha-Heitler method is compli-
cated and can only be done approximately. It is
remarkable, however, that the scattering inte-
grals containing their functions can be integrated
in closed form.

B.H. decompose the distribution function into
a series

f(E', E, t) = P f.(E', E, t).
0

(3.2)

The first term fo represents the probability that
the primary electron E,' itself has reached a depth
t with an energy E. The term f& represents the
number of second generation electrons, i.e. , par-
ticles that have been created by an intermediate
photon, and f„represents electrons of the n'th

generation, i.e. , with n intermediate photons.
The series (3.2) will obviously converge since the
total number of electrons above a given energy
remains finite.

Inserting Eqs. (3.1) and (3.2) into the integrals
(2.12), (2.14), we obtain for the angular and
prolonged lateral scattering

CO paO

E'&'(E) = (dE'/E") 2 f.(E' E, t')
J, s,

X (E,/E')'dt', (3.3)

E'x'(E, t) = (dE'/E") Q f.(E', E, t')
~o ~z 0

X (E,/E')'(t'+t)'dt'. (3.4)

They are composed of terms of the general form

(1/E )I"„(E)= ,

" (dE/E )
Jg

Xf.(E', E, t')tl™ 'd. t(3.5)

The integration gives, as shown in the appendix,

Io ——1/(2 X 12"),
I"= L1/(2X12")3L(( +1)/2)+( /&) ],
& = L(~+ 1)/(2x»") j

x LL( +2)/4j+(. /~)+(. /b') j.
where 8=7/9 is the absorption coefficient for
photon s.
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The summation over n can be carried out in

closed form, according to Eq. (A16) with the
result that

Io=g Io =0.545,
0

Ii=p Ii ——0.362,
0

(3.7)

I2 ——Q Io ——0.642.
0

4. INTERMEDIATE ENERGIES

Our next step will be the consideration of inter-
mediate energies, where ionization losses have
to be taken into account, but are not yet pre-
dominant. We solve this problem again by the
standard integrals, Eqs. (2.12) to (2.15), but we
introduce suitable modifications in the shower
functions f(E), g(X), and f(E', E, t).

The normal distribution f(E') has been deter-
mined numerically for all energies by R.N. '
There it was written as

f(E') = o (E')/E", (4 1)

where p(E, ') is a slowly varying function of E,'.
It is tabulated for air in Table II. The form (4.1)
is not practical here, since y is only given nu-
merically, and we try to find an analytical ap-
proximation. It is most essential that the latter
is good in the neighborhood of the energy E for
which the scattering is to be evaluated. We write

with
f(E') = (I/E")+g(E) /E",

a(E) = —EL1 —
o (E)j

Inserting the values into Eqs. (3.3) and (3.4), we
obtain

P(E) = 0.545(E,/E)', (3.8)

x'(E, $) = (0.642+0.7243+0.545t')(E, /E)'. (3.9)

The lateral scattering of electrons is obtained,
of course, by taking t=o. The scattering inte-
grals for photons, Eqs. (2.13) and (2.15), can
now be evaluated with the help of Eqs. (3.8)
and (3.9) with the result

P(E) = 0181( E, /X)' (3.10)

x'(A) = (1/3) (I,+ (2/8)I, + (2/P) Io)
X (E./X)'= 1.126(E./E')'-. (3.11)

This means that we take a diferent formula for
every 8 value, so that we have always the correct
value for 8'=K It would, in principle, be pos-
sible to improve the approximation by adding
terms with higher negative powers in 8'. How-
ever, the error in Eq. (4.3) is already less than
10 percent for all values of E', even if we take 8
as low as E;.

We have, furthermore, to correct the func-
tions f„(E',E, t) in the development, Eq. (3.2).
Let us first consider the straggling function fo
We assume now that the electron looses through
ionization the energy p (or E,) per radiation
length or pt on the length t. If this loss is small
compared to the loss by radiation, then we may
neglect the change in radiation loss resulting
from the electron energy is also reduced by
ionization. We take thus as corrected straggling
function

f,(E', E, t)„„=f,(E', E+Pt, t). (4.4)

In other words, the function fo is to be calculated
not for the final energy value, but for the energy
E"=E+pt which the electron would have had
without ionization loss.

In the higher functions f„,which represent the
contribution of n'th generation particles, the
ionization losses of the ancestor electrons will be
relatively unimportant due to the large reduc-
tion of energy at every transformation. It will

be sufficient, therefore, to consider this e6'ect
only over the last lap of the path, i.e. , for the
final electron after its production by a photon.
We call this distance t' and decompose the func-
tion f„as follows:

f.(E', E, &) = dt'h. (E', E, t', t), (4.5)
J0

where the function h (E', E, 3', t) gives the dis-
tribution of n'th generation electrons at t which
have been created at a distance t' backwards.
The function k„can also be obtained by the
Bhabha-Heitler method, as shown in the appen-
dix. In analogy to Eq. (4.4) we take as the
corrected function

f„(E',E, t)..„= J dt'h„(E', E+Pf, t', t) (4.6).
J0

In order to have uniform formulas we write Eq.
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(y(E)/E')P(E) = ~' dt" dt'
~0 &O

~(E) &X,~ dE'( y [(E,/E')'-
Js+p, . EE" E" l

Xp h„(E', E+pt', t', t"), (4.8)

dE'((1/E")+ (V(E) /E") ]

X (E,/E')' p h„(E', E+pt', t', t"). (4.9)

The general term of this integral is of the form

E—(@+9) 8Jtl(E) ,

'

d tilt/I dtl
J

co

X t h„(E', E+Pt', t', t"), (4.10)
dp. p]iQ'+

where I=0, 1, or 2 and s= 2 or 3. They are
evaluated in the appendix. On introduction of
the definition

we obtain

'J = P 'J",
n=o

(4.11)

~'(E) = (E /E)'(1/v (E))p Jo(E)
—(1 —

v (E)) 'Jo(E) j (4 12)

&"(E t) = (E /E)'(1/v (E))
X{pJ2(E)—(1 —

q (E)) 'J2(E)]
+2tPJ (E)—(1—v(E)) 'J (E)j
+t'P Jo(E) —(1 —

q (E)) 'Jo(E) g I (4.13)

The photon momenta are again obtained from
Eqs. (2.13) and (2.15). Upon introduction of

* * In the subsequent equations the letter s is used in
two di6'erent connotations. As a subscript to the energy,
i.e., E„ it signifies the characteristic scattering energy,
while as a superscript, i.e., E', it signifies an exponent.

(4.4) in the same form with

h, (E', E, t', t) =f,(E', E, t)b(t —t'). (4.7)

Equations (2.12) and (2.14) for the angular and
prolonged lateral scattering for electrons~** be-
come now, on substitution of Eqs. (4.2), (3.2),
and (4.6),

Eqs. (4.12) and (4.13), they take the form

2(&)
I

E2 t f(E)dE I

I (dE/E4)
t'

z

X PJ (E)—(1 —
q (E)) 'Jo(E) g, (4.14)

The evaluation of these integrals has been
carried out numerically, except for the high
energy tail (abo~e E)10E;) where a series de-
velopment has been used. The results of these
calculations are contained in Table I I I.

It may be remarked that the methods de-
veloped here would also make possible the evalu-
ation of the higher moments of the distribution.
lt also would be possible, in principle, to carry
out similar calculations for other longitudinal
positions than the maximum in the shower, as
long as the variation of the primary distribution

f(E) can be neglected within the distance from
the point of observation which rontributes to the
scattering. Such calculations have not been
carried out.

5. LO%' ENERGIES, ANGULAR SCATTERING

The approximations made in the preceding
section are satisfactory for energies down to
about the ionization limit E;. Below this energy
our functions f (E', E, t) (Eq. (4.5)), loose their
validity. Also, the cross sections for most proc-
esses become different functions of energy, and
new effects, such as the Compton effect, come
into play.

In order to offset these difficulties, we may
here neglect the straggling of electrons, i.e., we
can assume that every electron with E&E; loses
its energy in a continuous fashion according to
the law

dE/dt =E+E;, (5.1)

where the first term B represents the radiative
losses and the second the ionization losses. This
means that the path length, or range between

~'(Z, t)=~ E,2 " y(E)dE
~

~ (dE/E4)
z

X I'J2(E) —(1 —
v (E)) 'J~(E)

+ (2/&) PA(E) —(1 —
v (E)) 'J~(E)l

+ (2/11 ) pJo(E) (1 q7(E)) Jo(E)]j . (4.15)
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two energies 8' and E, is given by The first part can be evaluated as follows:

fO 1

(E,/E') '[dE/(E'+ E,)]
= (E./EI)'[(EI/E) —1

—log[(E+E;)/2E]]. (5.6)

E(t) =(E'+E,)e "—E;.

The function fo(E', E, t) reduces to a function of
two variables only (E' and E, or E' and t) An.
approximation that is more easily handled is
obtained by development of the log in Eq.
(5.2), i.e. ,

The function 8i'(E) can be expanded in a
similar manner:

&(E' E) = log[(E'+»)/(E+E )] g7

(E,/E(t))'dt =
~~ (E,/E')'(dt/dE)dE

or that the energy expressed as function of dis- ~0

tance is g.

R(E', E) (E' E)/(E+—E;),
E' =E+(E+E,)R. (5 2a) Pi2(E) = 1

The assumption of a definite range-energy
relation as in Eq. (5.2) or (5.2a) permits the
direct evaluation of the scattering of an indi-
vidual electron, i.e. , of the functions 80'(E', E, t')
and x02(E', E, t'+t) in Eqs. (2.17) and (2.19).

It is then possible to solve directly the integral
equations (2.12), (2.17), and (2.18), (2.19) by
an iteration process similar to the method used

by R.N. ' for the determination of the energy
distribution. We refer to this paper for a discus-
sion of cross sections and for the values of a
number of auxiliary functions.

The method will be best illustrated by the
discussion of the actual procedure.

Ke decompose the electronic distribution into
two groups

gl

X I I (E /E")'[dE"/(E" +E,)gl~,
+&2'(E') (5 7)

(5.3)
fi(E) = [1/(dE/dt)] k(E')dE'

f(E) =fo(E)+fi(E),

Here 7i(E')dE' denotes the number of electrons
produced in dE' by quanta, a function computed
in R.N. ' The first term on the right-hand side
of Eq. (5.7) represents thus the de~iation a,c-
quired on their path by electrons which have been
created with energies 8'(8;. The second term
822(E') is the angular deviation inherited by these
electrons from their parent quanta.

Ke note that by definition

where fo is the number of electrons which have

been decelerated as individuals from higher

energies and fi is the number which have been
created by photons at energies below E,. fo and

fi are numerically given by R.N. '
The angular scattering can be decomposed in

a similar manner, i.e., in obvious notation:

~'(E) = [1//(E) Xfo~o'(E)+fi~i'(E)] (5 4)

The contribution 80' will be the sum of the devia-
tion the electron acquires on its path from E; to
E plus the known amount it inherited at E;.
Thus,

= L1/(E+EI)] &(E')dE' (5 8)

The first term of Eq. (5.7) can then be brought
into the easily integrable form

~E)' Eg'

dE'h(E') (E,/E")'[dE"/(E" +E;)]
gl g e

(E./E")'[dE" /(E" +EI)] ' &(E )d
«J @"

(E /El I)2f (ElI)dEI I

B(Eg', E)

2(E) I (E /E()))mdg+y2(E ) (5 5) The evaluation of 822(E') requires the knowl-
edge of the scattering of the parent quanta, which
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Tpm, p III. Mean square angular and lateral spread of shower electrons and photons as function of energy.
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.46
.43
.40
.33
.30

.25(B./8;) '
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.39
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0.214(E./8)'
0.18
0.17
0.16
0.140
0.125
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o.o85(z./z;)
0.120
0.165
0.190
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0.31
0.48
0.46
0,64

g2(K)

1.»(&./&)2
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0.88
0.80
0.71
0.62
0.55

0.46(E,/8;)'
0.64
0.80
1.30
1.75
2.55
3.4
4.7

X2(K)

0.38(B,/X
0.32
0.285
0.260
0.220
0.195
0.175

0.155(B,/8;) ~

0.255
0.42
0.53
0.72
1.02
1.30
1.8
2.7

P%{g)

0.545(E,/8)'
0.47
0.44
0.42
0.38
0.34
0.31

0.27(B,/8;)'
0.34
0.69
0.97
1.40
2.40
3.4
6.7

12.8

0.182(E,/8)'
0.16
0.15
O.14
0.13
0.11
0.095

0.085(B,/8;)'
0.135
0.22
0.28
0.35
0.57
0.80
1.23
2.3

0.181(E,/K) '
0,16
0.15
0.14
0.12
0.11
0.095

0.085(E,/8;)
0.110
0.145
0.170
0.23
0.38
0.50
0.68
1.25

Ã(K)

0.060(E,/IC) ~

0.054
0.050
0.047
o.o40
0.036
0.034

0.029(E,/8, )2

0.043
0.062
0.076
0.100
0.145
0.185
0.26
0.40

in turn is determined by

f(E)0(E, K)H(E)dE

P(K) =——

f(E)o(E, K)dE

(5.9)

The contribution to rP(E) from 622 must evi-
dently be small, since the angular deviations of
photons are small and 8P(E) refers in addition
to photons of energies larger than E;. We can
carry out the simultaneous determination of
zF(K) and of 8~'(E) by an iteration process, i.e. ,

we evaluate P(K) with a P(E) not yet contain-
ing the PP(E) terms, and then use this function
to determine 8P(E). The evaluation of Eq. (5.9)
could then be corrected again and so on. It was
found, however, by estimates based on this pro-
cedure that the contribution from 822(E') is
entirely negligible.

The evaluation of Eq. (5.9) was carried out
with the cross sections given by R.N. The results
of the calculations are contained in Table III.

6. LOW ENERGIES, LATERAL SCATTERING

The lateral scattering of electrons and photons
can be treated by the method of the preceding
section, with the added complication that the
"prolongation" of the lever arm by subsequently
added path lengths has to be taken into account.
We will deal throughout with the "prolonged"
scattering expressions x'(E, t), x'(K, t) from

which the actual scattering is obtained by taking
t. =0.

We write the expression for the prolonged
photon scattering as follows (cf. Eq. (2.15)):

~ QO

f(E)(r(E, K)x'(E, t)dE

x'(K, t) =

f(E)o(E, K)dE

(6.1)

x2(E, &) =, x'(E, ~'+~)Ss-"'d~'. (6.2)
al p

We decompose x'(E, t) again as in the preced-
ing section:

x'(E, &) = L&/f(E) jLfoxa'(E, ~) +fixi'(E, ~) 3, (6.3)
where the first term contains the contribution of
electrons decelerated from E; as individuals and
the second term those produced with energies
below E;. For the first part one finds

x,'(E, t) = )' C (R(E', E)+t)'/(E'+E;)]

X (E,/E')'dE'+ '(E R(E' E)+t), (6.4).
where R(E', E) is the range of the electrons be-
tween the energies E' and E (cf Eq. (5.2)).. It is
clear that xo'(E, t) is a quadratic function in t
It follows then from Eq. (6.2) that

xo (E, $) = (E,/E ) La(E)+2b(E)1+c(E)P], (6.5)

where we introduced the "averaged" prolonged
electron scattering,
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where a, b, c, are functions of E that can be ob-
tained from Eqs. (6.2) and (6.4).

For the actual computation we have used
the approximation, Eq. (5.2a). We find, with
Ro= (Eo—E)/(E+E;), for the prolonged scatter-
ing of an electron between the energies E0 and E:
xo'(Eo, E, t)

&o

[(R(E',E)+t)'/(E'+E&) j(E,/E')'dE'

Bp

(R+ t) '(E,/E(R) )'d R

p
- R+t~E 2

~ p E+(E+E;)R
= (E./E )'[E~/(E+E )3'

X I [1—(E'/Eo') —2(E!Eo) log(EA/E) j
+2t[log(E, /E) —(1—(E/E&))]

+ t'(1 —(E!Eo))(1+(E!E))I (6 6)

As the next step we evaluate a first approxima-
tion to the photon momentum xo'(K, t) from
Eq. (6.1), using the previously found expression
(6.5) for E(E; for the electron scattering at
B&E; in place of the not yet determined full
expression (6.3). For E)E;, of course, the results
from Section 4 have been used. We obtain again
a quadratic function in t,

xa'(K, t) = (E,/E;)'
X[A(K)+28(z)t+C(z)t'j, (6.7)

where A, I3, C, are numerically obtained func-
tions of the photon energy E. It turned out that
these functions do not have to be corrected again,
and the results of this calculation for t=0 are
given in Table III as our final results.

It remains to compute the contribution xi2(E, t)
of the electrons which have been produced with
energies E' &E;. It can be written as

(g OO

xAA(E, t) = dE' i dKg(z)0(K, E')
js

X [xo'(K, R(E', E)+t)+xA'(E', E, t) g

Ei ~g
X1 dE'

i g(z)0(z, E')dK. (6.8)
Jg.

TABLE IV. Comparison c}f shower spreads at high energies
obtained by various authors (notations as in Table III).

(E/E )~@~(E) (E/E )~s~(K) (E/E )%~(E) (E/E )~62{K)

Euler-Wergeland
Moliere
Belenky
Janossy
Rober g-Nordheim

0.074
0.835
0.94
0.724
0.642

1.314

1.13

0.33
0.6

0.570
0.545

0.2

0.181

Here g(z) is the energy distribution of photons,
0(z, E') the production cross section for elec-
trons, for which we have to add pair production
and Compton eA'ect, and xAA(E', E, t) the con-
tribution to the scattering of the electron after
it has been created, as determined in Eq. (6.6).
All functions in Eq. (6.8) are then known.

ln order to simplify the evaluation of Eq. (6.8),
we have assumed that every electron 8' is created
in the average by a quantum of definite energy E.
For Compton electrons of not too low energies
we can assume without much error that they
have the same energy as their parent photons.
The average energy XA, of the photon which
gives the correct scattering inheritance to a pair
electron B' is defined by the relation

x'(KA, ) =
g(K)0„(K, E')x'(K)dz

gI

where o.„ is the differential cross section for pair
production. If we assume that x'(KA, ) is propor-
tional to K " and g(z) to K, we find, since
0„(z,E') K

or

= [m/(m+n)7E ",

KA, [1+(n/m) ]""E——=nE. (6 9)

The value of a is fairly insensitive to the ex-
ponents. At very high energies, we would have
n=2, m=2, and +=vs. At very low energies
n 1, m~j. , a =2. We choose as a suitable aver-
age value a =VS=1.73. The evaluation of Eq.
(6.8) reduces then to single integrals of the

(Z )-.= " K-~-+-+A~dz t' K &-+»dz-jAv j
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general form

gg

&,(nE')xp'(OE', R)dE', (6.10)

where h„(E') is the number of pair electrons pro-
duced per interval dE', a function determined by
R.N. ', and xo' is to be taken from Eq. (6.7).

The process could be repeated, i.e., one could
go back with the new value of xP(E) into Eq.
(6.3) and then re-evaluate the photon scattering
from Eq. (6.1). However, as mentioned before,
this turned out to be unnecessary. VVe also have
left out of our calculations the knock-on electrons
and post-Compton photons, since their contribu-
tion to the mean square deviations could be
estimated to be negligible.

Our calculations have been extended down to
energies of 0.058; or ~4 Mev, the lower limit to
which the auxiliary functions f(E), g(Z) have
been given by R.N. ' For the final results see
Table I II.

X'(E) = I x'(E') f(E')dE'

X1 J~ f(E')dE'. (7.1)

X'(E) gives thus the total spread of a shower as
measured by an arrangement that records only
particles above a given energy K

The units of energy and length are those of
shower theory (cf. Table I). Angles are measured
in radians. The critical scattering energy E, (cf.
Eq. (2.3)) has to be taken as 21 Mev for evalua-

V. DrSCUSSrOm

Our results are collected in Table III which

gives the mean square deviations of electrons
and photons as function of their energy. The
symbols have the following meaning:

x'{8)=mean square lateral spread of electrons of energy E,
x'(X) =mean square lateral spread of photons of energy E',

0'{8)=mean square angular spread of electrons of en-

ergy E,
0'{K)=mean square angular spread of photons of en-

ergy E.

The capitalized letters denote the same quan-
tities averaged over all energies in a shower larger
than a given lower limit, for instance,

tion of radial deviations, and equal to 21/VZ
Mev=15 Mev for deviations in one particular
direction normal to the shower axis.

The mean square deviations are obtained from
Table III by multiplying the figures in the upper
half (E/E;&~1) by (E.'/E)', in the lower half
(E/E;& 1) by (E./E, )'.

Table III should be used in conjunction with
Table I of R.N. ,

' which gives the corresponding
energy distribution functions in a large shower.
The energy distribution for electrons is also re-
produced in Table II, Section 4, of this paper.

The first row in Table I I I represents asym-
ptotic values for high energies under complete
neglection of ionization losses. They have been
obtained (cf. Section 3) without any further
neglection from the shower theory in the form of
Bhabha and Heitler. " The values down to
E/E;=1 have been obtained from the formulas
of Section 4, using asymptotic cross sections for
high energies. The results are valid as far as these
cross sections are a satisfactory approximation.
The low energy part has been calculated for air.
The results should, however, have at least quali-
tative validity for other materials.

It is to be noted, of course, that the forward
progress of a shower will be stopped for energies
such that the root mean square angular deAec-
tion of electrons becomes of order unity. Our
calculations are actually based on the assumption
that the scattering angles are small. (8'(E))&
reaches the value 0.5 for air at E/E;=0. 2 or
E=16 Mev, and for lead at E/E;=3. 7 or E=25
Mev and the value unity for air at E/E, =0.05
or E=4 Mev, and for lead at E/E;= 1.8 or E= 12
Mev. We can take the latter values as a rough
measure of the energy below which electrons do
not show any preference for the forward direc-
tion. Using the results of R.N. , we find that for
air about 6 of the electron track length is con-
tained in this low energy, non-directional part
while this fraction increases to 80 percent for
lead. t

The root mean square lateral deviation of elec-
trons with 6'(E) 1 can be considered as a rough
measure of the total radius of a large shower.
This radius is for normal air about 120 m, for

t The position of the shower maximum will not be
affected much, since it depends mainly on the particles of
high energy, compare S. Belenky, reference 11.
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lead about 0.45 cm. The root mean square devia-
tion for all shower electrons above these energies
is less, namely, ~60 m for air or 0.3 cm for lead.
Spreads of this order of magnitude are sufficient
to explain observations on large air showers;
compare f.i. the investigation by Cocconi" and
collaborators.

The general behavior of the spread as function
of energy is similar to that found by Euler and
Wergeland' and by Moliere, 6 and it gives, as
shown by these authors, a qualitative explana-
tion of the general features of showers. For
example, photographs of Showers penetrating
several lead plates often show quite clearly that
electrons with larger angular spread are more
easily absorbed. Furthermore, electrons emerging
from lead with a pronounced forward direction
must have energies at least of order 20 to 30
Mev. The root mean square radial deviation of
all electrons of this and higher energies is only
about 1.5 mm. Thus, lead showers seem to
diverge virtually from single points.

An interesting feature of our results is that
the angular deviations of photons are smaller
than those of electrons of the same energy while
their radial deviation is larger. The reason for
this behavior is that a photon inherits its angular
deflection from a higher energy electron parent.
For the lateral deflection this effect is overcom-
pensated by the comparatively long mean free
path of photons.

During the last years, calculations on the
spread of showers have been given by various
authors, and it seems to be of importance to com-

pare their results with ours and to assess their
accuracy.

Table IV gives the results for the mean square
deviation at high energies under total neglection
of ionization losses.

The original Euler-Kergeland' theory contains
a serious underestimate of the spread. The results
of the other authors are in rough agreement, the
differences being due to the use of different forms
of the shower theory and different approxima-
tions for the cross sections. Moliere uses simpli-
fied cross sections and his method, based on
Landau's' general equations, cannot be judged
completely from the short available abstracts.

"G.Cocconi, A. Loverdo, and V. Tongiorgi, Phys. Rev.
7'0, 846 (1946).

Belenky's' value has been obtained after cor-
rection of a factor in his equations which made
the mean square deviation four times too large.
He uses the Tamm-Belenky' formalism to evalu-
ate correct diffusion equations.

Janossy, " in his recent book, evaluates our
Eqs. (2.12) and (2.14) in an elegant and simple
way, using the full asymptotic cross sections. His
values have to be considered as the best ones
today. His method, unfortunately, does not seem
to yield itself to the inclusion of ionization losses.
Our values are obtained from a rigorous evalua-
tion of the Bhabha-Heitler theory, the difference
to Janossy being due to the basic approximations
underlying their formulas.

Data on x'(E) for lower energies under inclu-
sion of ionization losses have been given by
Belenky and Janossy. Belenky's cur~e, as judged
from a very small graph, gives approximately the
correct reduction due to ionization at the critical
energy. It is, however, considerably too flat, i.e. ,
it gives too little reduction at higher energies and
too small a spread at lower energies. The sharp
upturn of our values for very low energies is the
result of the comparatively long range of low

energy photons, an effect that is neglected in the
Tamm-Belenky formalism. Janossy gives plausi-
bility arguments for the rough interpolation
formula

x'(8) =0.724(Z, /(Z+Zg))'. (7.2)

This formula gives a reduction somewhat too
high at energies in the neighborhood of E; and
also fails to give the upturn at very low energies.

The only serious attempt to obtain the full
density distribution averaged over all electron
energies as function of distance from the shower
axis is due to Moliere. ' He neglects ionization
losses for all energies above the critical energy
E;, while our Table III shows that this effect
reduces x'(8) by a factor 2.5 at E,. The num-
ber of electrons in the neighborhood of 8; is also
reduced by a similar factor. The contribution of
electrons with E~E.; is thus very considerably
overestimated by Moliere. On the other hand,
he considers in the low energy region only those
electrons that have been slowed down from
higher energies (our contribution fq, compare

"L. Janossy, Cosmic Rays (Oxford University Press,
London, 1948).
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TABLE V. Values of E (E) for s =2 and 3; m =0, 1, 2. electron E the formula

Pbj2E

1/2
2/5
1/3
1/4
1/7
1/iO
1/20
1/5o
0

mz, ~z& 2z, czi ~z,~zi

0.370 0.151 0.0679
0.421 0.187 0.105
0.463 0.222 0.134
0.531 0.282 0.173
0.656 0.438 0.308
0.730 0.551 0.330
0.835 0.69 0.55
0.93 0.86 0.81
1 1 1

0.315
0.363
0.404
0.471
0.602
0.66
0.792
0.91
1

0.109
0.143
0.175
0.234
0.375
0.384
0.619
0.83
1

0.0415
0.0607
0.0810
0.122
0.235

0.705
1

8X,I.Z) 3m 1CZ) 8&~)
(Z, Z)dadl = log2(dx:/X)dl. {Ai )

Their unit 'of length is thus connected with the one used
here through

l log2 =t. (A2)

They write for the probability of pair production in dl

0(E)dl = O.dl.

Their value for the absorption coefficient of photons is then

e= (7/9) log2 =b log2. {A4)

Section 5). This underestimates the number as
mell as the individual deviations in the low

energy range. It would seem thus that a more
accurate calculation should give a somewhat
stronger compression of the shomer core coupled
mith a larger sidewise dispersion from the lomer

energy region. The outmost part of the shower is,
according to Moliere, due to single scattering
through comparatively large angles)t which gives
asymptotically for large distances r from the
shower axis a decrease of density as r—'. This
latter result cannot be strictly correct since it
would result in a divergent mean square devia-
tion and it is also physically clear that finally
there must be an exponential cut-oS.

It is thus difficult to judge how good an ap-
proximation Moliere's density function repre-
sents. In order to obtain a rough criterium, we
have calculated the mean square radial moment
of Moliere's distribution, cutting it o8 at about
two radiation lengths, from where on he has a pure
1/rm law. The result is an X2(E) =1.14(E,/E, )',
while our value for a lomer energy cut-off of 4
Mev has the numerical factor 0.64. Moliere thus
overestimates somewhat the extension of showers
and his curve has more qualitative than quanti-
tative significance. The theoretical interpreta-
tion of experimental data on large showers is,
however, inherently of very rough character.
Use of Moliere's results mill thus probably not
lead to a seriously distorted picture.

B.H. express their energies by a logarithmic variable

y = log {E'/E}, (A5)

where E' is an initial and E a final energy. The total
number of electrons plus positrons produced by a primary
Z' having an energy & E at a depth l is then expressed
in a series

F{E',E, l) = F(y, l }= Fp+ Z F„.
n, 1

Fp is the probability that the primary electron has ar-

rived with an energy & E. It is given by the "straggling
function" W{l, y) of B.H. (Eq. (6) or Eq. (34} of refer-

ence 12).

Z, (y, ))=f (e
—

g
—/r(t))dg. (A7)

The terms F„give the numbers of electrons at l with energy
&~E which had been produced from the primary with n

intermediate quanta. According to B.H. 's formula (refer-
ence 13, top of p. 442), it can be written as

~ i
F„(y, l)=(2ulo82)"e 'J dl'

p

i-i dl" «'+ ")l"-(l—l' —l")—fX
p (n —1)!(n —1)!

I n-1
Xf, Fo(y', I,'+I,"+e)dy' (A8).

In comparing this expression with the orie in B.H. , it is to
be noted that our F„ is twice the B.H. f„which represents
the number of electrons of one charge only. Further, the
formula quoted above (B.H. , p. 442) represents f„+l.
Tracing the deviation of this formula back to B.H. , Eq.
(21), and the developments on p. 440, one verifies that the
variable l' in Eq. (A8) denotes the distance an electron of
the n'th generation has traveled as an individual after it
had been created by the immediate ancestor photon. In
order to express this dependence explicitly, we write

APPENDIX
F„(y, l)= H„(y, l', l)dl', n& i.

p
(A9)

The Bhabha-Heitler formula and evocation of the scattering
integrals. Bhabha and Heitler" (abbreviated as B.H. ) use
for the probability of emission of a quantum X by an

tf In the evaluation of the mean square as in this paper
the single scattering is included through proper choice of
the scattering constant E..

For n=o, i.e., the straggling of an individual electron, l'

is, of course, equal to the total path l, and we write

Irp(y, l', l) = Fp(y, l')b(l —l'). (Aio)

The scattering integrals. In Section 4 we had introduced
the differential distribution function of electrons

f„(Z, E, t) =aF„{E',E, t)/aE.
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In order to take into account ionization losses, we approxi-
rnated the f by Eq. (4.6)

f„{E',E, t),.„= k„(E', E+Pt', t', t)dt'.
0

Here h (E', E", t', t) is the probability under neglection of
radiation losses that an electron of the n'th generation
arrived at t with the energy E"after having been created
the distance t' backwards. The functions h are given by

h.„(E,E-)=ax„jaE-= (1/E-)(aH„/ay). (A»)

I he identification E=E"—pt gives then the modification
of the distribution by ionization losses.

The mean square scattering deviation requires the
evaluation of the integrals

CO tE-(s+2) 8Jn ddt
0 0

(dE' /E"+2)h„(E', E+Pt', t', t), (A12)
++0 &

where m is 0, 1 or 2, s is 2 or 3, and n goes from 0 to ~.
Upon introduction of the unit length, Eq. (A2), we obtain

e xdx
m! ~ 0 [1+{xPb/2E) )'+"

b = log4/log(s+2).

(A15)

All the K(E) go to unity in the limit E~~. Ihe 2J"
reduce for P =0 to the I" given in Eq. (3.6). The integrals
'E can be evaluated for large E by expansion of the
denominator which leads to a semiconvergent series. They
can also be expressed in terms of the exponential integral
and thus be computed. Values are given in Table U.

The summations over n can be carried out in closed form
with the help of the summation formulas

Z z"=1/(1 —)' Z n-."= j{1—)'
0 }.

bn+1
4Jn

2[(s+1)(s+2)j"
n{n+1} n~b n(n+1)

4

+bn -+— 'E)+—'E2, (A14)
1 1, b,

2 2

where

CO l'J" = (log2}~+' l dl dl'
0

&&J $e &'+"»(BH„/By„)dy/(1+(/}l'/E) log2)*+'), (A}3)
0

Q n2zn —z{~+1)/(1 z)3
1

EVe denote the sums so obtained by

(A16)

where the H„are given by Eqs. (A7) to (A10). The ex-
pressions (A13) are sixfold integrals. They can be evaluated
by one of the so-called "simple calculations" by suitable
changes of the order of integration and introduction of
new variables. ttt The results are as follows. "

aJ & aJn
2Bn-o

(A17)

The expressions of these quantities in terms of the integrals
E follow.

'J =(m!/2~+')b 'E,„, (m any value),

'J'= [b"+'/2[(s+1)(s+2)j"j'Ep, n = 1, 2,

2[(+1)(+2)j. & 2
'

2

fft See J. Roberg, Ph. D. Thesis, Duke University, 1942,
for all details of this and subsequent calculations.

Fol $=2:

For s=3:

'Jp= 0.545 'E'p,

'Ji =0.273 'Ei 10.0885 'E p

J2 =0.273 'Eg+0.0885 'E'I+0.281 'Ep.

'Jp =0.450 'E'0,
3Jg =0.194 0E'i+0.0348 E'0

'J2 ——0.167 'E'2+0.030 E'(+0.100 'E p.

{A18)


