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High Frequency Gas Discharge Breakdown in Helium*

A. D. MAcDoNALD AND SANBQRN C. BRowN
Research taboratory of Electronics, ilfassachusetts Institute of Technology, GambruSge, 3fassachusetts
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Breakdown electric fields in low pressure helium at high frequencies have been theoretically
predicted and experimentally verified. The energy distribution of electrons is derived from
the Boltzmann transport equation, taking into account all significant removal processes.
The distribution function is expanded in spherical harmonics and the resulting second order
linear differential equation is solved in terms of the confluent hypergeometric function. This
distribution function combined with kinetic theory formulas permits calculation of the ion-
ization rate and the electron diffusion coefFicient. From these the high frequency ionization
coefFicient is determined. Through the diffusion equation this ionization coefFicient is related
to breakdown electric fields. Thus breakdown electric fields are predicted theoretically without
using any gas discharge data other than experimental values of the excitation potential and
collision cross section of helium. Breakdown electric fields are measured for helium in micro-
wave cavities of various sizes with a large range of pressure. The theoretical electric fields,
involving no adjustable parameters, are checked within the maximum experimental error of
6 percent.

I. INTRODUCTION

w HEN a high frequency electric field is
applied to a gas, breakdown occurs when

the number of electrons produced by ionization
equals the number lost by diffusion. ' The ioniza-
tion rate and the diffusion coefficient will be
computed theoretically on the basis of kinetic
theory. These enable us to predict high frequency
ionization coefficients and breakdown electric
fields. The electron distribution function is deter-
mined by setting up the electron continuity
equation, accounting for production and loss of
electrons in phase space. The distribution func-
tions so determined are used in standard kinetic
theory formulas in order to find ionization rates
and diffusion coefficients. The results are ex-
pressed in terms of the high frequency ionization
coefflclen t g. '

II. SPHERICAL HARMONIC EXPANSION

The phase space continuity equation (Boltz-
mann transport equation) for electrons may be
written

P= +v Vf+a V'„f,'—'.
at

~ This work has been .supported in part by the Signal
Corps, the Air Materiel Command, and ONR.

' M. A. Berlin and S. C. Brown, Phys. Rev. 74, 291
{1948).

'S. Chapman and T. G. Cowling, The Mathematical
Theory of ¹n-Uniform Gases (Cambridge University
Press, Teddington, 1939), Chap. 3.

where f is the electron energy distribution
function, I' is the production rate of electrons
per unit phase space and may be expressed in
terms of f by finding the energy changes in
electrons for elastic and inelastic collisions; 8
the velocity, a the acceleration, t the time, and
V', the gradient operator in velocity space.

Collisions with gas atoms tend to disorder
any non-random motion of the electrons so that
f is almost spherically symmetric. Thus if f is
expanded in spherical harmonics f=fo+(v f,)/v+.. . ,' the spherically symmetrical term fo is
predominant. The fi term represents a vector
drift term from which the current may be
calculated. The series then is rapidly convergent
and we consider only those cases where the first
two terms suffice to calculate the properties of
the system.

III. THE DIFFERENTIAL EQUATION FOR fo

Consider the electric Field as sinusoidal in

time; on expansion, Eq. (1) becomes'

Bfo 'v 8 v
Po= +— (uE fi)+—V fi-.

at 3Q 8Q 3

I9fi ~fo
P, = +vVf, +vE

at aQ

~ P. M. Morse, %'. P. Allis, and E. S. Lamar, Phys. Rev.
48, 412 {1935).' H. Margenau, Phys. Rev. /3, 303 (1948), Eq. (26).



S. C- BROWND M AcD ONALD AND S.

I I 1 I I III'

yl ~

e

-5
IO

I I I )IllI I I I i
Illa'

~ 4.75 IO

energy transfe yr b the efi ld to the electrons
mean square fie ld' so that the root mea

e There follows direct y
fo E f.1S

's analysis~ an expr
b d by considering

rom
at obtainewhich is the same as t at b

a '
field E, defined byan effective e

(v/~)'
2 +f2

1

(v/l)'+ ~'

10—

e
'

r.m. . f the applied field.r.m.s. value o ew e
f th bThe differential equ

2mv d tufoi

d (i)
v d df0 8'(v/l)'

3u du du (v/l)'+co'3A2

ionization coeKcient
of 8/p from Eq.corn

d b the dashed line; it is e erdown curve is i
by setting /=1/A

d

ay be treated y
ation. Morse, A

CROS
u P in the equation.

I' in helium is

0 ei an 1, «1

ation for, i

n ' have shown that

A ood approxim
Hg) ' The

nd Lamar ave

t =43(volt~/cm Xmm
m v d u'fo)

fro th" for f~~ dgE

tof th lli i

fter the electron

aIl

as atoms occur a
h' df4ev, so isas

e breakdown cmall effect on the r
l b ing the electro

'
nic mean free pa

n will be carrie o
tron

Ci

~ ~ ~ ~ o q
erthew oe

ss of the atoIll.

d in Section V y

mass

d,.„...n.
'

nificant electron remo a

~ n 1

nstant mean ret this contributiontion to Io only; we represen

s. Rev. 'V3, 303 (j.948}, q.s Rev. , E . (2V).
. I th, th «R.the radian frequency. nwhere (a is t e

l I I

re laced by —(1/A. ')fo using

t oft e ison the geome ry
f theic value in

~ ~

1S Cth characteristic
A is then t e characteristic'ff sion equation; is

ath / equals
1 usl

. The mean ree pa
d P, th ob bilit

ressure.
l/pP, if pld is represented by . nthe electric fie is r

settin mv'/2e =u,
th Th re now re

varia

'll b 6' ti ly

h e is the eecro '

orms
wriere

ee uation. x
'

r vapor.

mass 0 c
c

'
d s instan-

'
ated by the intro uc isses and the energy oss

E R THE COLLISION

tancous p1"occsscs an

EXPRESSION FOR T
b putting equi

llis, IV. E
S SECTIONS

p



HIGH FREQUENCY GAS BREAKDOWN

Helium has a metastable level at 19.8 volts
and transitions from this level to the ground
state by radiation are forbidden. Since meta-
stable states have mean lives of the order of
thousands of microseconds, practically every
helium atom which reaches an energy of 19.8
volts will collide with a mercury atom and lose
its energy by ionizing the mercury. Therefore
each inelastic collision will produce an ionization
and the effective ionization potential u; will be
the 6rst helium excitation potential plus a small
overshoot energy due to the fact that the most
probable energy at excitation is higher than the
excitation energy. (The amount of this overshoot
is calculated in Section VII.) Then Pp, ; may be
assumed zero for u&u; and infinite for u&u;.
Physically this means that there will be no
electrons with an energy above that correspond-
ing to u=u;. This condition on the electron
population provides a boundary value for the
differential equation which we now solve for
u &u, , with fp zero for u =u;.

V. SOLUTION OF THE EQUATION AND
EVALUATION OF (

Equation (7) becomes, on inclusion of results
of Section IV, in the region where u &u;

dfp dfp uu 3 3u u
+ —+—+fp ———=o

du' du P 2.. 2 P P

--—-ANALYTIC APPROXIMATION

g(Pf RIMENTAL OATA

I

2 UC 20
I

50

Fio. 2. The probability of collision of electrons in
helium at f mm of Hg pressure. Brode's experiment is
compared with the approximation of this paper.

and transform the dependent variable by

ilr1
fo =(g) exp —-I -+1 lw .

2kb )
Then

d'g dg (3
w—+ I

——w
I

—ng=0,
dw' dw (2

where

Equation (11) is the confluent hypergeometric
equation' and its solutions may be written

gi M(n—;—ap; w), gp =w &M(a —~p; $; w). ' (12)

For brevity we will use the notation

and

3mm A'
p= ~ 0

)

3f e
M(u —' w) =Mi(w)

w-Vf(a-~p; ~p; w) = Mp(w).

(13)

(14)

1tZAy'
I

~

0 04gf']

r is the mean free time, 1/r=2. 37(10P)P (in
mm Hg), ' and

For convenience we transform to a dimensionless
independent variable by letting

4p& '
w=-I 1+—I

u=~
Pk IP) P

Then the distribution function fp is given by

fp
= LMi(w)+ CMp(w) j expI —w(1 —2/3a) j, (15)

where the constant C is determined by the
boundary condition that the distribution func-
tion go to zero at u =u;; therefore

Mp(w, )C= ——
Mg(w;)

' E. Jahnke and F. Emde, Iiunktionen Tafeln (Teubner,
Leipzig, j.933), p. 275.

'A. D. MacDonald, "Properties of the confluent hyper-'
~

~

eometric function, " Technical Report No. 84, Research
aboratory of Electronics, M.I.T., Cambridge, Massa-

chusetts.
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Having determined the distribution function
we are in a position to calculate the high
frequency ionization coefficient 1 B.y the use of
standard kinetic theory formulas and the distri-
bution function expressed in Eq. (15) we calcu-
late the quantities ev and nD. The ratio of these
quantities divided by the square of the electric
6eld is f.

The kinetic theory formula for the number of
inelastic collisions per electron per second, v, is

The expression for fo from Eq. (15) is substituted
in the integrand and the integrations performed.
The integrals have been evaluated for arbitrary
values of the parameters involved. '

On carrying out the integrations in Eq. (18),
and dividing Eq. (17) by the resulting expression
we have the high frequency ionization coefFicient

1 DE'
= (ZA)'LMi(w~) exp( —-', uw, ) —1]. (19)

(16) The form of Eq. (18) has been simplified by using
the fact that the expression

where I'0, ;„ is the production rate of electrons
per unit volume of phase space due to inelastic
collisions.

The integral in Eq. (16) is an improper integral
but Po, ;„ is transformed through Eq. (7) to a
function of fo and u. The resulting rigorous
expression is integrated by parts. The integra-
tion, subject to the condition that fo and dfo/du
are zero for I= ~, yields

Mi'(w;) DID(w;) —3Ig'(w, )3IIi(w, )

i%i(w;) exp( —-,'aw, ) = 2. (2o)

is the Wronskian of the differential Eq. (11) and
its value is ~iw; & expw;. At breakdown v/D
= 1/cV, so we see from Eq. (19) that the break-
down electric fields may be determined by
solving the equation

Similarly the diffusion coefficient for electrons,
D„ ls

For helium, the numerical values of the vari-
ables involved in terms of experimental param-
eters are

2m' (2e) +' p "s
D= (18)

0.820(10')u; ( / PX ) ')
w;= b 1+ (21)

(EX)' & (79.6) )

I I I Illa'

THEORY WITHOUT OVER-

FIG. 3. Theoretical 8—p
curves illustrating the e8ect of
the correction factors of Sections
VI and VII. The broken lines
indicate theoretical fields with-
out corrections. The $-inch cav-
ity is omitted to avoid confusing
the diagram.
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HIGH FREQUENCY GAS BREAKDOWN

FIG. 4. The efkctive ionization
potential as a function of EP at
a constant A, /P.
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conditions, the relative number of low energy
electrons is large. For energies below 4 ev, Eq.
(6) may be simplified by neglecting &a' in com-
parison with (s/I)', and by using the fact that I
is constant. The solution may be carried out in

the manner of Section V and fo is then given by

fo=~[~(~; I;y)+&W(~'I y)3 exp( —y), (24)

where ) is the free space wave-length of the
electric 6eld in cm, 8 is the r.m. s. value of the
electric field in volts per cm, p is the pressure
in mm of Hg and A is in cm.

A plot of I' vs. Z/p is given in Fig. 1, computed
from Eq. (19). Tables of the functions involved

are available. The breakdown electric 6eld may
be determined from Fig. j. by 6nding the curve
through those points where I = 1/A2&.

where M is the confluent hypergeometric func-

tion, W is the second solution for integral values
of the second parameter, "

1.54
a=

(pA)'

(p&'( &u'

E g) EN)

VI. COMRECTION FOR FLAT PORTION
OF P, CURVE

From Fig. 2 we see that our approximation
for P, is inaccurate for electron energies below
4 ev, and therefore in those cases where there
are Inany electrons with low energies, a small

correction term may be applied. 'The low energy
electrons are most important in determining
breakdown fields when Z/p is small and there are
many more collisions per second than oscillations
of the 6eld per second, because under these

and
M(a; 1;y) =Mp(y)

W(a; 1;y) = Ws(y).

The energy at which I', changes from a
constant to a u & trend is seen from Fig. 2 to be
that corresponding to u, =u;/5. The distribution

' 9/. J. Archibald, Phil. Mag. 26, 419 (1938).

and both functions in Eq. (24) are tabulated. '
Again we use a more concise notation for the

conHuent hypergeometric function by setting
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functions in Eqs. (15) and (24) must be smoothly
joined at this energy. By equating the values
and slopes of the distribution functions, the
constants A and 8 are determined to be

energies close to the excitation potential. Using
Maier-Leibnitz's experimental excitation func-
tion' for h„we may write

where

RMg(y, ) —Ml'(y, )8=
W3'(y, ) —RWI(y. )

(25)

P.= (u —19.8)u&

h, =—=hg(w —w.) =
P, 623

(28)

Equation (8) now written in the reduced form
and including k, is

Mg'(w, )+CM2'(w. )
+2/3lMg(w, )+CM2(w, ) }R= (26)

Mg(w. )+CM2(w, )
where

d2g uu)
Ig =0, f0=—(u&g) expl ——l, (29)

du' 2)'

LM~(w, )+CM, (w, )7 exp} —w, (1——*,n) 7 1 M & 1 (M &

(27) I= 1+——h~ ———
l
——h~u, +3u

l

— . (30)
3(y )+PW3(y )7 exp( y ) P m 2 u & m 2 J 16u'

This distribution function then modifies the
value of the integral for nD and also the expres-
sion for 1 in Eq. (19).

The amount of this correction for various
cavity sizes and pressures is illustrated in Fig. 3,
which shows the correction to be appreciable
only for high pressures, and in no case to be
more than a few percent.

VIL CORRECTION FOR OVERSHOOT

The probability of excitation is not infinite at
the first excitation potential so that some elec-
trons reach energies above this value before
exciting helium atoms. This overshoot in energy
is most noticeable at low pressures when the
energy gained between collisions is large. To
find the energy at which the distribution function
goes to zero, we insert the measured values" of
the excitation function as a loss term in Eq. (8).
The excitation function is linear in energy at

"H. Maier-Leibnitz, Zeits. f. Physik 95, 499 (1935}.

For u&u„ I may be seen on inspection to be a
slowly varying function so we may solve Eq.
(30) approximately and obtain

g =exp( —(I)~u). (31)

Equation (31) combined with Eq. (29) gives the
distribution function above the excitation po-
tential; and this distribution function should be
fitted to that of Eq. (15). However, the distribu-
tion function is small in this region and we may
determine a voltage at which the distribution
function goes to zero by extrapolating Eq. (31)
linearly and choosing that voltage where it cuts
the axis as the ionization potential. The extrapo-
lation of Eq. (31) yields

u; —u =—=(I)&.

The effective ionization potential is plotted in

Fig. 4 for helium as a function of EX with several
values of Plb, for one value of A/L A more
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rigorous treatment in which Eq. (29) is solvmi

exactly is possible but does not alter the value
of u; in Fig. 4 significantly.

VIII. EXPERIMENTAL PROCEDURE

A block diagram of the microwave apparatus
used in the experiment is shown in Fig. 5. A
continuous-wave tunable magnetron in the 10-
cm wave-length region supplies up to 150 watts
of power into a coaxial line leading to the
measuring equipment. A cavity wavemeter re-
ceives a small signal from a probe in the line.
The power incident on the cavity is varied by a
power divider. A directional coupler provides a
known fraction of the incident power to a
thermistor element whose resistance, measured

by a sensitive bridge, indicates power incident
on the cavity. A slotted section of line with a
movable probe measures the standing wave ratio
and voltage minimum, the probe signal going to
a detector w ith a wave-guide-beyond-cutoff
attenuator. The cavities resonate in the T3fojo-
mode in the 10-cm wave-length region, and are
coupled to the coaxial transmission line by a
coupling loop. A second coupling loop provides
a transmitted signal to an attenuator, crystal
and meter. The electric field is calculated by
standard microwave methods. ""The unloaded

Q of the cavity is calculated from standing wave
measurements. The power absorbed in the cavity
is determined by the measured incident power
and the standing'wave ratio. The absorbed power
is related to the stored energy through the
unloaded Q and the electric field is determined
from the known field configuration and the
stored energy. It is convenient to calibrate the
transmitted signal network in terms of incident
power measurements to measure the field.

Care was taken to obtain high gas purity. The
cavities were made of oxygen-free high conduc-
tivity copper and all joints were silver soldered.
The coupling loops were made of copper, Kovar
and glass. The cavity was connected through
Kovar to an all-glass system including a three-
stage oil diffusion pump and a liquid-nitrogen
trap. Spectroscopically pure helium and distilled
mercury were used. Each cavity was baked out
for several days at 400'C and the whole vacuum
system carefully outgassed before each run. The
mercury pool which introduced the mercury
vapor also served to seal the cavity from the
liquid air trap during each breakdown field
measurement. The possible effect of direct ion-
ization of mercury in the breakdown process has
been investigated theoretically. For the density
of mercury used it was found to be not significant

I I I I I I lil I I I I I I I I
'

I I I I 1 I I I
'
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Fro. 6. Experimental break-
down electric 6elds compared
with those theoretically pre-
dicted.
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"C. G. Montgomery, Microwave Techniques (McGraw-Hill Book Company, Inc. , New York, 1947)."S.C. Brown et aI., "Methods of measuring the properties of ionized gases at microwave frequencies, " Technical
Report No. 66, Research Laboratory of Electronics, M.I.T., Cambridge, Massachusetts.
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IO

I I I I I I I I I I I I I Illlf I I I I I lt—' cm and heights of 0.1S88, 0.3175, 0.4760, and
2.540 cm. The cavity whose height was great
enough so that it could not be considered a
parallel plate system was computed using a
non-uniform field theory. "

Figure 6 presents the experimental and theo-
retical E ss. p curves. I vs. 8/p curves computed
from the experimental data are compared with
theory in Fig. 7.
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volts~ ~P (cm mm-HII )

in the range of pressures and container sizes used
in the experiment.

The breakdown experiment consists of filling

the cavity with the gas at a measured pressure,
increasing the magnetron power until the crystal
current reaches a maximum and drops suddenly
to a much lower value. The drop indicates that
the gas has broken down and the maximum
current indicates the breakdown field, The elec-
trons required to initiate the discharge are pro-
vided by a radioactive source near the cavity.
The breakdown measurements were reproducible
within an experimental error of less than 5

percent in electric field and less than 1 percent
in pressure. Experiments were done on four
cylindrical cavities having a diameter of 8.140

FIG. 7. Experimental ionization coeScient compared
vrith theoretically predicted coefFicients. The $-inch cavity
is omitted to avoid confusing the diagrams.

The high frequency ionization coefficient has
been calculated theoretically on the basis of the
electron continuity equation, considering diR'u-

sion to the container walls as the only removal
process. It is expressed in terms of ZA, p), and
pA. . The high frequency ionization coefficient
has been derived theoretically in Eq. (19). The
ionization coefticient had been previously related
to breakdown fields through the diffusion equa-
tion '

Equation (20), containing no adjustabIe gas
discharge data or constants, and involving only
the excitation potential and collision cross section
of helium, enables us to predict breakdown
electric fields. It has been derived from the
electron velocity distribution function given by
kinetic theory, and the diffusion equation. The
agreement between theory and experiment over
a wide range of pressure and container size
variation verifies the correctness of the approach.

The authors wish to acknowledge the many
valuable ideas contributed by Professor W P.
Allis in numerous discussions leading to the
solution of this problem.

"M. A. Herlin and S. C. Brown, Phys. Rev. 74, 1650
(1948).


