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On the Self-Energy of a Bound Electron*

NORMAN M. KROLL + AND WILLIS E. LAMB, JR.
Columbia University, Ena York, Rem York
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The electromagnetic shift of the energy levels of a bound electron has been calculated on the
basis of the usual formulation of relativistic quantum electrodynamics and positron theory.
The theory gives a finite result of 1052 megacycles per second for the shift 2'Sy —2'Py in hydro-
gen, in close agreement with the non-relativistic calculation by Bethe.

I. INTRODUCTION

ETHE' has recently discussed the anomalous
fine structure' in hydrogen on the basis of

non-relativistic quantum electrodynamics. His
result for the 2'S~ —2'Pg displacement was

b.W = W(2'Si) —W(2'I'i)
= (n'Ry/3m ) log(E/s), (1)

where n=e'/bc~1/137 the 6ne structure con-
stant, Ry the Rydberg energy u'mc'/2, and 8

an average excitation energy of the atom, calcu-
lated to be 17.Sly. As Bethe's calculation di-
verged logarithmically, it was necessary for him
to introduce a cut-off energy X for the light
quanta which could be emitted and reabsorbed
by the atom. On the basis of speculations as to
the improved convergence of a relativistic calcu-
lation which included positron theoretic eBects,
Bethe took X equal to mc'. This led to a value of
hW/ii=1040 megacycles per second, which was
in very good agreement with the then available
observation' of 1000 Mc/sec.

The purpose of this paper is to show that a
relativistic calculation of hW' does, in fact, give
a convergent answer, and to present the results
and some details of a calculation based on the

* Work supported by the Signal Corps.**Now National Research Fellow at The Institute for
Advanced Study.' H. A. Bethe, Phys. Rev. 72, 339 (1947). It may be of
some interest to observe that if the non-relativistic theory
is taken seriously to such an extent that retardation and
the recoil energy in the energy denominators are retained,
the dynamic self-energy diverges only logarithmmally, and
the S—I' f, level shift concierges, and, in fact, with E deter-
mined to be IC= 2mc'. The resulting shift of 1134 Mc is in
disagreement with the observations.' W. E. Lamb, Jr. and R. C. Retherford, Phys. Rev. 72,
241 (1947).

'A later tentative value reported at the April 194S
Washington Physical Society meeting was 1065+20
Mc/sec.

1927-1934 formulation of quantum electrody-
namics due to Dirac, Heisenberg, Pauli, and
Weisskopf. It will appear from this that the
formal relativistic invariance of the present
theory is to some degree illusory in that all self-

energies diverge logarithmically, so that the
difference of two energies such as W(2'Si) and
W(2'P~), although finite, is not necessarily
unique. The method we have used has a certain
simplicity in its motivation, however, and the
results are surprisingly plausible in their mathe-
matical appearance. In any case, the calculations
may serve as an illustration of the extent to
which physical results may be derived from a
divergent field theory.

The calculation is incomplete in several well

defined respects. It is only made to order n in

the coupling between the electron and the electro-
magnetic field, and to fourth order in the ratio
of the velocity of the atomic electron to the
velocity of light. It is expected that these de-
ficiencies will be made up elsewhere. We will

make no eSort to improve on the low frequency
part of the calculation as done by Bethe, for this
is essentially a non-relativistic problem.

H„. =, I dk Q Ni), hc
~

k (, (3)

II. DERIVATION OF EQUATIONS FOR
SELF-ENERGY

We start from the Hamiltonian for a system
of N electrons moving in an external static elec-
tric potential energy field V and interacting with
the radiation field. After elimination of the longi-
tudinal and scalar photons in the usual way, we
obtain the Hamiltonian

H=H, .g+H .,+II;.„
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II .,=P Lc«; p;+P,mc + V(r~) j, (4)

II;.,= —g e«; A(r,)+,' g P e /r;;. (5)
i=1 j~l

where e are the usual two-component Pauli
matrices. The vector potential of the radiation
field is expanded in plane waves normalized in

the continuous spectrum as

A(r) = —(i/2s))~dir g (Ac/k) &byte)„
X=1

Xexp(iir r)+conj. , (7)

where bj,),+, bl, ), are the creation and destruction
operators for a light quantum of wave vector k
and polarization type X=1, 2.

In position theory, because of the indefinite-
ness of the number of electrons, it is convenient
to use second quantization for the electrons as
well as for the light quanta. Then

II .&
—+~tdxQ+(x) Ic«p+pmc'+ V(x) I g(x), (8)

II(„~— dxg+(x) e«A(x) q(x)

+~I J
dxdx'g+(x)P(x)(e'/}x —x'i)

Xg+(x')g(x') =H, +He, (9)

where &+(x) and &(x) are, respectively, creation
and destruction operators for an electron. We
will expand Q(x) in terms of the eigenfunctions
u„(x) of the potential field V

g(x) = Q a.u„(x), (10)

~here the coefficients a„are operators corre-
sponding to the destruction of an electron in
state n, etc.

Ke are concerned with the self-energy of a
"single" electron bound in some stationary state
u, (r) in the potential field V. In positron theory,
this is taken to mean "self-energy of one electron

Here e is the (negative) charge on the electron;
«, p are the Dirac matrices in the form

f'0 «i (I Oq

oj &0 I)-

in state a plus the vacuum electrons" minus
"self-energy of the vacuum electrons alone. "
The highly divergent interaction of the extra
electron with the infinite charge density of the
vacuum electrons must still be removed. This
is done by the process of symmetrization4 ~

in which the calculation is also made using the
equally justified picture that all the electrons in

existence are positively charged, so that the ob-
servance of a negatively charged electron in state
a corresponds to a vacancy in the sea of negative
energy states otherwise filled with positively
charged particles. Then the results of the two
methods of calculation are averaged. Since in the
first picture there is one particle present in addi-
tion to the vacuum particles, and in the second
picture one particle fewer, the self-term i =j in

the electrostatic energy cancels out as does the
direct Coulomb interaction between the bound
electron and the vacuum electrons, insofar as the
latter are not polarized by an external electric
field. The result is an avoidance of all singulari-
ties worse than logarithmic, and these may be
plausibly discarded by renormalization of charge'
and mass.

The self-energy to order 0. consists of the
first-order Coulomb self-energy W~ and the
second-order electrodynamic self-energy H/&. The
former will split naturally into a direct or vacuum
polarization term le and a static exchange term
W'8. The static and dynamic terms W8 and TVD

were first calculated by WeisskopP in 1934 for
the case of a free electron.

To calculate 8'g we need the expectation
values of the operator

1 7 f
IIc= 'dxdx'g+(x-) g(x)

2 ~ J

X (e'/} x—x'I) 0+(x') 0(x') (& &)

=Z Z Z Z ~.p.~a.+apa, +a~,
cx P y b

where

A p„p
——— dxdx'u (x)up(x)

2~

X (e'/ }x —x'
} )u, *(x')u~(x'), (i2)

4 W. Heisenberg, Zeits. f. Physik QO, 209 {1934}.
~ V. F. Weisskopf, Zeits. f. Physik 90, 817 {1934}.
~ P. A. M. Dirac, Solvay Congress, 1933.



N. M. KROLL AND %. E. LAMB, J R.

for the states represented by the Schrodinger
functionals

C (1,0„1,), C}(0„1P), first picture, (13a)

C (Oo,)0(,)1(,)), C (0(»1(,)), second picture. (13b)

Here r denotes any positive energy state, while

a prime indicates the exclusion of the state u

occupied by the bound electron. The letters p,
0 denote any negative energy state, while the
indices e, a, P, y, and 8 are to be used for a
complete set of states of any energy whatever.
In the alternate picture, a positive energy state
of a positive particle is represented by (p) and a
negative energy state by (r), (s). The state whose
vacancy constitutes our electron is denoted by (a).

Consider the expectation value

C}o(1,0„1,) P a +a})a„+a& &),i C(1,0, 1,).
aPyb

Using the matrix elements' for the destruction
and creation operators, we obtain

Q Aarro+Q Appoo+Z Aaapp
r P P

+Z Z A-pp+Z Z Ap""'

and obtain

Q Q A(r')(r')(p')(p')+Q Z A(r')(p)(p)(r')
(~') (~') (P) (")

+Z A(r')(o)(o)(r') ~

(~')

The vacuum term is

Z Z A(r)(r)(*)(s)+Z Z A(r)(p)(p)(r)i&
(.) (s) (.) (P)

and the di6'erence

P A (a)(r)(r)(e) g A (s)(p)(p)(a) 2 Z A (e}(e)(r)(r)
(r) (p) (r)

=Z ~A(s)(n)(n)(e) 2 Q A {s)(a)(r)(r)&
(~) (&)

represents the self-energy of the electron in state
a as calculated on the basis of the positive par-
ticle picture. The wave functions u„and u(„) are
identical for physical reasons, so that we may
now drop the parentheses. Averaging the two
results, we obtain

Z ~A. -+P ~A....= Ws+Wp. (14)

The static term S'g is

Ws g ~Aanna

Subtracting the vacuum terms

Z Z A«pp+Z Z Aprrp&~

dxdx'u *(x)u„(x)

X (e'/
I
x —x'

I )u„"(x')u.(x'), (15)

the self ener y of the electron in state a on the and by use of a Fourier representation for
I

basis of the negative particle picture is

Z As~a+2 Q A~pe —g A.pp.
P P

~Aeons+2 P Asepp&

where the upper or lower sign is to be taken for
a positive or negative energy state, respectively.
The 6rst term represents an exchange term and
diverges only logarithmically. The last term is
the direct Coulomb energy of the electron in

state e interacting with the sea of negative energy
electrons and diverges quadratically. As men-
tioned above, the worst part of this divergence
is removed by the process of symmetrization. On
the basis of the alternate picture, we therefore
calculate the expectation value

Cr*(OPOe1, ) p a(e)+ao))a(~) ag)A(«)(S)(v)(p)
(a)(p)(y)(&)

C'(0(p)0(.)1("))

= (1/2~') ]tdk exp(ik (x—x'))/k' (16)

may be written as

I
dk

W. = ("/«') —P ~, dxu. '(x)

Xexp(ik x)u„(x)Jtdx'u„*(x')

Xexp( —ik x')u, (x'). (17)

The polarization term W) (a)
e'

W, (a) =g ~A,„„=—IdxIu. (x) I

dx
X " 2 ~lu. (x')I', (»)

Ix —x'I-
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may be written as gies is

W&(a) =~ dxlu. (x) I'es(x),

where the function s(x) is the potential due to a
charge density' '

dk Q [P (I (rklHgla) I'/(8, +hck E—,))
X~1 r

—2 (1(ak IH~ I p) I '/(~. +&&+&.))

p(*) =(e/2) 2 ~ lu. (x) I'
+2 2 ((alH lak)(pklH I p)/&&) j,

(20) Il'

which may be written as
induced in the vacuum by the external electro-
static 6eld. The energy t/t/'~ vanishes for a free
electron.

The second-order electrodynamic self-energy
Wp(a) of the electron in state a, according to the
electron picture, is given by the diAerence of the
energy Wp(1o0, 1,) for the electron in state a
plus the vacuum electrons and the energy
W~(0,1,) of the vacuum electrons alone. The
vacuum energy W&(0„1,) is given by second-order
perturbation theory, and involves the virtual
emission and re-absorption of a light quantum of
wave vector k and polarization type X. There are
two types of terms, represented by the following
transition schemes:

dk P [g (+l(uklHgla) I'/

(I &- I+tu:&~&.))+2 2 ((a IHi I ak)

x (pk I
Hg I p) /Ace) j.

Symmetrization aGects only the second term,
and g&ves

Wn(a) = — I dk Q Q
X~1 ss

X(+ l(uklH, la) I /(IS„I+ae~+Z.))

(p +r+k)— (p~p+k)t
(r+k~p) (~yk~e)

X (+(a I H~ I ak) (uk I Hx I u)/&e&). (21)In the case of the energy WD(1,0, 1,), there are
some additional transitions which the added
electron can mage, and some of the previously e as erm can e w~ en as

allowed transitions are prevented by the presence
of the atomic electron in state a. One has then (dk/&&) g p
the following types of transitions: a

(p~r'+kg (a~r+kp
&"+k p)' ir+k a)'

(p~p+kq (p~p+k)
4o+k~o) (a+k-+a)

dxdx'u, *(x)» e~&,u.(x)
4

Xexp(ek (x—x'))u„*(x')e eggu„(x'),

which will be zero if the polarization current' '

(a—&a+kg

E p+k~p&

j(x') =e P ~u„~(x')eu„(x') (22)

The difference of the two corresponding ener-

~ See reference 4, Eq. {40).
~ E. A. Uehling, Phys. Rev. 48, 55 (1935), %'. Pauli and

M. Rose, Phys. Rev. 49, 462 (1936), and V. F. Neisskopf,
Kgl. Danske Vid. Sels. Math. -Fys. Medd 14, No. 6 (1936).

9 R. S rb r, Phys. Rev. 48, 49 (&935).

is zero. In the absence of an external vector po-
tential, this current is in fact zero, so that the
last term in Eq. (21) will henceforth be dropped.
It~should be noted that two physically diferent
k-spaces are involved in the expressions Eq. (17)
and Eq. (21) for Ws and W~.
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III. COMPUTATION OF THE SELF-ENERGIES

VVe turn now to the evaluation of the expres-
sions W'8, 8"&, lV& for the self-energy. We shall

pay particular attention to the static and dy-
namic terms TVq and W~, as the polarization
(Uehling) term Wi is directly related to the
polarization charge density which has been com-
puted by others. '—'

In the calculations to follow, relativistic units
will be used throughout, in which k, m, and c
are taken equal to unity.

Our main interest, of course, is in the case of
an electron moving in a Coulomb field for which
V= —e'/r. The integrals like

(uk I&iIo) = —(zs/2~l ')~td». *(x)u e»

Xexp( —zk x)u, (x)

occur in the theory of the relativistic photo-
electric eeet and have been studied extensively
by Hall. "Because of their complexity, it seems
hardly likely that we could perform the neces-
sary further operations on them to evaluate such
expressions as 8"D. Even more must such a direct
attack be ruled out for the case of an electron
moving in a general potential field V(x), for
which the relativistic eigenfunctions u„(x) are
not known. The only remaining method of ap-
proach seems to be to make an expansion of
some kind. We observe that if the electron is free,
the evaluation of the sums is a comparatively
simple matter. Thus, if u, (x) is a plane wave of
momentum p, then

)"dxu„*e e exp( —zk x)u.

The sums over e can be performed, at least
formally, by making use of the completeness of
the solutions of the Dirac equation. Thus W'~

can be written in the form

Ws= (s'/4s'))l (dk/kz) Q Jt dxu, *(x)

Xexp(zk. x)(H/IHI)u. (x))t dx'u *(x')

where
Xexp( —zk x')u, (x'), (23)

H=e p+P+ V (24)

so that the problem of computing t/t/'g is reduced
to that of finding the expectation value of the
operator

(sz/4s z) JI (dk/pz)

Xexp( —zk x)(H/IHI) exp(+zk x)

is the Hamiltonian of the unperturbed electronic
motion, and IHI the absolute value of the Hamil-
tonian, by which we mean an operator having
the same eigenstates and spectrum as the Hamil-
tonian, except that its eigenvalues are taken to
be positive. It can most conveniently be com-
puted by representing it as + (H') &. The equiva-
lence of Eqs. (17) and (23'j follows from the fact
that H/I HI is +1 when operating on a positive
energy state and —1 when operating on a nega-
tive energy state. Using the completeness of the
u„(x), we now find

W's=(s'/4n') t (dk/k'))t dxu '(x)

Xexp(zk x) (H/I Hl) exp( —zk. x)u.(x), (25)

f(p, V) exp(+zk x)u, (x)
&»(~

I I p I I u)
=exp(+zk x)f(k+p, V)u (x).

one might expect that the matrix element above
would have an appreciable value only when

I
Z

I

is of the order Eq=+(1+0')z. We take ad-
vantage of this fact in the method of calcula-
tion used.

This theorem may then be used for any function
f(p, V) such as H/IHI, for which a series ex-
pansion in p and V is valid. We therefore write

(H/IHI) exp(zk. x)u, (x)
=exp(zk x)(H/IHI)i ~i,uo(x),"H. Hall, Rev. Mod. Phys. 8, 358 {1936).

is diAerent from zero only if the momentum of
the state n is g+p, and there are only four such for the state a. We first note that for any poly-

states. ln the case of a "weakly" bound electron, nomial function f(P, V)

i.e., for
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where the notation where
E» = (1+k') &

a» ——
I Hl —E»,

Dk+ =Ek +k W 1,

(31)( )i+y
(32)means that the operator p is to be replaced by

k+p everywhere it appears within the brackets.
One then has

(33)

(34)
t dk

WB=(s'/4m')I a Jf (H/I —Hl)~~ ya I. (26) It is, of course, also necessary to evaluate ~»
E. by applying the binomial expansion

2

Wg&= —(e'/4s')I a i' (dk/k) Q a.e»
X=1

where

In an entirely similar manner, one can show that ~»= IHly+' —E»=(E»2+&„)&—E»
= k&» —

a (&»'/E»)+ —'6 (&»'/E»')+ (35)

p H
&&

I
+I I (IHI+k —E.)

EIHI )

) H
+I --1

I (IHI+k+E, ) e e» a 1(2&)
LIHI ) k+y i

The evaluation of the terms TVg and S'~ thus
hinges on the expression of the operators

(1/IHI)i+y and (1/(IHI+k+E. ))i+y

in terms of operators whose expectation values
can be readily obtained.

Turning now to this task, we write

(IHI)i+y=((H')')i+y=(((e y+0+U)')')i+p
= ((1+p'+e y U+ Ue y+2P U+ V)') i+y
= (1+k'+2k y+p'+2V(e k+e p+P)

+a »V+ U')&, (28)

where ~ denotes an operator p which operates
only on the quantity immediately following it
(e.g. , e p V= Ve y+e eV).

It is clear that the ratio of (IHI)iyy to
(1+k')& approaches unity as k becomes large,
which corresponds to our previous statement
regarding the relationship between the magni-
tude of the matrix elements and the energy of
the state n. Thus we expand

(1/I HI)i+ and (1/IHI+k~E. )i+

as follows:

(1/ I
H

I )i+p = I/(E»+~»)
=1/E» ~»/E»'+~»'/E»' —. , (29)

(1/(I Hl+kwE. ))i+,
=1/(D»++6»Ww. ) =1/D»+

—(~»~w. )/(D»+)'+ (3o)

8» ——2k p+p'+2 V(e k+e.y+P)
+a e V+ V'. (36)

All expansions indicated are to be carried to
suSciently high order so as to include all terms
which are electively of the fourth or lower order
in p/c. The operator y is obviously of first order
in p/c, V is of second order because of the virial
theorem, while k, P are of zeroth order. Since
I,' =e„'=e,' = 1, e must be regarded as a zero-
order quantity until the expansion has been fully
worked out.

The expansion of the operators in the manner
indicated and the summation over the polariza-
tion direction X = i, 2 is a straightforward but
lengthy matter. This being completed, one is
left with a sum of expectation values of various
operators

IP, .ayP» y, y', Py', U' PV,
a »UXp, e eV, P» »U, e'V, Up', p'V, ~V p,
p' Pp' V' PV' Ve p, t Ua. p,
a.yp', .w=E —1=e p+P+ V—1, w', Pw,

each multiplied by a combination of some fifty
elementary integrals over k. The result of this
calculation is given in Eq. (73) below. Before
coming to it, we shall first discuss brieHy the
validity of the expansion used and the form in
which the self-energy is expressed.

Assuming for the moment that p and V can
be regarded as numbers less than unity (in
relativistic units), then the expansions of

(1/IHI)g~y and (1/(IHI+k+E ))g+y,

(if carried far enough) are valid for all values of
k, since EI, approaches unity and DI, approaches
two as k goes to zero. On the other hand, Dk+
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approaches zero in this limit, so that one should
examine the low k behavior for this case. It turns
out that that part of

order (v/c)' is just a non-relativistic two-com-
ponent Pauli-Schrodinger wave function. One
can then see, for example, that

a=I(@l
(37)

where p and ~ are two-component wave functions
satisfying

which does not approach zero as k approaches
zero is of the order (v/c)'. Therefore, in the term
involving Dq+ we shall carry our integrals down
only to some intermediate wave number k;,
which, for convenience, we take to be of order 0.&.

This term must then be given a separate treat-
ment for the low k region 0&k &k;. One would
expect that the result is independent of the pre-
cise value of k;, and this is indeed the case.

The assumption that p and V are always
numbers less than unity is, of course, not valid.
For example, in the case of the Coulomb 6eld
V(x) becomes infinite at the origin. The region
over which V is large, however, is small, so that
the contribution to the expectation value from
the region in which the expansion is invalid
should be small. Again, in the case of the Cou-
lomb field, y'u, (x) becomes large compared to
u, (x) for small x. It should be observed that in

the case of the Coulomb held this circumstance
limits the expansion to the power of v/c here
used, as the expected values of V', p', ~4U, etc. ,

diverge for 5 states of the Coulomb field. Al-

though the error introduced by this phenomenon
is believed to be small, a numerical estimate
would be desirable. We shall not, however, make
such an estimate here, as the problem is a purely
non-relativistic one.

In order to simplify the appearance and phys-
ical interpretation of our results, we have found
it convenient to make use of various relationships
between the expectation values of the Dirac
operators which are valid to the order of v/c

required. Thus one can write any solution of the
Dirac equation as

(cIy' —Pp'Ia) =2) dx((1/(1+E —V))

Xe p&.)*p'(1/(1+E—U) ) p@.

=2(~Iy'I~), (40)

since 1 —E and U are of order (v/c)', and
J'dx4, p'4o and (aIp'Ia) differ only by a quantity
of order (v/c)'. One can therefore simplify the
final result Eq. (73) by expressing all operators in
terms of certain arbitrarily chosen ones which
we have taken to be

1~A+he y sy'+4Pe—ev, .

p'~e y+-,'y'+-', Pe eV,

p ~e p+ 2Pe. e V,

PV-+V —is Vp' ——,'Pe eV,

Pe y~0,

p'V—+ Vp',

~ V.p~ —~2~2 V,

e xV~0,

& ~VXp~ge. ~v+-,'~'V,

Ve y —+Vy'+~Pe e V,

PVe. p—+ —-'Pe ~V

~ pp'~p',

Pp4~p4

P V'—+V',

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

P, e.p, V, e'U, Pe ev,
Vp' p4, and U'.

Our reduction is obtained by using the following
relations between expectation values

('y(1/(1+E- U))- p+ V+1-E)4 =0

(39)co = (1/(1+E—V))e.p@,

so that for a positive energy state co is of order
v/c with respect to p, which apart from terms of

iv=H —1-+—,'e.y+ V+sip' —~iPe v V,

Pu~, e y+ V-sy —,Vy -kPe e U,

~2~&p4+ Vp2+ V2

From these relations one finds that the

(55)

(56)

(57)

total
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contribution of the static and dynamic terms of is the induced charge density calculated by vari-
the self-energy, apart from the low k contribution ous authors. To the order required, this is found
of the term involving D~+, is to be

( t'3 t"
(We+ Wg&)' = (a/s) I

a
I

— f (dk/Es)+-,' IP
&2~, )

+~en p+xae pkg+-,'Pe mV —(za log(1/kg)
from which one 6nds

+ (e/60m ') V4 V, (63)

p(x) = (e/6s')V'Vl -', + (k'dk/E, ~)
I

r',

W~(u) = —(2e'/3~)l e+ ~ (k'dk!E")
I

In order to compute the low k contribution of
the term involving D~+, it is convenient to take
advantage of the essentially non-relativistic na-
ture of this region and to make use of the previ-
ously discussed large and small component reduc-
tion Eq. (37). One then readily finds that the
resultant expression has, to the order required,
just the form of the non-relativistic self-energy,
so that Bethe's' calculation may be used up to
the frequency k;. The contribution is

X(al V'la) —(e'/15s)(alV'Vla). (64)

The prime appearing on U' is used to indicate
that the gauge of U' has been determined by the
fact that it arises from an expression of the form

—1/4s Jfdx'7'V(x')/I x—x I.

Ke should like to point out that the expression
for p(x') can be readily and neatly calculated by
methods very similar to those used above in the
case of the static and dynamic terms in the self-
energy. To show this we first evaluate

(~N.R )k&k;.
= (n/7r) (a I

—-',P'k; —zs(logk, /8)m' VIS). (59)

Adding the two, and observing that (alp'la) is
the same as (ale pl@) to the order required, we
find for the total contribution of t/Va and lV~ p(x', x")= —(e'2) P &u„*(x')u„(x")

n

= —(e/2) 2 u-*(x') (II/
I
~

I )u-(x")

4 4

( (3
We+Wn=(a/s)I a

I

— f (dk/Eg)+ ', IP-
+(~'p/6)+4~~'~V —

I x»g-1 ( 1
= —(e/2) 2 2 2 (~/l~l)"

n Iz=l v 1

Xu„„*(x')u„„(x"), (66)

——', log2+11/72 lm'U a I, (60)
)

and we note that the result is independent of the
joining frequency k;.

As previously mentioned, the direct Coulomb
energy term can be expressed in terms of a
polarization charge as follows:

Wp(a) =e)fdxlu. (x)
I

'

Q u„„*(x')u„„(x")=b„.b(x'-x"), (67)

we obtain

p(x', x")= —(e/2) Q (H/I&I )„„8(x'—x")
P4

= —(e/2) (Sv«~/IIII)*-~(x' —x") (68)

where the u„„,p = 1, 2, 3, 4 are the components of
u„, and all operators in H/I&I are to be taken
with respect to x". Making use of the complete-
ness relation

where

dx'p(x')/
I
x x'

I (61) To evaluate this, we Fourier-analyze the delta-
function

p(x') = (e/2) 2 ~
I
u-(x') I

' (62) 8(x' —x")= (1/8s') fdk exp(ik (x"—x')), (69)
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TABLE I.

Quantity

vV
~Pe gV

2g$1/g

State
2&P&p

0
1/tl

2gPagg

0—1/12

&((SpurH'/)H~) exp(ik x"),

= (1/8s') dlt exp(At (x"—x'))

&&(Sp«a/~a[)&+, .1(x"), (70)

where we have made use of the fact that m = —iV.
We observe first of all that the worst divergence
is logarithmic, and that the expression is in-
variant to the gauge of V.

We next see that the diAerence of the self-
energies of the states 2'S~ and 2'2'~ of the hydro-
gen atom does converge, since the expectation
values of P, V', (and, therefore, e p) are, respec-
tively, equal for the two states. (These state-
ments follow from the observation that neither
a small change of charge nor mass of the electron
will remove the degeneracy. ) In order to calcu-
late the numerical difference of W(a) for the two
states, we need the values of the expectation
values of the remaining operators in Eq. (73).
These are given in Table I" in units of z Ey.
The energy difkrence is then

when 1(x") is a constant equal to one. Since

p(x') =p(x'. x')

we obtain, finally,

p(x') = —(e/16m')

which, using Bethe's revised values" for the con-
stants L(tt'Ry/3ir) = 135.580 Mc/sec. , log(1/e)
= 7.7169—0.0293j, gives 6W= 1052 Mc/sec. ,
and thus differs from the original guess by only
a small amount. It should be admitted, ho~ever,
that one cannot regard this energy difference as
uniquely determined, since one is taking the
difference of two infinite quantities.

Kith respect to the determination of the abso-
lute value of the self-energy for a state, it is
convenient to attempt a physical interpretation
of the terms involved. In this context, it should
be observed that even if the coefficients of the V'

and P-terms were finite, the effect of these terms
would be unobservable. This follows from the
fact that they would manifest themselves as a

X~ dl (Sp«II/l~l)~+, 1(x'). (»)

The expression can now be readily reduced to the
form Eq. (63) by expanding

(Spur&/ ( H~ )i+s

in the manner used for the evaluation of the

static and dynamic terms.

IV. INTERPRETATION OF RESULTS

The total expression for the self-energy is

~W= ( entry/3 )hslog(1 /)e—log2

(71)
+ (23/24) —

~s j, (74)

~ (k'dk/Zs')+-, '
(
V'

+(e.y/6) —(i/4)Pe v V

+~ gi log(1/e) ——,
' log2

+(»/72)-(1/») l~'« i, (73)) )'

"It should be mentioned here that the expected value
of V'V really diverges for the S states of the Coulomb field,
since it then is equal to the square of the absolute value of
the wave function at the origin. Since, however, our evalua-
tion is being carried only to order (e/c)4, one should be able
to use the spatial dependence of the Schrodinger wave
functions for the evaluation of operators which are them-
selves of fourth order. Thus, where Dirac wave functions
are used, the divergent part is of higher order in v/c, and
its neglect is consistent with the neglect of such divergent
expressions as the expected value of p'. If one rounds o8
the Coulomb potential at a radius considerably smaller
than the classical electron radius, the contribution of the
divergent part of (S[V'V[5) is still quite negligible. (if the
charge is assumed to be evenly distributed over a sphere
of radius a, then the ratio of the expected value of V' V for a
Dirac S state to that for a Schrodinger S state is of the
order c ' 1—a']oga. }

'~ H. A. Bethe, Pocono Conference, 1948.
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modification in the real charge and mass of the
electron, and thus be included in the observed
charge and mass. We shall assume that these
terms have been so included in the observed
charge and mass and drop them from the self-

energy expression. The term in gapa V V is just
of the form of the interaction of a Pauli-type
intrinsic magnetic moment with a static poten-
tial V and can thus be interpreted as implying
an additional electronic magnetic moment of
a/2s-Bohr magentons, while the term V'V im-

plies a correction to the external potential, or,
more specifically, an additional short-range inter-
action between the electron and a point charge.
The term in e p is not subject to a direct physical
interpretation, and, in fact, must be regarded as
having no physical significance. Thus if one ap-
plies the self-energy expression (73) (with the
p- and V' terms omitted as explained above) to
a free electron of momentum p, only the term
in e p contributes, yielding for the self-energy

(a/on) [p'/(1+p') &]. Now if the electron is to be
regarded as a particle, the relativistic connection
between the momentum and energy of a particle
must be retained, so that the self-energy should
have the momentum dependence appropriate
to a mass correction, that is" ~1/(1+p') &

corresponding to the term in p already sub-
tracted. The presence of the non-covariant term
(a/am) Lp'/(1+p')&], which is reminiscent of the
stress terms in the classical self-energy, can be
traced to the fact that the total self-energy is
infinite, and can be avoided in the case of the
free electron by paying proper attention to the
domains of integration in the various k-spaces. "
That is, in order to keep the total self-energy
finite it is necessary to integrate over a finite
region of the light quantum space and the elec-
tron momentum space. If one integrates over a
region which would be spherical for an electron
at rest, a covariant result is obtained. One can-
not, however, apply this prescription to a bound
electron, so that some other means of modifying

» The energy of a particle of mass m and momentum p
is (eP+y~)&. If m is modified by a quantity &n, then the
energy to first order in bm is

(m'1 y') &+8m/(nP+p')&,

and the correction term with en=1, as is appropriate for
the electron, is of the form given.

14A. Pais, Verh. d. K. Ned. Akad. v. Wet, Section j.,
19, No. 1 (1947).

our self-energy expression must be found to give
a covariant expression for the free electron. Ke
proceed by subtracting some free electron oper-
ator from the operators contained in our self-

energy expression such that the self-energy of a
free electron is zero, thereby regarding the total
self-energy as contained in the observed mass.

Such a procedure is, of course, not unique: we
shall make the simplest subtraction, examine the
resultant expression, and then investigate the
nature of the lack of uniqueness. Thus if one
simply drops the (n/ow)a p term from the self-

energy, one obtains

These contribute 68 and 984 Mc/sec. , respec-
tively, to the level shift.

In accordance with our subtraction prescrip-
tion we could, however, add any linear combina-
tion of free electron operators of order up to
(s/c)' whose expectation value is zero for the free
electron. There are seven such operators, "vis. ,
1, P, p', Pp', n p, p', Pp'. The condition that a
linear combination gives zero to order constitutes
three constraints, so that there should be four
linearly independent combinations giving zero
for the free electron. A possible choice for these
is the following:

Q. = 1—P ——',p' —e.p+Pp'+ fp',

Q =p' —Pp'--'p'

Q —p4 Pp4

Q~ ——e.y —Py'.

(76a)

(76b)

(76c)

(76d)

The expectation values of the above combina-
tions are all zero for the free electron. Their
eGect upon the self-energy of a bound electron
depends upon their expectation values for a

'~ Operators of odd order in e/c have been ignored, as
these are all zero for the bound electron.

W(u) = (a/s) (a
~

—~Pe V V/4+
~

~3 log(1/2t')

)+(»/72) —(1/») IV V~o). (75)

This expression can be interpreted as arising
from an increase in the magnetic moment of the
electron of a/2~-Bohr magnetons and an addi-
tional interaction potential given by

6 Veff —~', log(1/2s) + (11/72) —(1/15)
~
P V (76)
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bound electron. Those for Q„Q„and 0, are zero,
so that their subtraction would have no physical
consequences. On the other hand,

which is precisely the form of interaction of a
magnetic moment with a static potential V.
Thus, the lack of uniqueness of the subtraction
prescription is just such as to make the magnetic
moment correction indeterminate, while the cor-
rection to the potential is left uniquely deter-
mined. Now a purely magnetic measurement of
the correction to the magnetic moment of the

electron has been made by Kusch and Foley, '

who obtain a value in good agreement with the
value nj2s-Bohr magnetons theoretically com-
puted by Schwinger. " If we adopt this experi-
mental and theoretical result, the 2'Sy —2'2

y

separation becomes uniquely determined to be
just the value 1052 Mc/sec. obtained above by a
direct subtraction (74) of the self-energies for
the two states.

''l P. Kusch and H. M. Foley, Phys. Rev. 74, 250 (1948),
also J.E.Nafe and E. B.Nelson, Phys. Rev. /3, 718 (1948)."J.Schwinger, Phys. Rev. "l3, 416 (1948) and Pocono
Conference, 1948.
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Although the nuclear magnetic resonance condition generally depends only on the gyro-
magnetic ratio of the resonating nuclei, the width and amplitude of the resonance depend criti-
cally on the substance containing the resonating nuclei. A basic factor affecting the line width

is the characteristic flipping time for the substance, i.e., the average time it takes a molecule

to change its orientation appreciably. This fact has been applied in a study of a group of
molecular solids which exhibit two or more phases in order to investigate the mechanisms of
these transitions. Of the two mechanisms proposed, rotational and order-disorder, the former

was eliminated in favor of the latter for HC1, HBr, HI, H~S, and H2Se, while free molecular

rotation is shown to be plausible in CH4 and CHID.

I. INTRODUCTION

'HE 6rst successful detection of radiofre-

quency transitions between Zeeman levels

of nuclei in liquids and solids was announced by
Purcell, Torrey, and Pound' and by Bloch,
Hansen, and Packard' in 1946. It became ap-
parent early in these investigations that the
characteristics of a nuclear magnetic resonance
depend directly on the material in which the

*This research was supported in part by the Signal
Corps, the Air Materiel Command, and the Once of Naval
Research. The report given here is a condensation of a
thesis submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy at the Massachu-
setts Institute of Technology, 1948.

**Now at Rutgers University, New Brunswick, New
Jersey.'E. M. Purcell, H. C. Torrey, and R. V. Pound, Phys.
Rev. 69, 37 {1946).

~ F. Bloch, W. W. Hansen, and M. Packard, Phys. Rev.
69, 127 {1946).F. Bloch, W, g7. Hansen, and M. Packard,
Phys, Rev. Fo, 474 (1946).

resonating nuclei reside. This, coupled with the
fact that the ratio of resonant frequency to mag-
netic 6eld is a linear function of the nuclear
g-factor, indicated three lines of research:

(a) The accurate measurement of nuclear
g-factors. '

(b) An investigation of the interactions which
aR'ect the resonance characteristics, i.e. , nuclear
relaxation processes. '

(c) Study of internal properties of solids and
liquids by means of nuclear magnetic resonance
phenomena. '—' It is one phase of the last of these

'F. Bitter, N. L. Alpert, D. E. Nagle, and H. L. Poss,
Phys. Rev. I2, 1271 (1947).

4 N. Bloembergen, E. M. Purcell, and R. V. Pound,
Phys. Rev. "l3, 679 (1948), hereafter to be referred to as
B.P.P.'F. Bitter, N. L. Alpert, H. L. Poss, C. G. Lehr, and
S. T. Lin, Phys. Rev. Il, 738 (1947).' B. V. Rollin, Nature 158, 669 (1946).

~ B. V. Rollin and J. Hatton, Nature j59, 201 (1947).


