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Stars in Photographic Emulsions Initiated by Deuterons.
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The theory of high energy nuclear stars depends on a theory of nuclear transparency and on a
theory of nuclear evaporation. The transparency can be computed on the basis of a model
proposed by R. Serber as soon as the interactions between the nucleons and the incident particle
are known. The evaporation can be computed on the basis of the statistical model of the nucleus
as soon as the nuclear entropy and binding energies of the evaporated particles are known.
%'ith approximate values for the above interactions, entropies, and binding energies, a proba-
bility distribution has been computed for the number of prongs per star. The results are in
qualitative agreement with the observations on photographic emulsions described in Part I.

I. INTRODUCTION

" 'T is of interest to see how far current ideas on
- ~ nuclear mechanics lead toward an interpreta-
tion of nuclear stars. If the kinetic energy of the
incident heavy particle is of the order of 100
Mev, then resonance phenomena and leakage
through the nuclear potential barrier should be
small effects. In such a case, particles may be
ejected from the struck nucleus by at least two
processes —direct recoil and evaporation. If a
struck nucleon receives so much energy from the
incident particle that it leaves the nucleus in a
time short compared to a nuclear period ( 10 '-'

sec.), then we have a recoil prong or recoil star.
If, on the other hand, the energy of the incident
particle is evenly distributed throughout the
nucleus by many collisions of the nucleons
among one another, and if particles are ejected
only after many nuclear periods, then we have
an evaporation star. Cosmic-ray stars appear to
be of both these types. '

The formation of an evaporation star depends
on nuclear evaporation proper, and also on
nuclear transparency, which concerns the proba-
bilit:y that an incident particle pass through a
nucleus with the loss of only some fraction of its
energy. Each of these parts of the theory depends
on an elementary probability: transparency on
the probability Y(E, e) per cm path distance per
Mev of energy loss that an incident particle with
kinetic energy E collides with a nucleon, losing

' W. Heisenberg, Cosmic Radiation (Dover Publications,
New York), p. 131.

kinetic energy ~; evaporation on the probability
W(X, $) per second per Mev energy loss that a
nucleus with excitation energy X evaporate
some particle or other, losing excitation g.

II. THE ELEMENTARY PROBABILITIES

Unless Eo„ the incident energy, is large com-
pared to the average energy loss per collision of
the incident particle ( 25 Mev), the incident
particle will almost certainly be unable to pene-
trate through the nucleus, and there will be
almost zero transparency. But if Eo is many
times this critical value, things may be more
complex. To get an idea of what happens, assume
the stopping power of the nucleus to be like that
of a Fermi gas of protons and neutrons, so that
when a particle strikes it the resulting action
may be analyzed into a series of rl, n, n p, a—nd-
p p colhslons.

We represent the interaction between the in-
cident proton or neutron and an average particle
of the nucleus byg'e '~/r A ~aluea '=1.19 10"
cm ' is used. ' A value of g' is used corresponding
to an average total cross section of 0.058 barn;
since total cross sections for n —n and n —p
scattering have been measured with the results
0.034 and 0.083 barn at 90 Mev incident energy. 4

This yields g'/Ac=0. 26. The use of the above
average of the p —n and n —n cross sections is a

'For the physical model here involved see R, Serber,
Phys. Rev. 72, 115 (1947).'L. E. Hoisington, S. S. Share, and G. Breit, Phys.
Rev. 55, 884 (1939).' Cook, McMillan, Peterson, and Sewell, Phys. Rev. 72,
1264 {1947).
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reasonable a,pproximation whether the p —n in-

teraction is of the ordinary or exchange type. It
is a better approximation for an interaction of
exchange type.

The Born approximation with the above inter-
action gives for the difkrential scattering cross
section

after collision of the two particles, in their
center of mass system. By definition

a'= «(P —p)', (4)

& = —i+ i(P —p).

Conservation of energy and momentum require
that

0'(+o, p)dp =iraqi«fi g pdpl+«(l+fi p')' (&) and the condition that the energy transfer be « is

where p is the momentum transfer, and Eo is the
energy of the incident particle in the reference
system in which the struck particle is at rest,
and fi=a/A. This result should be modified when

applied to collisions within the nucleus, since
then the struck particle is not at rest, and the
exclusion principle limits possible momentum
transfers. This modified cross section r(E, «), is
obtained by averaging (1) over a portion of the
Fermi momentum sphere, whose radius we call po.
That is

Lil+2'(P+p) j"-=I'"=P'—2m«.

To get the cross section 0.(P, p, «)d« for energy
loss in range de, for given P and y, requires an
integration around the azimuth y', whose axis
is the line of centers of the two spheres (4) and

(5) in q space. The direction of this axis is that
of p+P. From (4) and (5)

i'= 2(P —p)'L& —c»(il, P —p) j.
AVe write

r(E, «)d«=d« t 0(P, p, «)dp —s p«'. (2)
3

8'= 4(a, P+p), 8"(P —p, P+p)
cos(q, P—p) =cos8' cos8"+sin8' sin8" cosy'.

Here p and p' are the original and final momenta
of the struck nucleon, I' and I"the corresponding
momenta of the incident particle, E and e the
incident energy and energy transfer, all in the
laboratory system. It is convenient to intro-
duce q, the momentum of the incident particle,

cosH' =
P' —p' —4m«4md«

sih8'd 8' =
IP —p I I P+p I IP —p I IP+p I

In contrast to the more familiar case in which
p=0, p here involves the azimuth. Expanding
(5) according to the law of cosines gives

FIG. 1. Di8'erential cross
section r for energy transfer
in a collision between an in-
cident particle of energy j.00
Mev and a nucleon.

Dotted curve: struck particle
free and at rest.

Solid curve: struck particle
within a nucleus.
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FIG. 2. I'(f )df is the proba-
bility that an incident nu-
cleon with energy E0 just
after entering a nucleus of
the heavy component, wi11
have lost a fraction f of its
energy in range df, just before
completing its path through
the nucleus.

Applying the law of cosines to the identity
2p = (P+p) —(P —p) gives

p' —p'
cos8" =

IP —p I IP+p I

Substituting in (1) and performing the elemen-

tary azimuthal integration yields

0 (P, p, e) = 2n m'b4g'(A+BC)
X (A+28C+8'L4mel') —I

A =(P—p)'(P+p)', ~= l~'(P —p)'
C =A+ (p' —&'+4m') (&'—p') (6)

We now substitute from (6) in (2), after ex-
panding 0 as a power series in p/P, less than one
in the experiments here of interest. The integra-
tion of (2) is to be done over the spherical shell

p &p„p') p, . This last inequality may be writ ten

p"—p-' = 2m& )p(p —p'

P) (Po' —2m') &.

' V. M/eisskopf, Phys. Rev. 52, 296 (1937).

If 2m~&po', then the region of integration is
instead p(pp, p)0. The angular integrals of
terms in odd powers of p/P a,re 0. Keeping the
first three non-vanishing terms in the expansion
of ~ yields the result shown in Fig. 1. The
elementary probability Y(E, c) is simply r times
d, the numerical density of nucleons within the
nucleus.

The elementary probability for evaporation
has been treated by Weisskopf. ' His Eq. (3) may

be put

W(X, $)dg=y($ —U Eb)—
Xexp(5s(X —t) —$~(X))d(,

y = rr jm/s' Il',

where S~ and S~ are the entropies of the nucleus
before and after the evaporation of a particle
with binding energy Eb, kinetic energy $ E~, —
potential barrier V, mass m, and statistical
weight j; and where 00 is the geometrical cross
section of the nucleus. On the basis of an approxi-
mate nuclear model we may write

FA
g(X)

( [
X&, X in Mev,

i 2.2)

III. NUCLEAR TRANSPARENCY~

In the experiments of Part I, the elements of
the photographic emulsion fall principally into
two groups: a heavy component composed of
silver and bromine, with an average mass number
of 95, and a light component composed prin-
cipally of carbon and oxygen. Since the hydrogen
of the emulsion has too simple a structure to
give rise to starts of the kinds observed, it is
counted in neither component. By use of the
chemical analysis listed in Part I, and values
for the geometrical cross sections of the nuclei
involved, we deduce that the relative proba-
bilities that a fast incident particle hit a nucleus
of the heavy component, of carbon, or of oxygen

* The problem of nuclear transparency has been treated,
using a different method, by M. L. Goldberger, Phys. Rev.
74, 1269 (1948).
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are 0.76, 0.13 and 0.11. A calculation will be
made for the stars from the heavy component,
which are predominately evaporation stars. Some
remarks will then be made about stars from the
lighter elements.

As an approximation, let us ignore the scatter-
ing of the incident particle, but take account of
its energy loss by the quantity r(E, e) which

expresses the probability per cm path distance
per Mev energy loss, that the incident particle,
with energy Z, lose energy e. Let P(x, E) be the
probability, after the incident particle has pene-
trated a distance x into the nucleus that it
possess a kinetic energy less than K If, at x =x~,
the energy 8 of the incident particle were known
to be Z&, then the increment of I' would satisfy

I bP(x, 2)] =*)——Ax r(Z„e)de.
Jg~ g

Since, however, the quantity 8 follows a proba-
bility distribution, we have in general

BP(x, Z)

This equation has been solved numerically, with
v as given in Fig. 1, and Eo = 1.00 Mev. The result
is shown by the dotted curve in Fig. 2. To make
possible an analytic so1ution we replace r by v',

where

Ae-"
r(Z', e)de=By'/y

The two functions ~ and ~' are equivalent in a
semi-quantitative way except for e(i0 Mev, if
we put b= 0.021 (Mev) —' and 8 =3.6 10 2 cm
In view of the uncertainties in the Fermi model
of the nucleus, we may regard v' as a reasonable
representation of the scattering cross section.

The advantage of the function v' is that it
yields a kernel for the integral equation which is
a function of 8 only times a function of E' only.
The Laplace transform of (8) is

p~' BP—P(0, y)+XP= dy'8
aJ y

P = e "'Pdx-
0

The boundary condition at x = 0 is P(0, y)
= st(yo —y), where st (x) is a step function defined

by st(x) =0, 1 according as x&0 or x)0. Here

yo=y(ZO) where Zo is the energy of the incident
particle within the nucleus and at the start of
its nuclear traverse. Multiplying (9) by y and

differentiating to y yields

F)G. 3. P(X)dX is proba-
bility of a nuclear excitation
X, in range dX, when a nu-
cleus of the heavy component
is hit by a deuteron of energy
200 Mev.

.002

8 = .057
0
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FIG. 4. P(X, g)dg is pro-
portional to the probability
that a proton, evaporated
from a heavy component nu-
cleus of excitation X, reduces
this excitation by an amount
$ in range d$.

lO 25 MFV

A. solution of the homogeneous equation corre- impact parameter, then
sponding to (10) is

xo ——2(R' —r') &, 4rdr = —xodxo.
P~ —y(—/+ )

A solution of the inhomogeneous equation is

y&yo',
X

(] 1 ) t ) (x()+8)

II
—

I

EI( X+B) (y)

The desired average is then

1 1 t 2R e'"" 1q
P(Z, R) = —

I

e's" — +—
IsR' 4i ) X X' I(')

B )y i (xfx+B)

x
I((I(+B) ( y)

(p(+p2+ pa)/~R—'.
The general solution is P =P2+ CP~. In (9) put
y=yo+ and substitute for P. The result 1s To evaluate the integral p1, put X = —B+t. Then

1 y o, ().+s)
+cI

X+B ~yo+)

2RB yo exp(2Rt —Bt ' log(yo/y))dt
g
—2RB

4i y t(t —B)'

from which C=O. The solution satisfying bound- Put t = (a/2R)~r and a =8 log(y/yo), greater
ary conditions, for y&yo is thus than 0 in the range of y of interest, and get

(yo) (Xjl+B)

X(X+B) &y ) Pl
4i

2RB (yo) exp((2aR) &(r+ r '))dr-
e—2RB

) y) ma/2R)&r Bj'—
The inversion theorem for the Laplace transform If ( /2aR)&&B, then expand the denominator in
yields a binominal series, obtaining

~ y+ jao

p—
2ÃZ y

—too

t y ) (XiX+8)
e"'

I

—
I

dI(.
XP+B) (y) 2RB (yo) exp((2aR) l(r+ r '))dr

g
—2RB

4i B2

2.3I1( ay~ '1
+ —

I I
-+

1 2I B (2RI

The contour may be deformed into two infini-
tesimal circuits, one around the pole at X =0, the 1 1paq&
other around the essential singularity at X = —B.
The contribution from the pole is simply 1.

To get information on nuclear excitation, we
need to evaluate I' at x=xo, the thickness of
the nucleus, and then average over impact
parameters. If E. is the nuclear radius and r the Each term in this series involves a modified
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Bessel function, according to the standard for-
mula

/s
exp~ (r+r—') ~d~

LZ

The series, which converges with moderate rapid-
ity if (a/ZR)&&8 may now be used to get the
numerical value of pi. If (a/ZR) ~)8, the similar
series obtained by using the alternate binominal
expansion of the denominator is used. The
evaluation of p2 is similar to that of pi. Evalu-
ating p3 involves only elementary functions.

Let (P(f)df be the probability that the incident
particle lose a fraction f of its incident energy Eo
in range df, during a nuclear traverse. Then

8
6'(f) =ED — P(Ep E, R). —

BBII

ln Fig. 2, (P(f) is plotted for mass number 95,
and for incident energies of 100 and 50 Mev.
%'hen the kinetic energy of the incident particle
becomes about Kg =22 Mev, the depth of the
Fermi potential well, it can then no longer
emerge from the nucleus. Thus the continuous
curve P(f) should be corrected by making it 0
from f= (ED Ei)/Eo to f=—1; and by adding to
it a 8-function at f=1, with a coefficient equal
to the area under 6'(f) between f= (Eo Ei)/Eo-
and f=1.

To get the corresponding result for deuteron
bombardment, we introduce r =1.7.10 "cm, the

average of the projected distance between the
two deuteron particles on a plane perpendicular
to the incident beam. This value is easily com-
puted with an approximate deuteron wave func-
tion of form e '/r. If we assume the two deuteron
particles always have this average projected
spacing, then when one of these particles hits the
nucleus, the other must do so also, unless the
6rst hits the nucleus within a projected distance r
of the edge. On the average, when one of the
particles hits the nucleus with impact parameter
such that the second has a non-zero chance of not
hitting, the first will hit at distance r/2 from
the edge; then the chance of the second not
hitting will be ~3, if r(R, R the nuclear radius.
The probability of one particle hitting the
nucleus and the other not hitting is thus

2 R' —(R —r)'

3 R2

which for a nucleus of the heavy component is
0.30. Let Pi(EO, a) be the distribution function
for energy transfer e when only one particle of
the deuteron hits the nucleus, Bo being the
incident energy of such a particle. If P2(E0, e) is
the corresponding function when both particles
of the deuteron hit, then

pC

P2(EO, 0) = Pl(EO 61)P1(EO, t 61)861

And then the corresponding distribution, given
simply that a deuteron collides with the nucleus,
will be P~=0.3P&+0.7P2. A plot of Pq is given

I.O

F)6. 5. I'~(X} is proba-
bility that an ion evaporated
from a nucleus of the heavy
component be a proton, when
the nucleus is at excitation X.

'0 I

too 200 MEY
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.2-

Fro. 6. The ordinate is the probability that a nuclear
star contain X prongs formed by the paths of charged
particles. The crosses give the prong distribution in the
photographic emulsion as observed in the experiments of
Part I. The triangles give the distribution observed in
cloud chamber Filled with air and alcohol vapor, with a
neutron beam of 95 Mev. The circles give the theoretical
distribution for stars from the heavy component of the
emulsion produced by a deuteron hearn of 200 Mev.

in Fig. 3. The rather striking discontinuity in

this curve arises from the strongly discontinuous
mass distribution within the deuteron.

IV. NUCLEAR EVAPORATION

To apply formula (7) to the heavy component
of the photographic emulsion (A =95), binding
energies for the neutron proton. alpha particle
and deuteron are needed. According to the
Weizsacker formula, ' they are

E„=8.0, E„=8.0, E =4.0, By=13.3 Mev.

The Coulomb barrier for the proton and deuteron
is taken to be V=6.2, for the alpha particle 2 V.
The least change in the excitation energy X of
a nucleus when it evaporates a particle is, in
the approximation for large X, the sum of the
binding energy and Coulomb energy for that
particle, or the "threshold energy" for the par-
ticle. This threshold energy for a given type of
evaporated particle varies when the parent
nucleus, as a result of evaporation, travels down
the Heisenberg valley. It is reasonable to suppose
that the excited nucleus will usually not wander
more than about three steps from the bottom of
the valley, in which case these variations in the
thresholds will be a secondary, though perhaps
not entirely negligible eA'ect, at least for a heavy
nucleus. In what follows, these variations will be

' H. A. Bethe, Rev. Mod. Phys. 8, 165 «,
'1936).

Or, putting

Q= t g(X)dXJ,
BP(v+1, Q)

=P(v+1 Q) —P(v Q) (11)

The use of a continuous function q(X), to de-
scribe evaporation is justified only if the excita-
tion is many times the threshold energy for
evaporation of a particle. This condition is quite
well satisfied when the excitation is of the order
of 200 Mev. We write

(1/a(x)) =8*+(p-Ip*)r- (12)

where $, is the average drop in excitation per
evaporated ion, at excitation X, $„ the average
drop per evaporated neutron; p„and p; are the
relative probabilities for neutron and ion evapo-
ration at excitation X. The quantities on the
right of (12) are easily calculated from (7).

To solve (11),we note that P(0, Q) = 1. Hence

e—oP(1, Q) =e—o+Cg.

The constant of integration C& is 6xed by re-

~ E. Gardner and V. Peterson, Phys. Rev. 7'5, 364 (1949).

neglected. The formula (7) yields a finite proba-
bility for the evaporation of particles even
heavier than the alpha particle. But even for
200 Mev excitation of the heavy component,
these probabilities are small and will be neg-
lected.

Gardner and Peterson' have observed stars
with two, three, and more visible prongs, each
prong consisting of the track of an evaporated
ion; they have measured the relative frequencies
of these types of stars. To compute these fre-
quencies, we introduce a function P(v, X), the
probability that the excited nucleus will have
emitted v or more prongs when, as a result of
evaporation, its excitation has fallen to a value I
from an original value Xo&X. Let g(X) be the
probability per unit drop in excitation that the
nucleus emit an ion. Then I' will satisfy the
equation

BP(v+1, X)= [P(v+1, X) P(v, X)f—g(X).
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quiring that P(1, X) =0 when X=X&—=Xo—T v and t= ~. Write
where T~ is the least of the ion thresholds, and
Xo the original excitation. That is C~= —e o',

Q&
—=Q(X&). Si~ila~ly

e sP(2, Q) =e & —CaQ+C2,

C~= —e o'+CiQ2,

Q2 =Q(XO —2 Tv)

e oP(3, Q)=e ~+Ci——GQ+C3,
2

Q
2

Cg= —e &' —Ci +C2Qs,
2

Q, = Q(X,—32;).

The probability of evaporating just v prongs is

p„=P(v, Qr) P(v+1, —Qr), Qr ——Q(Tv). (13)

The mean prong number v=Zvp„ turns out to
be 4.0 at X=200 Mev.

A more accurate method of finding r involves
the use of the function P(t, X), which is the
probability at time t, after the nucleus is struck,
that it have excitation X or less. Let

p" Bp(t, X)—p(0, X)+X@(X,X) = ' e "—'dt. —
6 p

dE(t) Xp X'

p(~, X')dx' I'
W, (X', p)dp

~J p

where W, (X&$) = W„+W +Wd. Then

Then to solve the resulting equation numerically
break the interval from 0 to Xo into a number of
equal parts (0, X„), (X„,X~ &)

. (Xz, Xo); and
take p(X, X) as an unknown constant in each
such sub-interval except (X~, Xo), in which take
p()I„X)=1. Then the integral equation breaks
up into n algebraic equations which are easy to
solve successively, since only those values of the
kernel W(X', X' —X) enter into the equation for
which X'&X.The principal labor is in tabulating
the function W(X', X' —X). The method yields

p(X, X) as a histogram in X.
If X(t) is the expected number of ions evapo-

rated between the instant the nucleus is hit and
time t

W(X, $) = W.+ Wv+ W.+ Wg

be the sum of the function (7) for the four types
of evaporated particles. Then

aP(~, X) ~xo aP(t, X')
dX'

Bt & x 8X' "x -x
W(X', p)dp.

~p(~ X)

0

X'p

+)t p(t, X')dX'W(X', X' —X),

8
p(t, X) = P(&, X). (14)

BX

Multiply (14) by e-"~ and integrate between t =0

The complicated form of the kernel makes diffi-
cult an analytic solution. Differentiating this
equation yields

xS(x) = p(X, X')dX'
J0

W, (X', $)d&

When Xo ——200 Mev and the interval (0, X0) is
broken into 30 parts, the numerical method just
described yields

s =4.4.

The distribution (13) thus yielded a mean prong
number about 10 percent too small. The distribu-
tion will hence be improved by multiplying by
a scale factor and renormalizing so as to get a
mean 4.4.

To get a result to compare with experiment,
the distribution (13) must now be evaluated for
X0=150, 100 and 50 Mev as well as 200 Mev.
The results for various Xos are then weighted
according to the graph of Fig. 3.

which yields XÃ(X) as the result of a quadrature.
But

r =lim XX',).
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We may crudely represent the insensitivity of
the emulsion to high energy protons by assuming
that it detects all protons with energies below
15 Mev, but none with energies above this value.
To subtract fIom the computed prong number
distribution the effect of unobserved protons,
the energy distribution of the evaporated protons
is needed, shown for a special case in Fig. 4.
For this is needed also the proportion of all
evaporated ions which are protons, shown in

Fig. 5, After a correction for this emulsion in-
sensitivity to protons, the calculated prong num-
ber distribution for the heavy component, at
190 Mev bombarding energy, becomes as shown

by the circles in Fig. 6.
It is doubtful whether a simple statistical

theory can be applied to the evaporation of
ions from a highly excited nucleus as light as
carbon or oxygen. Fortunately, information on
this process has been obtained by cloud-chamber
measurements. Of 499 stars produced by the
90 Mev neutron beam in a chamber filled with
water vapor and alcohol, the numbers with
2, 3, ~ ~ prongs mere as follows:

2 prongs
3 prongs
4 prongs
5 prongs
6 prongs

267 stars
159 stars
46 stars
25 stars

2 stars

~ Cloud-Chamber Group, Radiation Laboratory, Uni-
versity of California private communication.

Of 106 two pronged stars, observed in detail in
the chamber, 66 percent were observed to
possess at least one prong mith an energy in

excess of 15 Mev. Multiplying the entry 267 by 3

yields a corrected prong distribution for the
cloud chamber stars as shown by the circles in

Fig. 6.
As the deuteron bombarding energy varies

from 35 to 190 Mev, the prong distribution in
the photographic emulsion remains the same,
within the limit of experimental error. The mean
of the theoretical distribution, for the heavy
component, varies from about 1.1 at 35 Mev
bombarding energy to 3.3 at 190 Mev. Since at
35 Mev a struck nucleus of the heavy component
is almost sure to evaporate neutrons only; the

cross section for production of a visible star from
a nucleus of the heavy component varies from
about 0.10'p at 35 Mev to over 0.9a p at 190 Mev,
where rp is the geometrical cross section. Due to
the ease with which carbon and oxygen nuclei
may break up into alpha-particles, the cross
section for visible star production from these
lighter nuclei may be expected, in contrast, to
change very slowly with bombarding energy.

The stars observed by Gardner and Peterson
must then arise almost entirely from the lighter
component of the emulsion at the lower bom-
barding energies, and predominantly from the
heavy component at the higher energies. If we
make the plausible assumption that the prong
number distribution for the light component is
almost unchanging throughout the range of bom-
barding energies used, then the observed and
calculated distributions are in good qualitative
agreement.

V. ANGULAR DISTRIBUTION

The angular distribution of star prongs ob-
served in Part I is predominantly in the forward
direction. We may assume that particles evapo-
rated from a nucleus emerge with an angular
distribution spherically symmetric with respect
to the nucleus. But the nucleus itself' may be
moving. In the case of the heavy component,
the mean recoil velocity of the center of the
excited nucleus, just after it is struck, will be
small compared to the mean velocity of the
evaporated ions. But in the case of the light
component, it will be of the same order or exceed
the mean velocity of the ions evaporated from it.
The observed asymmetry is of the order to be
expected on the assumption that it is due pri-
marily to this recoil of the lighter nuclei.
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