CONDENSATION OF PURE He?

and which asymptotically equals cos(kr+19). Let
V(r) and U(r) be two potentials, 7 and ¢ the
corresponding phase shifts, and vy, v, and %, #,
the associated wave functions. Set Yi(r) =u.,
and Zi(r) =uws+usw1. Hylleraas asserts the gen-
eral validity of the equation

V({r)—U(r)
— (4/)(d/dr) f sin(n—£)Zu(rdk. (1)

[The foregoing equation differs from Hylleraas’
(cf. (H 13)) in two minor points. (a) In order to
avoid the appearance of divergent integrals we
have interchanged differentiation with respect to
r and integration with respect to k. (b) The signs
of V and U are inverted, because Hylleraas’
corresponds to our — V in the Schrodinger equa-
tion (cf. his Eq. (3)).] One would infer from (15)
that p=¢ implies V(r) = U(r), whereas we have
seen above that V(r) is not uniquely deter-
mined by 7.

Hylleraas bases his proof on the assumption
that his equations (H 14) and (H 15) are equiva-
lent, and that it is therefore sufficient to establish
(H 14). In reality, these two equations are inde-
pendent, since (H 14) corresponds to an orthogo-
nality relation, and (H 15) to a completeness
relation. The latter appears particularly doubtful
if either one of the potentials V, U gives rise to
a bound state, because then the solutions of the
Schrédinger equation which belong to the con-
tinuous spectrum do not form a complete system
of functions.

The writer has checked Eq. (H 15) for
V=K[2,8,\], U=K[2,8,\]. Then the func-
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tions Y and Z; may be computed from (7), (3),
and (14), and the integral in (H 15) evaluated
explicitly. The following result was obtained:
(H 15) holds if and only if the Schrédinger equa-
tions for both ¥V and U have no discrete spectra,
i.e., if B=1 and B’=1. This seems to indicate that
Hylleraas' formula (cf. Eq. (15) above) may be
generally valid if neither V nor U give rise to
bound states. (Note that this holds for the ex-
ample which Hylleraas discusses at the end of
his paper.) The writer has not attempted a proof
of this conjecture.

APPENDIX

For arbitrary values of ¢, the function f(k, r)
associated with the potential V(r)=K[o, 8, \]
(cf. (6)) is found to be

f(k, r)=e"*r(14Be ) F(r+ (2¢k/N), 1,
14-(2¢k/\), ~pe™), (16)

where r=1(1—(1+4¢)}), and F is the hyper-
geometric function. If o=n(z+1) [n=1,2, ---],
then r=—n, and F is a polynomial of n-th de-
gree. One obtains the expressions (7) and (10)
by setting #=1 and 2, respectively, and inserting
(A +p(r))/(A—p(r)) for e

Note added in proof: In the meantime the
writer has worked out a number of additional
examples. In particular, it is possible to construct
potentials which (for S-waves) give equal phase
shifts, but bound states of different energy
values. This fact is of interest with respect to
the theory of the S-matrix. It is also possible
to find a non-vanishing potential which does not
give any S-scattering. A detailed account will
be published later.
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Condensation of Pure He?® and Its Vapor Pressures between 1.2° and Its Critical Point

S. G. Syporiak, E. R. GriLLy, AND E. F. HAMMEL
Los Alamos Scientific Laboratory, Los Alamos, New Mexico

November 29, 1948

N October 13, 1948 the authors succeeded

in condensing! pure He? prepared by E. S.
Robinson and R. M. Potter of the laboratory.
1 Although the evidence is not conclusive, indications are

that we have observed a transition to a liquid rather than
a solid state. This is suggested by the similarity of Fig. 1

The isotope was ‘‘grown’’ from pure tritium
solutions by B-decay of the tritium. The latter

to what one would expect for a gas-liquid transition and by
the approximate agreement between observed densities
and those calculated from the critical constants by use of
van der Waal's and Dieterici’s equations of state.
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was initially separated from traces of He* by
passage through a palladium valve. The He?® was
purified by absorption of H; and T, in uranium,
followed by repeated passages successively over
(1) hot CuO followed by a liquid air trap and
(2) hot Ca, thus removing all other impurities
except the rare gases.

These results seem especially interesting since
so much doubt has existed over the properties of
He®. London and Rice? suggested that this iso-
tope would not liquefy at all, at least not under
any ‘‘normal” conditions. Their argument was
based on the large zero-point energy calculated
for He? which they found to be sufficient to
compensate entirely the potential energy of the
van der Waal’s cohesive energy. Tisza® also
doubted that He® would liquefy unless ‘‘entirely
unheard of properties’ of viscosity were exhibited
by the liquid. Fairbank, Reynolds, and Lane!
measured the vapor pressure difference between
He* and solutions enriched to 0.16 percent He?
in the temperature range from 1.3° to 4.2°K.
Using ideal solution concepts, they calculated
vapor pressures of pure He’. An extrapolation of
logP vs. 1/T led to a normal boiling point of
2.9°K.

In these experiments 20 cc S.T.P. of He® was
used. The He?® was permitted to condense into
the bottom of a 1.2-mm [.D. stainless steel
capillary immersed in a bath of liquid well
helium at depths of, usually, 5 or 10 mm. The
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immersion depth was held constant by gradually
raising the Dewar as the bath evaporated, the
capillary being fixed with respect to its vacuum
system. A double Wilson seal surrounding the
capillary made this immersion adjustment pos-
sible even when pumping on the bath. In order
to minimize the effect of the dead volume of the
capillary in the temperature region between bath
and room temperature, the upper part of the
capillary was surrounded by two shells of heavier
tubing in thermal contact with the capillary at
the top (room temperature) end and at a point
4 cm from the bottom. Being far better heat
conductors than the capillary, these shells had
the effect of raising the temperature of the capil-
lary at all points on the capillary not immersed
in the liquid, thus greatly reducing the dead
space.

The room temperature end of the capillary
was connected to a combined mercury manom-
eter and simple Toepler pump such that by
raising the mercury levels in the manometer, He?
could be transferred into the capillary and its
pressure there measured. Condensation was
assumed to be taking place if the equilibrium
pressure in the capillary was independent of the
volume of helium remaining in the manometer.

Figure 1 shows the data for three different
temperatures. Flats on the two lower curves
indicate the vapor pressures of He? corresponding
to 3.19°K and 3.29°K. The upper curve cor-
responds to a temperature of 3.38°K which is
believed to be above the critical temperature T,
since at T, a horizontal inflection would be ob-
served. From these data and other runs at
intermediate temperatures we have chosen
T.=3.3,°K corrected as explained below.

As a check on the equilibrium temperature
inside the capillary, He* was condensed there. Its
vapor pressure was found to be greater than the
bath pressure by an amount corresponding to a
temperature difference of 0.01,°K. The same
temperature excess inside the capillary was ob-
served at bath temperatures of 4.0, 3.3, and
1.4°K. We are tentatively assuming that the
same temperature excess existed when He® was
being condensed and have adjusted our tem-
peratures accordingly.

It has been previously observed that open and
closed bulb vapor pressure thermometers may



CONDENSATION OF PURE He?

indicate different bath temperatures, but no
satisfactory explanation for this has been ad-
vanced.® Our observations lead us to suggest
that a heat flow down to the bulb may give rise
to an appreciable temperature gradient through
the walls of the immersed portion of the bulb.
This thermal flow appears to be due to both
conduction in the capillary wall and convection
of the gas within it. Since an open-bottomed tube
communicates directly with the liquid, the vapor
pressure measured with such a device should
correspond more closely to the bath pressure.

The possibility of a pressure difference due to
the surface tension of the liquid should also be
considered.

The vapor pressure measurements are sum-
marized in Table I and in Fig. 2, which also
shows vapor pressures for He* determined at
Leiden in 1937. It is interesting to note that at
1.2°K the vapor pressure of He? is 35 times as
great as that of He*, suggesting the potential
usefulness of He® for thermometry at low tem-
peratures. At 1°K He* vapor pressures are near
the limit of accurate measurement. Indications
are that He® could be used down to 0.5°K or
perhaps even lower. The pressure at 0.5°K is
0.12 mm Hg if our data are extrapolated on the
assumption of constant latent heat below 1.4°K.

TaBLE 1. Vapor pressures of He? from 1.2° to 3.3°K.

T, °K P, mm Hg
1.21, 23

1.334 32

1.524 54

1.635 70

1.79s 99

1.97; 141

2.04, 159

2.15; 195

2.32; 255

2.58¢ 366

2.81; 495

3.03, 634

3.20, 764

3.29; 842

3.33;5 872
(3.34) (875) critical point
(3.20) (760) boiling point

5 W. H. Keesom, Helium (Elsevier Publishing Company,
Inc., New York, 1942), p. 193.
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A curve through the experimental points shows
the normal boiling point to be 3.2,°K. Extra-
polation to the critical temperature gives for the
critical pressure p.=875 mm Hg. Putting these
values of p, and T, in van der Waal’s equation,
we find the critical density to be p.=0.036 g/cm?.
By Dieterici’s equation we find p.=0.046. Since
for He* the accepted value of p. lies midway
between the values calculated from these two
equations, we have chosen p.=0.041 g/cc.

It is possible to determine the density of the
liquid from these data provided one knows to
what level the liquid rises in the immersed

P €n Ha)

F1G. 2. Vapor pressures of He? and He*.

capillary before a significant rise in its vapor
pressure occurs. This gives the volume corre-
sponding to the mass of gas admitted at constant
vapor pressure (plus a correction for the dense
gas displaced in the process). With our capillary
the level inside is found to rise some millimeters
above the bath when He!is being condensed, and
it is therefore necessary to get data for two or
more immersion depths in order to make a
reasonable estimate of the liquid density. The
evidence so far is that near T, the densities
calculated above are approximately correct and
that with decreasing temperature a very rapid
rise in density occurs. At 2.8° it may be as much
as a factor of two higher. We are now prepared
to risk using a glass capillary in order to check
these density estimates.



