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Rendu'ks on the Detei* bxation of a Central Field of Force from
the Elastic Scattering Phase Shifts
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(Received October 4, 1948)

It is shown by an explicit example that a central fieLd of force is not uniquely determined by
the phase shifts for an 5-wave. Hylleraas' recent paper is discussed, and an error in his argument
is pointed out.

INTRODUCTION

" 'T is interesting to know to what extent a cen-
~ ~ tral 6eld of force is determined by the phase
shifts which are used in computing the elastic
scattering cross sections according to quantum
mechanics. Recently two methods" have been
suggested which would even allow determination
of the 6eld of force from the phase shifts for one
single value of the angular momentum (for ex-
ample, i=0). Clearly, these methods can be
generally valid only if no two different potentials
give rise to the same phase shifts.

In this note we shall exhibit, however, two
potentials, Vi and Vi (Vi+ V2), which yield the
same phase shifts for S-waves (cf. (13a) and
(13b)).

Let f(r) be the wave function (for angular
momentum 0) of a particle moving in a central
field V(r), and set @=r P. In the non-relativistic
case, p satis6es the differential equation

d'P/dr'+k'g = V(r) p,

For real values of k the functions f(k, r) and

f(—k, r) are complex conjugate, and f(k) QO.
Since p=r P, an admissible solution of (1) must
vanish for r =0. Hence,

4(r) =(I/»If(k) I)
X If(k)f( —k, r) f(—k—)f(k, r) }. (3)

Asymptotically, i (r) ~sin(kr+s), where the
phase shift g is determined by

e'&=f(k)/I f(k) I
or S(k) =e"&=f(k)/f( —k). (4)

(The S(k) are the proper values of the S-matrix
associated with Eq. (1).) As has been shown by
Jostg the function f(k, r) may also be used (and
is analytic in k) for complex k with negative
imaginary parts, in particular for k = —iK, where
K& 0. A bound stationary state is obtained if the
exponentially decreasing solution f( i~, r) v—an-
ishes at r =0, i.e., if f( i r&) =0. I—ts energy is then
given by

[f( ir) =0, —~&0]. (5)E=4'= —K'
k being the wave number. (The units are so
chosen that the energy of the particle equals k'.
If ordinary units are used both E and V must
be multiplied by k'/2nz, where m is the mass of
the particle. ) We assume that the integral
Jo"

I V(r) I
dr converges, so that the usual scatter-

ing theory may be applied.
Following R. Jost's paper on the S-matrix, '

we introduce two independent solutions of (1),
viz , f(k, r) and. f( —k, r), which for large r are
asymptotically equal to e '~" and to e'~", respec-
tively, and we set

It follows from (4) and (5) that two potentials
with the same function f(k) yield the same phase
shifts and the same stationary energy values.

CONSTRUCTION OF THE EXAMPLE

The potentials considered are Eckart poten-
tials4 of the form

V(r) =XI o, P, XJ —= —0)PPs—"'/(1+Pe—"")', (6)

~(k) =~(k, 0); n-k) =X(-k, 0).

' Carl-Erik Froberg, Phys. Rev. I2, 519 (1947).' E. A. Hylleraas, Phys. Rev. V4, 48 (1948).' R. Jost, Helv. Phys. Acta 22, 256 (1947). ' C. Eckart, Phys. Rev. 35, 1303 (1930).
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where X&0, and P& —1. We shall restrict our-
(2) selves to the values o = 2 and 0 = 6. (With respect

to this choice cf. the Appendix. )
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(a) e=2

(This potential is also discussed by Jost (refer-
ence 3, p. 260).) Here

f(k, r) =e ""(2k+iii(r))/(2k —iI~), (7)

Clearly,

ii(0) =i'=—X(P—1)/(P+1); P(~) = —),. (8)

It is easily verified that (7) is a solution of the
Schrodinger equation (1), since dl2/dr= 2(F22-)P—)

2)—'Pe 2'/(1+Pe "")' and dpi/drs=ii (dpi/dr).
Moreover, for large r, f(k, r) ~e "", since

ii(~) = —). From (7) we obtain (cf. (8))

Vi(r) and V2(r) have the common value
—3X2/2 at r=0, their integrals (extended over
all r) are both equal to —3X, and they give rise
to stationary states with the same energy, vis'. ,

E= —~)P.
If V~ and V2 are expressed as

Vi(r) = —3l%,2/2 cosh'(2Xr),
V2(r) = —2) 2/cosh'(X(r —a)); a = (In3)/2X,

it is seen that Vi(r) has its minimum at r =0,
and defines an attractive force for all r, while

V, (r) reaches its minimum at r=a, defining a
repulsive force for r &a, and an attractive force
for r&a. Moreover, the two potentials differ in

their asymptotic behavior. The expression

f(k) =f(k, 0) = (2k+is) /(2k —8 ). (9)
D = ' (Vi(t) —V'2(r)) dr

The function f( is) v—anishes for s= si, so that
there exists a bound stationary state, with energy
E ——,'vs, if 2)0, i.e. , if p)1.

Vi(r) 6$2e—xr/(1 ye ir)2—(13a)

(b) e=6

As may again be directly verified, here

., 4k'+ 6ikii(r) +Xs —3ii(r)'
(2k —iX) (2k —2iX)

4k'+ 6ikv+X' 3v2-
(2k —9,) (2k —2A,)

'

where p(r) and 2 are defined by (7a) and (8),
respectively. The bound stationary states are
obtained from the equation f( is) =0—, (s)0).
There exists one stationary state if 2 —v3&p
~2+v3, and there exist two if p&2+YE. (2&v3
are the two mots of the equation Xs —3vs =0.)

Consider now Vi(r) =%[6, 1, X] (X arbitrary).
Then 2 =0 (cf. (8)), and, by (11),

fi(k) = (2k+ i7)/(2k —2iX). (12)

Set, further, V2(r) =Et 2, p', X'] (p' and V to be
determined) By (9),. f2(k) = (2k+is')/(2k —ih').
Hence fi(k) =fs(k) if 2X =X', and X=v'= X'(P' —1)/
(p'+1), i.e., p'=3. Consequently, the two po-
tentials

may serve as a measure for the deviation of Vi(r)
from Vs(r). One finds D =0.162.

Evidently our result only proves that the
phase shifts for the angular momentum zero do
not determine the potential V(r), but we cannot
yet assert that the knowledge of all phase shifts
(for arbitrary values of the angular momentum)
is insufficient for the unique determination of
V(r). C. Mgllers has proved that one can con-
struct infinitely many different Hamiltonians
which yield the same phase shifts, i.e. , the same
5-matrix. It is not obvious, however, that one
can 6nd among them a Hamiltonian which corre-
sponds to an ordinary central field of force.

REMARKS ON HYLLERAAS' PAPER

Ke again restrict ourselves to the case 1=0.
For a given V(r), Hylleraass introduces two solu-

tions of the Schrodinger equation, vis , vt(r), .
which is given by Eq. (3) above, and vs(r), which

may be expressed as

s2(r) = (1/2 !f(k)!)
X If(k)f( —k, r)+f( k)f(k, r) },—(14)

V2(r) = —24Xse 2~"/(1+3e "")2 (13b) 'C. Ms(lier, Kgl. Daaske Vid. Sels. Math. —Fys. Medd
24, No. 19 (1946). Cf. p. 33.

lead to the same function f(k), and therefore to 2F&&«he details the reader is referred to Hylleraas'
paper. {H 13), for example, is a reference to Eq. {13)of

the same phase shift il cf. 4 his paper.
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and which asymptotically equals cos(kr+g). Let
V(r) and U(r) be two potentials, g and $ the
corresponding phase shifts, and ui, v2 and uI, u~

the associated wave functions. Set Yq(r) =u&v~,

and Z~(r) = uqs~+u2v~. Hylleraas asserts the gen-
eral validity of the equation

V(r) —U(r)

= (4/s)(d/dr) )" sin(s P)Z—I, (r)dk (1.5)
0

t The foregoing equation diifers from Hylleraas'
(cf. (H 13)) in two minor points. (a) In order to
avoid the appearance of divergent integrals we
have interchanged differentiation with respect to
r and integration with respect to k. (b) The signs
of V and U are inverted, because Hylleraas' V
corresponds to our —V in the Schrodinger equa-
tion (cf. his Eq. (3)).]One would infer from (15)
that q=g implies V(r) = U(r), whereas we have
seen above that V(r) is not uniquely deter-
mined by q.

Hylleraas bases his proof on the assumption
that his equations (H 14) and (H 15) are equiva-
lent, and that it is therefore sufficient to establish

(H 14). In reality, these two equations are inde-

pendent, since (H 14) corresponds to an orthogo-
nality relation, and (H 15) to a completeness
relation. The latter appears particularly doubtful
if either one of the potentials V, U gives rise to
a bound state, because then the solutions of the
Schrodinger equation which belong to the con-
tinuous spectrum do not form a complete system
of functions.

The writer has checked Eq. (H 15) for
V=EL2, P, X], U=KL2, P', X']. Then the func-

tions Yq and Zq may be computed from (7), (3),
and (14), and the integral in (H 15) evaluated
explicitly. The following result was obtained:
(H 15) holds if and only if the Schrodinger equa-
tions for both V and U have no discrete spectra,
i.e. , if P —1 and P' 1.This seems to indicate that
Hylleraas' formula (cf. Eq. (15) above) may be
generally valid if neither V nor U give rise to
bound states. (Note that this holds for the ex-
ample which Hylleraas discusses at the end of
his paper. ) The writer has not attempted a proof
of this conjecture.

APPENDIX

For arbitrary values of o, the function f(k, r)
associated with the potential V(r) =%La, P, X]
(cf. (6)) is found to be

f(k, r) =e '~'(1+Pe "")'F(r+(2ik/X), r,
1+(2ik/X), Pe —""), (16)

where r=~(1 —(1+4o)&), and F is the hyper-
geometric function. If o =e(n+1) [n=1, 2, . . .],
then r = —e, and Ii is a polynomial of n-th de-

gree. One obtains the expressions (7) and (10)
by setting n = 1 and 2, respectively, and inserting

(X+p(r))/(X —p(r)) for Pe-"".
yote added in proof: In the meantime the

writer has worked out a number of additional
examples. In particular, it is possible to construct
potentials which (for 5-waves) give equal phase
shifts, but bound states of different energy
values. This fact is of interest with respect to
the theory of the S-matrix. It is also possible
to find a non-vanishing potential which does not
give any S-scattering. A detailed account will

be published later.
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Condensation of Pure He' and Its Vapor Pressures between 1.2' and Its Critical Point

S. G. SYDORIAK) E. R. GRILLY, AND E. F. HAMMEL

Los A/amos Scientific Laboratory, Los Alamos, ¹mMexico

November 29, 1948

1
~~N October 13, 1948 the authors succeeded

in condensing' pure He' prepared by E. S.
Robinson and R. M. Potter of the laboratory.

' Although the evidence is not conclusive, indications are
that we have observed a transition to a liquid rather than
a solid state. This is suggested by the similarity of Fig. 1

The isotope was "grown" from pure tritium
solutions by P-decay of the tritium. The latter

to what one would expect for a gas-liquid transition and by
the approximate agreement between observed densities
and those calculated from the critical constants by use of
van der %'aal's and Dieterici's equations of state.


