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Electronic Interaction in Electrical Discharges in Gases*
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The Boltzmann transfer equation has been solved for the case of high current densities
and low field strengths where electrostatic interactions may not be neglected. The solution
has been examined for two different electron-molecule cross sections for momentum transfer.
In one, the cross section varies inversely with electron velocity, and the distribution is found
to be Maxwellian at a11 electron densities. In the other, the cross section is assumed independent
of the electron energy. On the latter assumption, the solution varies from the Davydov dis-
tribution at low electron densities to the Maxwellian distribution at high densities. Curves
have been drawn showing the transition of the distribution as the density increases. The corre-
sponding values of average energy, drift velocity, and average velocity have been tabulated.

Haseltine' in which the same problem was con-
sidered but in which the analytical difhculties
proved excessive.

Our good fortune in reducing this problem is
1argely due to a paper by Landau' in 1936, in
which he developed an approximation to the
coulomb interaction term in the 8oltzmann
transfer equation. ' Because of the long range of
the force, a majority of the Coulomb collisions
involve a small momentum exchange, and, ac-
cordingly, Landau expands in powers of the
momentum exchange.

We also justify and make use of an assumption
which Haseltine found useful. When considering
the momentum balance equation, there proves
to be a certain range of electron and molecule
densities, in which the electron-molecule colli-
sions are the more important. Here the electro-
static interactions may be neglected insofar as
momentum conservation, but not energy con-
servation, is concerned.

I. INTRODUCTION

HIS paper deals with the effects of electro-
static interaction in low voltage discharges

in gases. The field strengths are limited in order
to rule out inelastic collision phenomena.

The present theory of electrical discharges,
which neglects inelastic collisions and electron
interaction but includes the motion of the mole-
cules, was first deve}oped by Davydov' in 1936.
Davydov's electron velocity distribution func-
tion reduces to that obtained originally by
Druyvesteyn' in 1930, and later by Morse, Allis,
and Lamar, ' in which molecular motion is
neglected.

The theory which has been developed here is
an extension of Davydov's work, in that it con-
siders only elastic co11isions, with the addition of
electron-electron encounters. We find that below
electron densities of 10 /cc our distribution func-
tion reduces to that of Davydov, while at very
high densities, the limiting form of the distribu-
tion function is Maxwellian. These results are to
be expected, and therefore the chief interest lies
in our treatment of the problem. This is par-
ticularly true in view of a paper in 1939 by

II. ANALYTICAL FORMULATION OF
THE PROBLEM

A central part of the theory of gas discharges
concerns the determination of the electron ve-
locity distribution function f(r, v), the solution
of the Boltzmann transfer equation. ' Our distri-
bution f is normalized to the electron density n.
We consider an infinite gas with a constant im-
pressed field K The field strength for the re-
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V ~f=(B.f/Bt)i+(B.f/Bt)~, (1)

in which (B.f/Bt)i is the time rate of change of
f with respect to electron-electron colhsions,

(B.f/Bt)w the time rate of change of f with
respect to all other collisions, and 5 the velocity
gradient operator.

The second term on the right of (1) includes
both ions and molecules. We assume both to be
in equilibrium at the absolute temperature r.
Before evaluating (B,f/Bt)sr we introduce the
quantity X(s), defined as the mean free path
for momentum transfer in terms of the difkr-
ential scattering cross section, ~(8, v)d&o by the
relation

1/X(v) =X 0 (8, v) (1—cos8)des, (2)

in which N is the density of scattering centers,
8 is the angle, and dec the solid angle into which
the electron is scattered. The composite mean
free path X for collisions with molecules a,nd ions
is given by

1/~ =1/~ +1/~;,

in which )„is the mean free path for molecules
and X; is that for ions. The approximate calcula-
tion of ); is generally made using the Debye-
Huckel' shielding radius p as the upper limit of
the collision parameter. ' The approximate value
of ); is then

1/X; = (e7re'/c, ') ln(pe, /e'),

where p = (~„/12sne') &, a„ is the average relative
electron-ion energy, and n is the electron or ion

density. If we assume the electron-molecule cross
section to be of the order of j.o—"cm', the ratio
X;/X for one-volt electrons is

X;/X =X/e(10) ',

where N is the molecular density. Relation (5)

~ P. Debye and E. Huckel, Physik. Zeits. 24, 1S$ (1923},
8 B. Davydov, Physik. Zeits. Sowjetunion 12, 269

(1937).

maind. er of the paper will be represented by
y=eZ/m, where s, m are the charge and mass of
the electron. We assume equal ion and electron
densities. In such an environment, the steady
state electron distribution is the solution of

(B.fop b d s' (df,
+fifo I

0 Bt ) sr tls&dsX(s) (ds )

(Be~sfi l
Bt ) sr X(s)

s&fi

where 8=2m/M is twice the ratio of electronic
to molecular mass and P =m/2kB, k being Boltz-
mann's constant.

The calculation of (B.f/Bt)i, as stated in the
introduction, was indicated by Landau. ' He ex-
panded this term in powers of the momentum
exchanged on collision, retaining terms of the
second order, as the zeroth and first-order terms
vanish. The result was that (B,f/Bt)i could be
expressed as the velocity divergence of a vector J,

(B.f/Bt)i=~ J
The vector J is most conveniently written us-

ing the summation convention over repeated
indices. Letting i=x, y, s,

v' space

Bf(v) Bf'(v')
f'(v') f(v)-

Bv; Bv;

X (u'8, ; u,~;)/—(a') dv', (9)

where B~t is the Kronecker delta and 2=2 e's/

m' lncp/e'. The vector u is the relative velocity
v' —v of the scattering (primed) electron relative
to the incident (unprimed) electron; e is the
relative electron energy —,'mN'.

In order to carry out the integration in (9)
after substituting (6), we found suitable the co-
ordinate system devised by Hylleraas'0 for the
helium ion in which v serves as polar axis for v'.

The manner of performing the angular inte-
gration is shown in Appendix I. As a result,

'S. Chapman and T. G. Cowling, The Mathematical
Theory of ¹I-Uniform Gases (Cambridge University
Press, New York, 1939), pp. 348 et st.' E. A. Hylleraas, Zeits. f. Physik 54, 347 (1929).

gives us an accurate estimate of the role played
by the ions in the discharge.

The form of (B,f/Bt)sr is derived by Chapman
and Cowling. ' If we expand f(v) in the form

f(v) =f,(s)+s,f,(i), (6)

with the field in the s direction, and write s for
v', their expression is
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J may be written in the form

J(v) =g, 'v (SUoo+Sv Uoi

J0

+2v, U"+2v'U"+ f&fi')v'dv'

+kC' I'
[voLP o+v'v, U"

Jo

+S(fo'f~ fof—~') 3v—*f~'fi]v'dv' (10)

where k is a unit vector in the s direction,
z'=(8-)/(1S)z, and

aft afo
Uol —f ~ f

885 8 Bv

The calculation of the velocity divergence of

J(v) is most easily carried out if J is expressed
as a vector in spherical coordinates. The isotropic
and anisotropic terms of (a.f/at)~ are separated
in the form

(a.f/at), =v J=(a,f,/at), +(a.t,f,/at), . (11)

We now have analytic expressions for (1) and
so can assemble the Boltzmann equation. It will

immediately be observed in (7) and (12) that
both terms on the right of (1) can be expressed
as sums of isotropic and anisotropic terms. These
represent the first two terms of an expansion in
Legendre polynomials following the form of the
expansion of f(v) in (6). The left-hand side of
(1) separates in similar fashion, giving rise to the
following pair of simultaneous integro-differential
equations:

(afo' 10d—s—'(A—fo'+Bfo)(at) s&ds

2
+ , s"—'(C—f~'+Df )

s'* ds

d s'
+ — (fo'+t'fo)

Ps& ds X(s)

2
s&fg, —(13a)

3s& ds

Theresultsof thediEerentiation asperformed (a,f~~ 10 d
in Appendix II are s"'(A fi'—+Bfi)( at J s& ds

)a.fo~ 10 d
=——st(A fo+Bfo)( at ) ~ s& ds

2
+ s"'—(Cf—i'+D fi),

s& ds

(av f ) 10d
i

=v, — s"'(A fg'+—Bfg)
E at )~ s&ds

6 d
+ s'"(Cf—o'+—Dfo)

s~ ds

(12)

6 d
+— soio(Cfo'—+Dfo) —5 $2Cfo'+D fo

s~ ds

+(B+s'/S"(s))f~]=2vfo' (13b)

Equation (13a) is seen to be exact. This is
necessary for the conservation of particle density,
since the transport of mass, written as

num= m(a, f/at)dv,

e space

S(2Cfo'+D—fo+Bfi),

where the primes now refer to differentiation
with respect to s=—e'. We define the four codfi-
cients A, 8, C, and D in the following way:

A=a') fAs, B=Z'fo(0),
0

C=Z' f,ds, D=2'fi(0).

must vanish. " The integrated Eq. (13a) is the
energy balance equation. This is shown by com-
puting the energy transport

(acf)
Rat)

o space

making use of both sides of (1). Because of sym-
metry only the isotropic parts of (1) survive the
integration, so we need only consider (13a). From

» See reference 9, pp. 47 et st.
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Tash. E I. Mean values calculated fmm (23) at
di6'erent electron densities N.

i (cm/sec. )

3.1(10)~
2.7(10)~
1.1(10)~

~ (electron volts}

0.32
0.22
0.072

V. (em/sec. )

2.5(10}l'
3.4(10)
7.5(10)'

the left hand side of (13a) we find on performing
a partial integration that

nap= —~ (-', ms) 10{Afo'+Bfo)

bs&

+2s(Cfi'+Dfi)+ (fp'+Pfo) (2ors&ds),
PX(s)

while from the right hand side of (13a),

(2yfil
(;ms) l

l(2~sos),Jo&3)
where of course ~= ~~ms. Assuming detailed bal-
ancing, the integrands of both expressions must
be equal, which leads to the equation

10(Afp'+B fp) +2s(Cfi'+D fi)
bs&

+ (fo'+Pfo) = r'vfi (14)
PX(s)

Equation (14) will be seen to be the first in-

tegral of {13a)with the constant of integration
set equal to zero to suppress singular solutions
of f

Momentum balance is assured by (13b). The
rates at which momentum and energy are added
to the electron gas by the applied 6eld are easily
computed from the left hand sides of (13b) and
(13a) to be eon and eZv, n, respectively.

n1. sa1UT1az as THE TmNsrsR EqvxT1aN

Equations (13b) and (14) in the variable v take
the form

(10A+b v/PX(v)) fp'+2v(10B+bv/X(v)) fp

+2v'(Cfi'+2vDfi) =(4/3)yvfi, (15)
'o Cfo"+L~Dv+(C v)—lv jfo'+1oDfo

+5/2A fi"+ (5Bv+10A/v) fi'
+(20B v/—) (v))fi 0 ——(.16)

The simplifications we have found necessary,
but which will yield results of interest, are two-
fold. Haseltine4 assumed that in the momentum
balance Eq. (16) the electron-electron impacts
could be neglected relative to the electron-
molecule collisions. In the energy balance Eq.
(15) the situation differs materially in that the
electron loses a large fraction of its energy when
colliding with another electron, while in a colli-
sion with a molecule the electron loses a fraction
b =2m/M of its energy. If we compare the coeffi-
cient of fp in (15) with that of fi in (16), the
term in 8 will be seen to have a very much
greater importance in (15) than in (16), verifying
Haseltine's assumption. It will be noted, how-
ever, that at suSciently high electron densities
the electron-electron interaction terms in (16)
must be retained. Consequently, we neglect the
interaction terms in (16), obtaining with Hasel-
tine4 and Morse, Allis, and Lamar, '

~fo'+3~'/&(v) jfi =o (1&)

The second simplification comes in neglecting
terms in fio relative to fop in (15), which then
reads

(10A+b /PXv( ))fvp'

+2v(10B+bv/X(v))fp=4/3~fi (18).
The elimination of f& in (18) by (17) leads to a
simple first-order equation in fp whose solution is

(10BX/b) Pv+Pv'
fp=Ep exp (2Pvdv),

"o (4/3)((W &)'/b)+(10PA&lb)Pv+Pv'
(19)

where No is the normalization constant.
Our solution (19) is quite general in that the

dependence of ) on v has not been specihed. For
precise investigations of particular gas discharges
it is often desirable to use the empirical electron-
gas cross sections, which (19) permits. Equation
(19) has a drawback in that it is a non-linear

integral equation, because of the presence of the
normalization constant in 8 and the integral
form of A.

We have investigated (19) for two assumed
cross sections. In case (a) the cross section is
inversely proportional to v, and in (b) the cross
section is independent of electron energy.
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In case (a) the time r =) /v between collisions is a constant. Then (19) reduces to

(108./S)+1fo=¹exp pvo

(4/3)(P(v )'/~)+(10P~ /&)+1
(20)

fo No exp——( m—v'/2k(T+T')), (21)

where kooT'=-', M(yr)' is the excess of electron
energy above the thermal energy ~3kT of the gas
molecule. The normalization constant Xo is then

No n[m——/2sk(T+ T') j&

The drift velocity 8, of the electrons is calculated
from fi as given by (17), and is

1
Vg= — )~ Vg fidv,

fj SPaCe

4x
fiv dv,

3n~

(22)

This result shows that the energy by which the
electron exceeds the molecule is just that which

Computing A and J3 from their definitions, we
find that

P~ =&LI+ (4/3) (P(vr)')/6]
8=N',

the molecule would have if streaming with the
electron drift velocity.

It would appear that the electron temperature
T+T' were independent of the electron density.
This is not the case, because in our formulation
of the problem we have assumed equal ion and
electron densities. Referring to (5), it is apparent
that when n&10 'N, the ions determine the
magnitude of X in (3). Hence r will decrease when
n increases above 10 'N, causing T' to drop ofII'

with n. At sufficiently high electron densities,
then, the electrons approach thermal equilibrium
with the gas. It would not be proper to speak of
the dependence of the drift velocity on n, since
the dependence of 7 on n above is only qualita-
tive. The actual electron-ion cross section goes
not with 1/v but 1/v4, so that at very high densi-
ties the proper electron-ion cross section must
be included in (19).

We next consider the case where ) is constant.
While it is possible to carry out the integration
in (19), the resulting expression is too compli-
cated for manipulation and will not be written
down. It is preferable to investigate (19) nu-

merically. In the variable x =mv'/2kT,

(»»/~) pe~1+~fo=¹exp dx '.
~ o a+ (10(PAL)/8)P&x&+g

(23)

The constant a replaces 4/3(yPX)'/b. Assuming
a, field strength of 1 volt/cm, a mean free path
) of 10 ' cm, and a gas temperature of 300'K,
0. takes the value 100. In Fig. 1 are shown the
normalized energy distribution curves for three
illustrative electron densities. The function
closely resembles the Davydov distribution for
densities up to n=10'/cc. Above n=l0', the
function makes a rapid change-over, as shown by
the curve at n =10"/cc. At n = 10"/cc the curve
is very similar to n=10"/cc, where the dis-
tribution has become Maxwellian at the tem-
perature T.

The mean velocity 8, energy ~, and the drift
velocity 8, have been computed and are shown

in Table I. The mean energy and velocity are
seen to decrease while the drift velocity increases,
with increasing n. The act of increasing the
density evidently lowers the entropy of the dis-
charge in reducing the isotropic part of the
distribution function while the drift velocity
increases.

It is of interest to note that for electron densi-
ties of the order of 10"/cc the electrons in a gas
having a 1/v cross section are T' degrees hotter
than the electrons in a gas having a constant
cross section. This is because a 1/v cross section
implies a reduced efficiency for momentum trans-
fer at higher energies. Consequently, such a gas
favors the population of higher electron energy
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50

40

a~l0 ccN

preserving the functional dependence of J on v.
The volume element for the v' integration is
dv'=v'dv'ududx/v. Because of the appearance of
the rectangular components v ', v„', and e,' of v',
Table II is used to transform to the system hav-
ing v as polar axis, in which the rectangular
components of v' are

20
~slON cc

0 2 4 6

=l06 cc

6 10 IR I& ll I8 20
X N@kT

We note that

vi =v slnijl cosX)
vm' =v' sing sing, and
v&' ——v' cosiJ.

vi =vz/v, p2 =vy/v, v3 =v~/v,

FJG. 1. Normalized energy distribution curves for three
illustrative electron densities. E=1 volt/cm; X=10 g cm;
a = 100.

co+=v'+v" — u/2 v'v.

Upper limit

The limits of integration for the respective vari-

states over the gas in which the cross section is
independent of energy. Variable Lower limit

CONCLUSIOÃ

The functional behavior of (19) amply justifies
the interaction terms (12). We are now in a
position to use (12) in the further investigation
of inelastic processes in d.c. discharges and in
extending work of Margenau and Hartman" on
high frequency discharges to high current
densities.

0
/

0
v'+ v

2'.
It was found convenient to dehne the following
quantities:

U"=f~'/v(~—fi)/(») fi/v'(~—f')/(»'),
v,"=f„'(af,)/(»;) f,(af, ')—/(», '),

and
I"=f'(~f)/(»') f(~f')—/(»''),

f
J=2 V;(u'8 u;u;)"/—(u')dv'

The writer wishes to thank Professor Henry where', j, =x, y, and s, and 0, l, =0 and 1. With

Margenau for his encouragement and guidance these abbreviations, we may write (9) as

throughout the course of this work, and also to
thank Professor Lars Onsager for a number of (I.i)
illuminating discussions and ideas.

APPENDIX I

Angular Integration of J
It was found necessary to employ the coordi-

nate system devised by Hylleraas, "as shown in

Fig. 2. The velocity v of the incident electron is
referred to xyz coordinates, while the velocity v'

of the scattering electron is referred to a coordi-
nate system having v as polar axis. The azimuth
of v' is measured by the angle X. The purpose of
this choice of coordinate systems is to permit
integration over all v' for arbitrary v, thereby

'g H. Margenau and L. M. Hartman, Phys. Rev. 73, 309
(1948).

TAQLE II. Transformation scheme to relative coordinate
system in which v serves as polar axis.

Vi

VV

pg
Vg

ISz

ge
V3

Assuming the explicit form of f(v) as given

by (6),

V =V~+v, 'V"+v,V"+v.v.'V"
+&(f'fi ffi') (—I 2)

where k is the unit vector in the s direction.
When (I.2) is substituted in (I.i), the resulting
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expression may be represented by

J Joo+Jol+Jlo+Ju

kQ —QgU

+ (f'f~ ff—~') dv' (I.3)I'
Fre. 2. Coordinates for

J integrations.

The computation of individual terms J;~' is

facilitated by the identity

VP'(u'8" —u,u,)/(u')
=fo'/—v(8f~)/(»)(v'/u (v —v' v')l—u')

f~/ —v(8fo')/(Bv')(v /u (v.—v' —v")/u').

After substituting the angular expressions for v, ',
v„', and v, ' and integrating over the angles x and

f, we obtain for Joo the result

as they may be obtained by changes of indices.
Combining the results of the computation into
the single vector J, we have

J(v) =2'v (5U"+Sv, U"

J'o=2 VP'(u'8, ;—u;u, )/(u')dv'

~00

=8xv;2/3 U"v'dv'.
"o

+2v, U"+2v,'U"+ fifi')v'dv'

+kZ' " [v'U"+v'v, U"
Jp

+5(fo'fz fofi') 3v fz'fi J&'dv'

In computing J;" we discover that cylindrical
symmetry causes J,"and J„"to be alike except which is Eq. (10). The constant 2' replaces
for subscript, and diferent from J,".We obtain 8m/152.

and

=16xv v,2/15
4p

U"v'de',

F00

J"=16xv„v,Z/15 U"v'dv'

J "=~ v, 'V "(u'8 —uou, )/(u')dv' APPENDIX II

Calculation of V.J
The expression of J as a vector having com-

ponents in spherical coordinates was found useful

in carrying out the divergence operation. In
terms of its rectangular components, the spher-

ical components of J are

J,"=16m/15(v '+-'v')8 Ugp /deaf

J,=J, sin8cosy+ J„sin8sin p+ J, cos8,
Jo= J, cos8cosp+ J„cos8sinp —J, sin8,

J„=—J, sing+ J„cosy.
(II.1)

In addition to these integrations, the following

must be computed:

&) (f'f& —ffi')(ku' —u,u)/(u')

The polar axis is taken in the s direction so that
we can take advantage of the symmetry of the
problem. This causes J„ to vanish, as can be

readily verified. Substitution of the rectangular
components of J in (II.1) immediately gives

= 8~@ /1Sv
I

4p
fg'fgv'dv'

J„=Z' [SvU"+5v'U" cos8+3v'U" cos8

+8"/15&' [5(fo'fi fofx') 3v fx'fi jv'dv'
4p

+3v'U" c s'o+8(fSf' fof&') cos8—

It is not necessary to compute more of the J,~', +vf,'f, (1—3 cos'8) jv'dv',



300 I ULI US H. CAHN

and

Jo ——2 {{v'U"+5(fp'f& —foe')] sin8
Jo

+ ', [vo U-" 3vf—~'f~] sin28}v'dv'.

We are forced to define the foHoming functional
constants:

A=@' t fods, C=Z' t f,ds,
o ~o

The divergence can then be calculated to be
B =Z'fo(0), D=z'f, (0).

t'8 8
V J=1/v sin'8} v'sin8J„+ v sin8Jp }

EBv 88

{15U"+5v(8Uo')/(Bv) +Sv' U"

+v'(BU")/(Bv)+I 20vU" +Sv'(BU")/(Bv)

+12v U'o+ 3v'(8 U o)/(Bv)

+5(fp'(Bf~) /(») f~'(Bfp) /(»))
-2v U"] cos8}v'dv'. (II.2)

These appear in the final solution, so that in
solving the diR'erential aspect of the Boltzmann
equation we still are faced with the solution of a
non-linear integral equation.

If we separate the isotropic and anisotropic
terms of V J in the form

V J= (B,fp/Bt))+(B, v,f,/Bt) „
we obtain

+ (2) /(s') s"(Cfi'—+DE)
ds

(Bpfo)In the process of calculation, wherever a non-
} } =(10)/(s&) s&(Afp +Bfp)

linear trigonometric expression appeared, it was dS

expanded in Legendre Polynomials, the constant
and linear terms alone being retained. It was
found convenient to work with the variable
s =v', in terms of which (II.2) becomes and (II.4)

V J=|!' ' {15UPo+10s(SUPP)/(Bs)+SsUu
f
0

+2s'(8 U")/(Bs) +L20 U"+10s(8U")/(Bs)

+10U"+6s(8 U") /(Bs)

+5(fo'(Bfa)/(Bs) f&'(Bfo)/(Bs))]v }ds', (II.3)

where now

U" =f.'(8f,)/(Bs) f, '(8f, ')/—(Bs')

(Bpvofi)
}
—

} =v.{10/s& s"'(A f&'+—Bfi)
Bt ), ds

+6/s& s"(Cfo'+—Dfo)
dS

—5(2Cfo'+Dfo+Bfy) },

the primes in (I I.4) indicating differentiation
with respect to s.


