
ONE —ELECTRON STATES

servable difference in this respect between fission
of thorium with helium ions and U"' with slow
neutrons would occur in the length of the chains
between the primary products and the stable
nuclei, those chains on the heavy side of the
distribution curve being shortened. This has not
been investigated.

The depth of the dip in the mass yield curve
must be related to the excess excitation in the
fissioning nucleus. The results with slow neutron
fission of U"', where the factor in yield between
dip and peaks of the distribution curve is about
600, fast neutron fission of thorium where the
factor 6 is about 10, and fission of thorium with
37.5-Mev helium ions where the factor was found
to be only about 2, indicate that there is a definite
relation between the excitation of the nucleus and
the occurrence of symmetrical fission. While the

results at alpha-energies lower than 37.5 Mev do
not give a complete picture of the distribution at
these energies, enough is given to indicate that
the dip is always much shallower than that found
in slow neutron fission of U"'.
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The explicit formulation of an integral of the motion is given for a single electron moving in
the field of two 6xed nuclei, for both the classical and the quantum mechanical cases. The
corresponding quantal operator together with the Schro*dinger Hamiltonian and the operator
for the component of the orbital angular momentum of the electron about the internuclear
axis form a complete set of commuting observables of the problem. This supplies the dynamical
interpretation of the separation parameter of the energy equation.

I. INTRODUCTION
" 'T is well known that the equations of motion
& ~ of the electron moving in the field of two fixed
nuclei are separable in elliptic coordinates in both
classical and quantum mechanics. In the latter
case the separability of the Schrodinger equation
falls under Case VII of Eisenhart's classification. '
The separated di6erential equations have been
studied in detail for the special case of the hydro-
gen molecular ion (H2+) by Burrau, ' Wilson, '
Teller, 4 Hylleraas, 5 and others.

' L. P. Eisenhart, Phys. Rev. 74, 87 (1948).' P. Burrau, K. Danske Viden. Selskab 7, Nr. 14 (1927).' A. H. Wilson, Proc. Roy. Soc. London A118, 617 (1928);
A118, 635 (1928).' E. Teller, Zeits. f. Physik 61, 458 {1930).' E. Hylleraas, Zeits. f. Physik 71, 739 {1931).

The purpose of the present note is to establish
the form of a general integral for the problem.
While the use of this integral is implicit in all of
the work which has been done on the two-center
problem, back to that of Euler, ' its explicit
formulation and dynamical significance have not
been given previously, to our knowledge. The
possession of the integral does not give one any
information which cannot be derived from the
separation of the variables in the Schrodinger
equation, but it is of theoretical interest as an
important example of the use of first integrals in
quantum mechanics. Actual examples of this

' E. T. Khittaker, Analytica/ Dynamics {Cambridge
University Press, Cambridge, 1927), third edition, p. 97.
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identical commutation relation

i(

l

PC, Q]=—KQ —MC= 0, (2)

with the Schrodinger energy operator K, the
latter being

Z AD@2 Z282
K—= — V'—

2m rl

This is the standard condition which, when
satisfied, assures one that the wave functions of
the stationary states of the system can be ar-
ranged to be simultaneous eigenfunctions of the
two operators 3C and 0; i.e. , the wave functions
will satisfy the two simultaneous equations

Fro. 1. Coordinate system for the two-center problem.
'JCP =EP, Qf = (of, (4)

type are rather dificult to discover for the
Schrodinger equation.

IL THE CLASSICAL INTEGRAL

The basic cartesian reference system 5 is
chosen as indicated in Fig. 1, the origin being at
the midpoint between the nuclei. We let L' and
L" be the orbital angular momentum vectors of
the electron as referred to the two nuclei 1 and 2

respectively as origins. A short calculation from
the Newtonian equations of motion of the electron
shows that the following quantity is an integral
of the motion'

Q, —=L' L"+2me'a(Zi cos8i —Zi cos8i), (1)

that is, we have dQ, /dt =0 as a consequence of the
equations of motion of the particle. The notation
in Eq. (1) is as indicated in Fig. 1, with m as the
electronic mass. A curious feature of this ex-
pression is that it involves the angular momen-
tum vectors of the electron computed about two
difterent points. For vanishing internuclear dis-
tance this reduces to the square of the angular
momentum about the origin of the system S.

III. THE QUANTUM MECHANICAL INTEGRAL

We wish to formulate expression (1) as a self-
adjoint linear operator Q which will satisfy the

~ J. M. Jauch and E. L Hill, Phys. Rev. 5'I, 641 {1940).
'An attempt to find the remaining integrals of the

problem in explicit form by the standard procedures of
classical theory {reference 6, p. 323) fails by reason of the
appearance of elliptic integrals.

where 8 and ~ are eigenvalues of the two
operators.

Calculation shows that this can be accom-
plished by the usual simple procedure of taking
the symmetrized form of Eq. (1)

(6)

where ao is the Bohr radius.
The angular momentum operators in (5) can be

formulated in terms of the corresponding opera-
tors in the reference system S by the relations

L, '=L,+ika8„,
L„'=I-„—ika8,
L„'=I„

I.,"=I. —i7ia8„
I„"=I,„+i7ia8„

On insertion of these expressions into (5) we find
that

Q —=h 'I.'+a'(V' —8.i)
+y(Zi cos8i —Z2 cos82). (8)

The proof of the commutation relation (2) is a
somewhat onerous task, but since it requires only
elementary techniques it will not be given here.
The work is perhaps performed most readily with
the expressions (3) and (5) for the operators, but
can also be carried out with the formulations in
terms of elliptic coordinates given below.

We give for reference the forms of the operators
in terms of elliptic coordinates (P, y, q) defined by
the relations

Q=—-'l'i '(L' L"+L" L')
+y(Zi cos8i —Zg cos8i), (5)

with

y = 2me'a/fi' =2a/ao,
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The transformation of the energy operator follows
readily from the usual formula for the laplacian
operator in curvilinear coordinates, and yields
the result

1 B B
3C=—— —(P—1)—

2tnu l$ —g Bg B$

axis, thus form a complete set of commuting ob-
servables defining the stationary states of the
system.

The Schrodinger equation with the energy
operator (10) permits separation of the variables
with the wave function written in the form

f(h, ~, s) = ~($)G(n) exp(~~p), (12)
8 8

+ . .—(1—n')—
$' —g2 Bg Bg

with
A. =o, &i, ~2,

(k' —1)(1—n') Bs'

e' (Z~+Zn) p
—(Z~ —Z2)g

C P ~2
(10)

1 2j 8 8
fl—= —(P—1)—

The transformation of the operator 0 is more
laborious, but again it requires only elementary
techniques and will not be given here. The
result is

Considered by itself, the operator 0 allows sepa-
ration into individual equations for the functions
E(&) and G(g) alone only for Z-states (A=O).
Nevertheless, we can employ it to give a dy-
namical interpretation of the separation parame-
ter in the Schrodinger equation, by the introduc-
tion of the operator

A = —0—2ma'3C/h'. (13)

When the operator A is applied to a complete
wave function of the form (12), which is a solu-
tion of the Schrodinger equation for an energy
eigenvalue E, we find that

&' —1B B

,
—(1—n')—

P —q' Bg Bg

i 82

+
P —1 1 —g' Bp'

(Zi+Z2) ((1—n')+(Zi —Z2)~(k' —1)
+7 (11)

g2 ~2

The operators X, 0, and I.,=——ih8„which
gives the component of orbital angular mo-
mentum of the electron about the internuclear

where A is the separation parameter of the
Schrodinger equation. 'The operator A of Eq. (13)
thus gives us the interpretation of the separation
parameter in terms of the dynamical operators of
the problem. io

~ H. A. Bethe, Hcndblck der Physik, (Edwards Brothers,
Ann Arbor, 1943) second edition, vol. 24, part 1, p. 530.

'~ The explicit formulation of the operator of Eq. (13) is
made following a remark of t.he referee who suggested its
use as part of the set of commuting observables instead of
Q. While this is quite possible, it leads to no particular
simplification since the separated form of the Schro'dinger
equation shows that. the eigenvalues 8 and A both appear
in each of the two separated equations.


