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Electrons excited to the conduction band of an insulator under electron bombardment are, in
general, not able to leave the insulator, but become trapped at imperfections in the crystal
lattice. The trapped electrons give rise to a space charge which modifies the motion of electrons
excited to the conduction band subsequent to the trapping. In this way, the current through the
crystal becomes a function of time.

In this paper, a tentative theory of such space charge efkcts is presented and compared with
experiment. Agreement with the data which exist at present is reasonably good. Some predic-
tions and suggestions for future experiments, which arise as consequences of the theory, are
made.

I. INTRODUCTIO5 thallous halides, and cadmium sulfide. ' In the
work with electron bombardment, however, what
is sought is the response to a beam of particles
rather than response to isolated particles. Hence,
the situation is perhaps more analogous to the
photo-conductivity of an insulator when illumi-

nated in its fundamental absorption band. 7

Bombardment conductivity has been observed

by Dr. K. G. McKay in diamond. The experi-
mental arrangement which he used is shown in

Fig. 1. The diamond used was in the form of a
plate about 0.05 cm thick, with gold electrodes
evaporated onto the faces. A collimated electron
beam of variable energy, and of diameter ~2"
(~0.08 cm) impinged upon one face, which we

shall call the front face of the diamond. The
geometry of the system is a fair approximation to
infinite plane-parallel geometry.

The impinging electrons penetrate the diamond
and produce ionization; the ionization range is
about 3X10~cm, which is less than 1 percent of
the thickness of the diamond. With the voltage
as shown, the positive holes left by the ionization
travel to the front face, and can make no
appreciable contribution to the observed current.
The observed current is that carried by the
electrons which travel toward the back face.
Experiments were also performed in which the

$P HEN certain insulating crystals are born-
barded with electrons of medium energy

( 10 kv), some of the electrons in filled bands
of the crystal may be raised to the conduction
band, and the crystal may then show conduc-
tivity under an applied electric field. This
phenomenon, which we shall call electron bom-
bardment conductivity, or, more briefly, bom-
bardment conductivity, is similar in many re-
spects to the eAects involved in crystal counters.
Crystal counters which depend upon induced
conductivity rather than upon observation of
scintillations' have been made from various
materials: silver chloride at liquid air tempera-
ture, ' diamond, ' zinc sulfide, 4 a mixture of
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FIG. 1. Experimental arrangement for observing
bombardment conductivity.
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SPACE CHARGE EFFECTS

back face mas negative, so that the current is
carried by positive holes.

We shall assume that there are no qualitative
differences in behavior between electrons and
positive holes, although their characteristic pa-
rameters (mobility, etc.) may have diferent
values. Our discussion will then hold equally
well for either type of current carrier; for con-
venience, however, we shall ahvays speak of
electrons as carriers, so that we are referring to
the voltage arrangement of Fig. 1.

The diamond used is not a perfect crystal, but
contains fIaws or impurities which can act as
electron traps. Thus some of the electrons which
start across are trapped in the interior of the
crystal, giving rise to a space charge which
impedes the further How of electrons. The cur-
rent through the crystal will, as a consequence,
vary with time; the purpose of this paper is to
study this time variation.

In order to observe the time variation of the
current, McKay pulsed the bombarding electron
beam, using pulses lasting for the order of 10 '
sec. , and repeated 60 times per second. Between
pulses, he subjected the crystal to a treatment
designed to neutralize the space charge deposited
during the preceding pulse, so that the beginning
of each pulse would find the crystal free of space
charge.

Typical curves for the variation of current
during a pulse are shown in Fig. 2. For a par-
ticular voltage, at some high current density,
the curve is everywhere concave upward. With
the same voltage, if the current density is lowered
sufficiently, the curve is at first concave down-

ward, and then becomes and remains concave
upward. We believe that qualitatively different
mechanisms are responsible for the di6'erent por-
tions of the curve at low current densities, and
that both portions are actually present in all
the curves. At high current densities, however,
the first portion is of such short duration that
it is lost in the finite rise time of the pulse and
the finite response of the amplifier.

As we mentioned before, the ionization range
of the bombarding electrons is about 3X10 ' cm.
Within the layer extending to this depth from
the front face, which we shall call the plasrria
layer, both positive holes and electrons are to be
found. We therefore expect diferent behavior in

t~
t~)

HIGH CD')PRFN'7 DENSlTP'
(~)

LOW' CuAA'FN7 D&Si7r

FIG. 2. Typical current-time curves.

this plasma layer from the rest of the diamond,
in which only electrons are to be found. In the
next section we shall discuss the plasma layer;
the remainder of the paper will deal with the
part of the diamond between the plasma layer
and the back face. At the end of the next section,
we shall be in a position to discuss the diAerences
between the two portions of the curves in Fig. 2.

II. THE PLASMA LAYER

Each impinging electron penetrates the dia-
mond a certain distance before losing its ability
to produce ions, and, in this distance, produces
on the average a number of electrons which we
shall denote by 5„.If an infinite field were applied
to the crystal, all of these electrons mould be
collected by the electrodes. Hence we call 8 the
yield for infinite field strength. We shall assume
that the points of origin on these b„electrons are
distributed uniformly along the ionizing range
of the impinging electron.

Within the plasma layer are high concentra-
tions of electrons and positive holes. This situa-
tion is comparable to that which exists when the
diamond is illuminated in its fundamental ultra-
violet band, when little or no photo-conductivity
exists, presumably because most of the. photo-
electrons recombine with the holes. ' Our first
question is then: How many electrons escape
from the plasma layer to enter the main body of
the diamond &

We expect the number of recombinations of
electrons and holes per cm3 per second to be of
the form:

Xn+n,
where n+ and e are the volume densities of
holes and electrons, respectively, and X is a
constant. E can be estimated to order of magni-
tude; if we neglect the velocity of the holes
compared with that of the electrons and let v be
the average velocity of an electron in its Brownian
path, and 0 the cross section for recombination:
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The electrons in question have just been knocked
into the conduction band by the impinging
electron, and probably have more than thermal
velocity. If we assume that they have 0.5 ev of
kinetic energy, and that a =10 '~ cm', we get
K 6 X 10—8

We now wish to show that recombination is
negligible unless the field is quite low, probably
of the order of 20 volt/cm or less. With one of
the largest bombarding currents and the highest
b„which McKay has used, the number of elec-
trons and holes created per sec. per cm' cross
section of the plasma layer is 6 X 10 '. The
lowest field used is about 2000 volts per cm; if
the mobility of holes is 30 cm/sec. per volt/cm,
the longest time required for a hole to traverse
the plasma layer is

3X10 '/(30X2000) =5X10 ' sec.

After this length of time, the number of holes
and electrons which have been created per cm' of
p1asma ls

6X10"X5X10-'=3X10',

and the density is certainly not greater than 10"
electrons or holes per cm' of plasma. The number
of recombinations per cm' per sec. , according to
Eq. (1), is not greater than

E++n =6X10 'X10"=6X10".
In 5X10 sec. then, per cm' cross section of
plasma layer, we would have

6X10"XSX10 'XBX10 '=9X104

recombinations. Since, in the same time and the
same volume, 3X 10' electrons and holes have
been created, the reader can readily convince
himself that recombination is negligible under the
conditions assumed, and is probably not im-

portant unless the 6eld in the plasma falls below
the order of 20 volts/cm.

%'e now wish to discuss the time and space
variation of the densities of holes and electrons
within the plasma. Let io=bombarding current
density in electrons/cm'/sec. , let I=thickness of
the plasma layer, and let t+ and e be the
mobilities of holes and electrons, respectively.
Then the equations of continuity for holes and
electrons read

(Bn /Bt) = vF(8e /Bx)+(igb—„/I) Kn+n, —(2)

(an+/at) =v+F(8ri+/Bx) + (ipb„/I) K—n+ri . (3)

The x coordinate is taken to be zero at the front
face, aod increases as we go into the crysta1,
while the 6eld F is taken positive if in the direc-
tion of decreasing x. In Eqs. (2) and (3), the
6rst term on the right in each represents the
transport, the second the creation by the bom-
barding electrons, and the third the loss by
recombination. We neglect trapping of holes or
electrons within the plasma layer. Equations (2)
and (3) are subject to the conditions that
n+ =n =0 at t =0 for all x, and that n+ =0, x = l,
e =0, @=0, for all t.

We shall first assume that F does not change
appreciably across the plasma layer. Unless the
field F is quite small, the recombination is
negligible, and Eqs. (2) and (3) are independent.
The solutions for n+ and n are similar; that for
n+ can be readily veri6ed to be

n+ = (iaaf„/l) t t —max. (t+(x—I)/v+F, 0)]. (4)

By the symbol max. (A, B), we mean the larger
of A or B. At any position x, this becomes inde-
pendent of E when t = (I x) /v+ F. F—or t & 1/v+ F, n+
is everywhere independent of t, and is given by

n+ = (ioh„/I) (I—x)/v+F. (5)

We now verify that the change in F across the
plasma layer is small. If DF is the change in F,
e the electronic charge, and ~ the dielectric con-
stant, we have, neglecting the electrons in the
plasma,

hF = (4xe/~) (ip8„/2v~F) l

Using the figures we used to estimate the recom-
bination, hF/F=2 percent, or the field varies
from its average value by about 1 percent. If the
electrons are included in the computation, the
result is multiplied by 1 —2(v+/v ), as may 'be

readily veri6ed.
We should also make some statements about

the possibility of electrons being trapped in the
plasma layer. Using material to be presented in
the next several sections, we can conclude that
trapping in the plasma layer is negligible unless
the field in the plasma falls below about 25
volts/cm.

The solution of Eqs. (2) and (3), when recom-
bination, trapping, and variation of F are in-
cluded, is a more formidable task which we shall
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not undertake here. From the calculations which
we have just made, however, we can draw two
conclusions: (a) Unless the field is below, say,
200 volts/cm, the field across the plasma is
fairly constant, and the charge contained in the
plasma can be neglected in computing the space
charge eRects. (b) Unless the field in the plasma
is below, say, 25 volts/cm, all of the electrons
liberated by the bombarding electrons escape
from the plasma layer into the main portion of
the crystal. If the field is lower than this value,
electrons may be lost either by recombination or
trapping.

The significance of these conclusions is that,
during the early part of the bombardment, when
the field is 2000 volts/cm or higher, we can
neglect the plasma and the positive holes, and
assume that all of the electrons leave the plasma
and start across the crystal. Some or all of these
electrons are trapped in the crystal; their space
charge lowers the field at the front face, so that
electrons can be trapped more readily, and so on.
This period of operation corresponds to the first
portion of the curves in Fig. 2. Unless the trapped
electrons are released too quickly, at some time
the field at the front face must become nearly
zero. When this occurs, the number of electrons
leaving the plasma layer is substantially reduced.
The current now falls to a steady value which is
determined by this consideration: The field in
the plasma layer is held by the trapped electrons
(i.e. , trapped in the main part of the crystal) at
such a value that the number of electrons leaving
the plasma layer just balances the number of
electrons lost from the crystal by thermal release
from traps and subsequent drift out of the
crystal.

Qualitatively, this picture leads to a negative
second time derivative of the current (current
curve concave downward) as long as all electrons
leave the plasma, at least for small thermal
release rates. That is, a trapping of electrons,
which means a decrease in current, so alters the
field conditions that trapping„and hence the de-
crease in current, becomes more rapid. We shall
give a semiquantitative discussion of this point
in Section VI.

If the thermal release rate is large, a diferent
condition of equilibnum from that just discussed
may obtain. This condition will be discussed in

Section VII. If this condition can be achieved,
it aSords a method of obtaining information
about the plasma layer, which is at present in-
accessible to study.

The point of inAection of the curve in Fig. 2

must then occur near the time when the field
in the plasma layer becomes small. We can
readily estimate the time at which this occurs,
as follows: Until the point of inflection is reached,
almost all of the electrons freed by the ionization
leave the plasma, but are trapped in the body
of the diamond. Hence, at time I„ the number of
electrons trapped per unit cross section of the
diamond is approximately

io~ ~.

The change hF in F as we traverse the crystal is

DF= (4s p/~)ipb„t

Since the voltage across the diamond is he1d

constant, the average field must always equal
the originally applied field Fo. Hence, if the field
at the front face is to be approximately zero,
d F approximately equals 2Fo, and the time t at
which the point of inHection occurs is approxi-
mately

t =2~Fp/47rpipb„

Equation (6) was derived before any curves
were observed which showed a point of inflection.
Using this equation, conditions under which a
point of inQection should be observable were
computed, and the points of inAection were then
discovered. Figure 3 shows the agreement be-
tween the observed values of t at the inAection
point, and the values predicted by Eq. (6). The
agreement is good only to order of magnitude,
and the observed values are always greater than
the predicted ones.

In the deriva, tion of Eq. (6), we neglected the
electrons which are released thermally from traps,
and also those which cross the crystal without
being trapped. In Section VI, we give a computa-
tion which includes these electrons. The results
of these calculations are also shown in Fig. 3.
The curves labeled B(1 f) =0 inc—lude the elec-
trons which are not trapped, and the curves
B(1 f) =0.03X10P—include, in addition, those
released thermally, with a particular assumption
about the thermal release rate. These latter
curves are discussed in Section VI.
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The hypothesis underlying Eq. (6) is in hne
with another observation. If we consider what
should happen to the shape of the pulse as we

vary the amount of space charge neutralization,
we see that, if negative charge is left in the
crystal, the 6eM in the plasma layer is already
small at the beginning of the pulse, and the
entire pulse should be concave upward. The
portion which is concave downward should not
appear until the space charge neutralization is
almost complete. This is the observed behavior.

III. TYPES OF TRAPS) THE TRAPPING LAW

Experiments which have been performed indi-
cate that there is more than one type of electron
trap in a diamond. Dr. A. J. Ahearn has per-
formed some interesting experiments in this con-
nection, which we shall describe brie8y.

Abeam was studying the properties of dia-
mond as a counter of n-rays. ' He 6rst determined
the counting ef6ciency of a particular diamond
as a function of the electric field applied to it,
when the bombardment lasts too short a time
for space charge to be significant, for conduction
either by holes or electrons. He then bombarded
this diamond with Q.-particles at the rate of 500
per min. , over a circle of 0.06-in. diameter, with
4000 volts per cm applied to the crystal in such a
direction that electrons conduct, for one minute,
and then removed the applied field. The space
charge fieM then became the dominant held; it is
in a direction such as to make the crystal conduct
by means of holes. The counting rate immedi-
ately after removal of the applied field corre-
sponded to a field of 320 volts per cm. When the
bombardment time was increased to 2 min. , the
initial counting rate under the space charge
field corresponded to 480 volts per cm.

As we shall show in the next section, most
electrons released by the O.-particles are trapped
in the diamond. Assuming SX10~ ion pairs per
a-particle, we 6nd that, after 1-min. bombard-
ment, there have been approximately j..4)(j.0"
electrons per cm~ cross section trapped in the
diamond. To produce a field of 320 volts per cm,
however, requires only 1.8XIO' electrons per
cm'. Hence we compute that a fraction,

1.8X10'/1.4X10"=13percent,

remain trapped for the order of a minute. Simi-

larly, when the bombardment with applied field
continued for 2 min. , about 10 percent were still
trapped at the end of the bombardment.

We conclude, then, that of all the traps in the
diamond, about 10 percent are deep enough that
the half-life for thermal release is of the order of
a minute. This measurement was made on only
one diamond. Most of the other traps must be
substantially shallower than this j.0 percent.

It is of some interest at this point to estimate
what depth of trap, expressed in volts, is actually
required to produce the observed lifetime, and to
see if the depth agrees with a reasonable mecha-
nism for producing traps.

Mott and Gurney' give an approximate rela-
tion between the half-life and trap depth,

B/~=2am(kT)'k '(6~) & exp( —Z/kT), (7)

in which B is the probability per second that an
electron escapes from the trap, 0 is the capture
cross section of the trap for thermal electrons,
and 8 the depth of the trap (below the conduc-
tion band). With B 10 ' (half-life of 100 sec.),
0 j.0 "cm', we get A=0.75 ev. On the other
hand, if B=10' (half-life of 1 @sec.), E=0.25 ev.
Hence, we need assume only that the traps with
which we are dealing lie at depths between one-
fourth and three-fourths of a volt.

Regarding mechanisms, an obvious suggestion
is that a foreign singly charged ion is placed at
one of the many normally unoccupied lattice
sites in the crystal. An electron could be caught
in the 6eld of this ion. The presence of such a
foreign ion is not in itself sufhcient to produce a
trap, because, in an otherwise normal lattice,
the ion would have to be neutralized. Dr. C.
Herring has suggested to the author that a trap
could be produced if the diamond contained both
an interstitial foreign atom, and a trivalent atom
in place of one of the carbons. Such a configura-
tion would be electrically neutral; there would,
however, be an unpaired electron on one carbon
atom. Either of two things could conceivably
occur: A valence electron from the foreign atom
could pair off with the excess electron from a
carbon, leaving the atom ionized, or the foreign
atom could remain neutral, but an electron

' N. F. Mott and R. W'. Gurney, Electronic Processes ~n
Ionic Crystuls {Oxford University Press, London, 1940),
p. 108.



SPACE CHARGE EFFECTS

could be trapped by forming a bond between the
trivalent atom and the unsaturated carbon. For
the latter process, the foreign atom is not neces-
sary. No calculations have been made of the trap
depths to be expected from such a model, but
depths of the order of 1/2 volt do not seem
unreasonable. A hydrogenic trap in a medium of
dielectric constant=5 has a depth of 13.5/25
=1/2 volt. If the shallow traps are produced by
interstitial alkali atoms or trivalent substituted
atoms, deeper traps could be produced by di-
valent atoms at interstitial and lattice positions.

For later work, we wish to know a function
G(x, x'), which is defined by saying that G(x, x') dx
is to be the probability that an electron set free
at a depth x' in the crystal will be trapped at a
depth between x and x+dx. We assume that the
lines of force are straight, although not neces-
sarily of uniform density, and that x is measured
in the direction of drift of electrons. For reasons
discussed by Mott and Gurney' the proba-
bility that an electron has not been trapped
depends on the time since it was released, and
this probability is

exp( —t/T),

where 1 is a constant which depends upon the
density of traps and their capture cross section.
This implies that the drift velocity of electrons is
less than their thermal velocity. If the electron
is traveling in a field which is a function of
position, t is clearly given by

Hence the probabihty that an electron is still
free after traveling from x' to x is

The function G(x, x') is the negative derivative
of this quantity with respect to x, or

G(x, x') =(sTF)-' exp' — ' dx/sTF l. (8)
t"
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G(x, x') gives the probability of capture into
some trap. The probability of capture into some
particular type of trap is G(x, x') times the
relative number of traps of this type.

IV. EXPERIMENTAL DETERMINATION OF THE
TRAPPING CONSTANT T

The trapping function G(x, x') contains the
unknown constant, T, which is to be interpreted
as the mean life of an electron in the conduction
band. McKay has measured T for the diamond
which he is studying; we shall review his method
brieAy.

McKay defines a quantity 5, called the yield,
which is the ratio of the current carried by con-
duction electrons to the bombarding current,
when measured in a crystal free of space charge.
5 should be given by the following formula, which
was first derived by Hecht" in connection with
photo-conductivity, and whose application to
the present problem will be examined critically
by McKay in his forthcoming paper:

(8/b„) = (sTF/l) L1 —exp( —l/sTF)]. (9)

l is the thickness of the crystal. In applying this

"See reference 9, p. 222.
K. Hecht, Zeits. f. Physik 77, 235 (1932). Also, see

Mott and Gurney, reference 9, p. i22.
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formula, 8 is plotted as a function of Ji for a
particular bombarding energy (constant 8„),and
values of b„and sTare chosen so that Eq. (9) fits
the experimental data as closely as possible. The
same procedure is followed at different bom-
barding energies. In this way, 8„ is determined
as a function of the energy of the bombarding
electrons. If formula (9) applies, the value of vT
necessary to fit the experimental data should be
the same for all bombarding energies. McKay
found that he could fit all the curves with vT
varying by no more than a factor of two.

For the diamond used, he found vT~6X10—'
cm'/volt. Using s = 100 cm'/volt sec. , this gives
T=6X10-' sec. Assuming that the electrons
have thermal velocity, and that the traps have a
capture cross section of 10 " cm', this gives
a trap density of 1.7xj.0" per cm3, which is
reasonable.

V. THE SPACE CHARGE EQUATIONS

We are now in a position to set up the equa-
tions governing the accumulation of space charge
in the diamond, and the current through it. We
assume infinite plane-parallel geometry, so that
we need only one space coordinate x. We take
the origin of x to be at the boundary between
the plasma layer and the rest of the crystal, and
increasing as we go to the back face, which lies
at x =I.. As in Section III, we take the field I" to
be positive if it points in the negative x direction.
We let n, =density of electrons in shallow traps,
with a probability J3 of thermal release per
second, and let n&=density of electrons in deep
traps, with negligible probability of release.
Let f be the ratio of the density of deep traps to
the total trap density, and let jo=number of
electrons leaving the plasma layer per cm' per
sec. At equilibrium, jo is also the current meas-
ured externally.

We saw in the last section that the mean life T
of an electron in the conduction band is about
6&10 ' sec, Since this is somewhat smaller than
the times of observation, we make the crude but
simplifying assumption that the elapsed time
between the release and the trapping of an
electron is negligible.

Consider now the quantities (8/8t)n, (x, t)dxdt
and (8/8t)nq(x, t)dxdt, which are the changes in

time dt of the numbers of electrons in shallow

Bdxdt ~t G(x, x')n, (x', t)dx'.
0

(10)

The contribution by this mechanism for shallow
traps is (1 f) tim—es expression (10), and for
deep traps is f times (10).

(c) Trapping of electrons entering from the
plasma layer. In time dt,j Ddt electrons enter the
crystal, and the fraction trapped in dx is G(x, 0)dx.
Hence, the contribution for shallow traps from
this source is (1 f)j OG(—x, 0)dxdt, and for deep
traps is fj OG(x, 0)dxdt.

If we equate (8/8t) n, (x, t)dxdt and (8/8t)
Xn~(x, t)dxdt to the sum of contributions 1, 2,
and 3, and divide through by dxdt, we get the
pair of integral-difFerential equations:

(8/8t) n, (x, t) = —Bn,(x, t) +(1 f)B—
X G(x, x')n, (x', t)dx'

0

+(1 f)j oG(x, 0)—; (11)

(8/8t)ng(x, t) =fB G(x, x')n. (x', t)dx'
0

+fj OG(x, 0). (12)

The function G(x, x') is defined by Eq. (8), and
involves, in addition to x and x', the field strength
F at all points between x' and x. In addition to
Eqs. (11) and (12), the quantities F, n„and nz

are further related by Poisson's equation:

8P/8x = (4s e/ii) (n,+ng)

Poisson's equation is subject to the restriction
that the potential difference across the diamond

and deep traps, respectively, contained in the
distance dx at x. These quantities consist of
three parts:

(a) Loss by thermal agitation. This equals
Bn—,(x, t)dxdt for shallow traps, and zero for

deep traps.
(b) Capture in dx of electrons released

elsewhere by thermal agitation. In time dt,
Bn, (x', t)dtdx' electrons are released from the
interval dx'. Of these, G(x, x')dx are captured in
dx. Hence, the total number of such electrons
caught in dx in time dt is
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is 6xed:

~L
~dr = ~oI., (14)

fpt dt t —(a/at) n(y, t)dy.

Their contribution to the charge transferred in

time dt is dx/l. times this, so that the externally
measured current density j is

rL

j gt dt t (a/at)—n(y, t)dy dx/I. dt.
J, J,

where Fo is the applied 6eld. In other words, the
mean value of the field is constant in time. The
whole system of Eqs. (11) through (14) is sub-

ject to the initial conditions:

n, (x, 0) =ng(x, 0) =0. (15)

From n, (x, t) and n~(x, t), we wish to determine
the current density j(t) through the diamond.
To do this, we observe that, in time dt, jodt
electrons/cm~ start across the crystal. Letting
n=n, +ng, the number of electrons/cm' which
travel the distance dx from x to x+dx is

VI. THE CURRENT FOR HIGH FIELDS IN
THE PLASMA

This section deals with the current through the
crystal during the 6rst portion of the curves
shown in Fig. 2, which, on the basis of our
present picture, means that the current jg is
constant and equal to iob„, the total number of
electrons released by the impinging electrons.

Even with the assumption of constant jo, the
system of equations developed in the last section
is too complicated to admit simple solutions. We
can, however, develop approximate solutions
good for small t by assuming analytic solutions
and using power series methods. The procedure
is quite straightforward.

We assume that the densities of electrons in

shallow and in deep traps can be written in

the form:

n, (x, t) = g a, ( )xt', n, (x, t) = g b;(x)t'. (l.7)

The summations start at i= j. rather than at
i =0 because both densities are initially zero, by
(15). Substituting (17) into (13) and using (14),
we find that F(x, t) can be written as

Canceling dt and reversing the order of integra-
tion gives where

F(x, t) = F,(1++f;(x)t"'),
1

(18a)

I (a/at)„(„ t)(r. „)d„, (16) f'(x) =(4«/UFO)
l&~

L&'(y)+b'(y)&dy
"0

in electronic charges/cm'/sec.
The system of equations which we have just

derived holds for either portion of the current
curves shown in Fig. 2. From the viewpoint of
these equations, the difference between the two
portions of the curves arises from the behavior
of jo, the current density. During the 6rst portion
of the curve„when the 6eld in the plasma layer
is high, jo is a constant and equals iob . %hen
the 6eld in the plasma layer becomes small, j0 be-
comes dependent on the strength of this 6eld.
In principle, we could calculate the dependence
of jo on 6eld by solving for conditions in the
plasma layer, but, in view of the diversity of
possible mechanisms and the mathematical diN-
culties of solution, it is unlikely that the results
would be reliable.

~L
I. 'dx La (y) +a;(y—)jdy I. (18b)

F(x, t) occurs only as the reciprocal, so we must
divide (18a) into unity. Upon doing so, we may
write F '(x, t) as—

F '(x t) =F (1+-Pf,&-'&(x)t'),
1

(19)

The g;(x, x') are evaluated by substituting series

where fi& "(x)= —fi(x) f2& "(x)=fi2(x) f2(x)—
etc. It is next convenient to write G(x, x') as a
power series in t:
G(x, x') = (vTF, )

—' expl —(x x')/sTF0$—
X(1++g;(x, x')t*'). (20)
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(19) into Eq. (8), and expanding the resulting ap(x) = —)Bai(x)+$(1 f)—B(sTFp) '

exponential. The first two of the g;(x, x') are:
Xexp —x/5 TFp

gi(x, x') =fi' "(x)—(»Fo) ' fi' "(r)4';J,
r*

p(x'/flTFo) ai(x') Cx'

pC -2

+p(»Fo) '
~

fi' "(r)4
gl

(oTFo) fi' "(x) ~ fi' "(r)dy

We have thus developed the function G(x, x') as
a power series whose coeScients are related in a
known manner to the coefficients in series (17).
Substituting, then, series (17) and (20) into
Eqs. (11) and (12) gives us a recurrence relation
for the coefficients a;(x) and b;(x). The series
whose coeScients are thus obtained satisfies
formally Eqs. (11) through (15). The first few

coeScients are:

ai(x) = (1 f)jp(eTFp) —'exp( —x/s-TFp),

bi(x) =fj p(flTFp) ' exp( —x/vTFp),

+p(1 fU—o(»Fo) '

Xexp( —x/sTFp)gi(x, 0),

bp(x) = ,'fB(v—TFp) 'exp-( —x/sTFp)

exp(x'/s TFp) ui(x')Cx'
4p

+pifjo(sTFo) i exP( —x/sTFo)gi(x, 0).

Finally, the current j can be expanded in a
series of the form

j=p J;~'.
p

The coefFicients J, are obtained in an obvious
manner by substituting series (17) into Eq. (16).
The first two of these coeScients are:

Jp=jp7 '(1 —e "),

Ji ——B(1—f)jpP,-'(1—e &') —e-"j—(4p p/ii)

X(jo'vT/L)Lip(1 —e P") —g '(1 —e ")'j (22)

zo

I \
A
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where X=L/vTFp. Both quantities in square
brackets, for a given diamond, are functions only
of the applied field, and are further non-negative.

We are also interested in computing F(0, t),
the electric field in the plasma layer. The reader
can readily verify that it is given by

I
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Fso. 4. Reduced half-life vs. applied voltage.

F(0, t) = Fo (4n'p/a) (j o &—o)&-
+ (2xp/a) J(to+ .. (23)

By equating this to zero, we should obtain the
time at which F(0, t) becomes zero more accu-
rately than we do from Eq. (6). We note from
inspection of J~ that the effect of thermal release
of trapped electrons (B)0) is to increase this
time, and, in fact, that if 8 is large enough, the
field does not become zero in any time for which

F(0, t) is given accurately by three terms. How-
ever, if the initial derivative of the current is
negative (Ji (0), we see that Eq. (23) has a root
which is of the same order as that given by
Eq. (6) ~

We can now get a rough comparison with
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experiment by the use of Eqs. (22). If the
current continued to decrease at its initial rate,
we readily find that the time v at which the
current would have fallen to half of its initial
value is found from

r '= —2Ji/Jg. (24)

Values of v have been estimated by McKay,
from oscilloscope traces.

If we neglect 8, we see that v ' is given by

7 '= (Ss—e/~)iaaf„(sT/L)
XLe "—1+-',X(1+e—")] (25)

from Eqs. (22). In other words, the quantity
(e/Sse)(L/sT)(riob„) ' should depend only upon
)i, which in turn depends only on field strength
for a particular diamond, and should not depend
upon the energy of the bombarding electrons.
This is tested in Fig. 4, in which the quantity in

square brackets is plotted against applied voltage.
If sT=SX10 ' cm'/volt, and I.=0.05 cm, the
relation between ) and V is ) V=500 volts. The
experimental values of (e/Sire)(L/sT)(ri08„) '
are also plotted for several values of the bom-
barding energy. The agreement is perhaps as
good as could be expected, but it should be
pointed out that for no values of the bombarding
energy do the experimental values change as
rapidly with V as is predicted.

An attempt was made to estimate a value for
B(1 f) by ma—king the experimental points in

Fig. 4 6t the theoretical curve as closely as
possible. The required values of B(i f) turne—d
out to be negative, and also to be roughly pro-
portional to 8„, indicating a systematic dis-

crepancy between experiment and the present
theory.

We can, however, set an upper limit to B(1 f)—
from the fact that the initial derivative of the
current is negative in every situation which has
yet been observed. If we compute the value of
B(1 f) in E—q. (22) which makes Ji=0, for
various experimental conditions, w'e 6nd that the
smallest such value is 0.014X10' sec. ' or, in
other words, the mean life for release of electrons
from shallow traps by thermal agitation is of
the order of 70 @sec. or greater.

Finally, we have also plotted in Fig. 3 the
values of t at which F(0, t) becomes zero, using

Eq. (23), with B(i f)=0 and—B(1 f)=0.03—

X10', using jo——iaaf . Since B(1 f—) &0.014X10',
the eBect of thermal release upon this time is
seen to be small. Most of the difference between
Eqs. (6) and (23) does not come from the term
quadratic in t, but from the fact that we have
estimated the coefFicient of t more accurately in

(23) than in (6). The coefficient in (23) allows
for electrons which cross the crystal without
being trapped.

%e mentioned in Section II that, if our theory
is correct, it must lead to a negative second
derivative for the current as long as the current
density jo leaving the plasma is constant. To
calculate the second derivative by extending the
power series attack seems quite laborious and
not justi6ed at present. The following argument
suggests strongly, however, that the second
derivative is indeed negative, at least for small
thermal release rates:

The current, according to Eq. (16), depends
upon On/Ot, weighted by the factor L—x, and
integrated over all x. Because of the weighting
factor, what happens at the front face (x=0) is
more important than what happens at the back
(x=L,). Accordingly, if On/ tO'& Qat x=0, we
may expect that 8'j/Ot'&0.

Neglecting thermal release, and adding Eqs.
(11) and (12), we have

(8/8&) e(0, t) =q,/sTF(0, &).

Differentiating twice with respect to t,

(8'/OP) e(0, t) = (2j 0/s TF"(0, t)) (OF(0, t)/Ot)'
—(j,/sTF'(0, t)) (O' F(0, I)/OP).

The first term of this is positive, since F(0, t) is
positive. By Eq. (23), O' F(0, t)/OP = (4s e/e) J,
for small t, and is therefore negative whenever the
initial derivative of the current is. Hence the
second term above is also positive, and the second
derivative of the current is probably negative
for small t.

VII. CONDITIONS AFTER A LONG TIME

%'e are not in any position to discuss the
approach of the current to equilibrium, having
discovered no way to solve the necessary equa-
tions except numerically. Accordingly, we pro-
ceed at once to discuss equilibrium conditions.

Unless the fraction of traps which are deep is
fairly large, we expect the crystal to approach
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Fia. 5. Possible forms of the current if the thermal
release rate is large. The current might also oscillate about
the vRlue $05 co o

in a fraction of a second a condition in which
the loss of entering electrons by trapping is just
balanced by thermal release from shallow traps.
As the time increases, the number of electrons in

deep traps increases, and finally becomes the
dominating factor. On a time scale such that
this eR'ect is important, the electrons in shallow
traps are released in negligible times, so that we
may say that the final equilibrium is the balance
between capture in and release from deep traps.
We shal1 discuss only the first situation in which
the deeply trapped electrons are negligible. That
is, we assume that the behavior of all trapped
electrons can be represented adequately by
ascribing to them a probability 8(1 f} of re-—
lease per second.

We take, then, Eq. (11),with n, =n, and with
8/Bt =0. Solving Eq. (11) for jo under these
conditions, using y for the equivalent release
rate B(1 f), gives—

jo ——yvTF(x)n(x) exp~ dy/vT'F(y) (&J, )

Using Eqs. (13) and (14), and performing the
necessary manipulations, we finally obtain

F(g, =y(~/12s e) (vT/ jp) (LF'(0) + (8xe/~)
X(j,/»T)Z, ] —F (0)). (27}

When jo is known as a function of F(0), this
can be solved numerically for F(0), and other
quantities of interest can be found by using the
relations in Section V. For example, Ii can be
computed as a function of x from Eq. (13), into
which n(x) is substituted from Eq. (26). n(x) can
then be computed by coming back to Eq. (26).

There are two general methods by which
equilibrium may be attained, depending upon
the size of y. The first is the one which we dis-
cussed in Section II, in which F(0) falls almost to
zero, and jo becomes much smaller than iob .
This is the only behavior which has yet been
observed.

We see from Eq. (23), however, that if J~)0
and is sufficient1y large, F(0, t) not only does
not fall to zero, but begins to increase after a
short period of decreasing. As long as deeply
trapped electrons are negligible then, it seems
unlikely that F(0, t) will fall to zero at any later
time. Therefore, jo always remains substantially
equal to iob, and, since jo is the equilibrium
current, there should be a second type of equi-
librium in which the equilibrium current must
equal iob . Further, the initia1 current must
equal iob X '(1 —e "), by Eq. (22},and hence the
equilibrium current will be larger than the initial
current. "

If this happens, the current vs. time curve
must be like one of the forms sketched in Fig. 5.
We cannot yet say which form it wi11 follow; we
can only say 'that, from conservation of charge,

n(x') exp~, ~ dy/vTF(y) ~dx'.
)

F(x)n(x) = C/yvT. (26)

Inserting this back into the equation for jo, we
find that C=jo.

DiHeren. tiating with respect to x shows that

(dF/dx) n+ F(dn/dx) = 0,

whence the product of F and e is a constant,
which we write in the form C/yvT:

jdt =ipb„t ~n(x)dx-,
Jo dp

for a value of t such that equilibrium is attained.
n(x) is evaluated by using Eq. (26).

UIG. TRAPPING AT THE ELECTRODES

A possibility which we have not yet discussed
is that the space charge eR'ects which cause the

'~ Compare with the discussion by F. Seitz in Modern
rkeory of Solids (McGraw-Hill Book Company, Inc. , New
Pork, j.940), p. 569,
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t = FpI./4noDi oh„. . (29)

Taking typical values such as were used in

Section II (Fo=10 e.s.u. /cm, I.=0.05 cm, ipb„
=6 X10"electrons/cm'/sec. ), with D as large as
10 ' cm, gives k=10-' sec. In 1 psec. , which is
of the order of the observed half-lives, space
charge would change the 6eld in the diamond by
only about 0.1 percent.

(b) The hypothesis of surface trapping is in-

cornpatible with the conclusion reached in Sec-
tion II, namely, that all the liberated electrons
leave the plasma layer unless the field there is
below 200 volts/cm. For, combining Section II
with surface trapping mould mean that the
current would stay constant until the 6eld in

the plasma becomes small, and then would fatal

rapidly to a steady-state value. Further, the
yield vs. voltage curves mould not agree mith

Eq. (9), as they do, but would saturate at a
quite low voltage.

Should occasion arise, one can construct a
theory based on surface trapping as follows: The
measured curve of initial yield es. voltage is to
be interpreted as giving the variation of jo, the

current through the diamond to vary with time
come from electrons (and/or holes) trapped at
the boundary between the crystal and the elec-
trode, rather than within the diamond. If the
contact between the diamond and the electrode
is not intimate, trapping at the surfaces may well

be a dominant factor. With the gold-evaporated
electrodes which have been used in all of the
experiments witnessed by the author, we believe
that surface trapping is unimportant compared
with trapping in the volume. This conclusion is
supported by at least two considerations:

(a) Enormous surface charges, or, alterna-
tively, enormous times, would be required to
produce appreciable space charge. If the field in

the diamond is reduced to zero, all of the poten-
tial drop (called FoI in the previous sections) is

across the gap between the electrodes and the
diamond. Calling the midth of this gap D, the
field Z in the gap is 2= FpI./D. Assuming that
all electrons released by the bombardment are
trapped at the surface, the surface density of
charge is io8 t electrons/cm', which must be
equated to Z/4pro. Hence:

current leaving the plasma, with field at the
front face. That is, the curve gives

ip =io(F) (30)

F is no longer a function of x.
If a surface charge of density 0 is collected on

one or both faces of the crystal, F and 0 are
related at any time by an equation of the form

F=aFO —bo. , (31)

where a and b are constants, and Fo is the applied
held. 0 and jo are further related; if release of
trapped charge is negligible, for example,

t

0

(32)

Differentiating (31) and substituting for ir from
(32), we get

d F/dh = (d F/dj p) (dj p/d$) = bjp. (33)

In view of (30), this can be integrated at once
to give jo as a function of t.

IX. CONCLUSIONS AND SUGGESTIONS

There is at least qualitative agreement be-
tween the experimental results of McKay and
the theory presented in the present paper. In
assessing the success of the theory, it should be
borne in mind that the theory contains no ad-
justable constants. All constants occurring are
measured by methods independent af a space
charge hypothesis. The theory mas able to
predict one result which was later confirmed
experimentally, and it yields reasonable values
for two independently measured physical quanti-
ties, namely, the initial slope and the time of
in Rection.

The calculations of Section II, which led to
the conclusion that recombination and trapping
in the plasma layer are negligible except at
low 6elds, were based on certain assumptions
about mobilities and cross sections. If these
quantities, when measured, should be found to
dier substantially from the assumed values, it
might be necessary to revise the entire theory.

The postulation of the second type of equi-
librium suggests an interesting experiment. The
quantity p depends exponentially upon tempera-
ture, so, by increasing the temperature, it may
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be possible to achieve this type of equilibrium.

This gives us 6rst, a method of measuring 8„
which does not depend upon having an initially
space charge free crystal. Second, by applying
Iow fields to the crystal, we can measure directly
the dependence of js (at equilibrium) upon field

strength. This same dependence may not hold,
of course, for the ordinary temperatures at
which the crysta1 is usually operated, but the
information should none the less be theoretically
valuable.

Finally, at ordinary temperatures, jQ can be
measured as a function of IiQ, and the results
used in Eq. (27) to determine js as a function of

F(0). This is not a direct measure of F(0),
however, and should preferably be supplemented

by other measurements.

We have emphasized the determination of jQ as
a function of F(0) because it seems to us a good

way of getting some information as to what
goes on inside the plasma layer.

We are considerably indebted to various of our
colleagues, particularly to Dr. R. W. Hamming,
for a discussion of mathematical methods, and to
Drs. McKay and Ahearn for extensive discussions
of their experiments, and the bearing of the
present theory upon them.

The data which we used in preparing Figs. 3
and 4 are from McKay's preliminary data, and
are being carefully checked by him for later
publication. It is thought that these data, al-

though preliminary, are nearly enough correct
so that use of the final data wiII not appreciably
alter the theory or the conclusions drawn from it.
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A large electrostatic analyzer was used in conjunction with the Wisconsin electrostatic
generator for an absolute voltage determination of the Li (pn)Be threshold, an Al~(py)Si'8

resonance, and a F'slpa', blois resonance. Using absolute volts the values found are 1.882 Mev,
0.9933 Mev, and 0.8735 Mev, respectively. The uncertainties in the measurements appear to
be about +0.1 percent.

INTRODUCTION

N absolute measurement of the proton
energy at the Li(py) resonance was carried

out by Hafstad et al. ', using a calibrated resistor
stack made up of I.R.C. metalized resistors.
Parkinson et ul. ' checked this measurement and

agree on a value of 0.440 Mev for the resonance

energy with an estimated error of about two

percent. Based on this determination, work at a
number of laboratories lead to a number of
secondary fixed points (i.e., F(py) at 0.862 Mev
and Li(pn) at 1.856 Mev), which are used widely

as reference voltages. Recently Tangen' has meas-

'L. R. Hafstad, N. P. Heydenburg, and M. A. Tuve,
Phys. Rev. 50, 504 (1936).

'Parkinson, Herb, Bernet and McKibben, Phys. Rev.
53, 642 (193S}.

~ R. Tangen, Kgl. Norske Vid. Sels. Skrifter {1946}NRI.

ured the Li(py) resonance by the method used in

reference (1) and has obtained 0.440 Mev with an
estimated uncertainty of ~ percent.

If one attempts to establish absolute voltage
values above 1 Mv, the resistor method becomes
dificult. In this case some form of electrostatic
analyzer can be used to scale down the voltage to
be measured by a factor of about 100. Hanson

and Benedict4 used an electrostatic analyzer,
calibrated by an eIectron beam, to determine the
following reaction energies: Li(pn) at 1.883 Mev,

Be(prs) at 2.058 Mev, F(py) at 0.877 Mev, and

Li(py) at 0.4465 Mev. An absolute calibration by
direct calculation from the geometry was also

'A. O. Hanson and D. L. Benedict, Phys. Rev. 65, 33
(1944).


