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It is known4 that breaking a diaphragm which separates
regions of diferent pressures in a tube produces a shock wave
and an expansion wave traveling in opposite directions, and
an interface moving between them in the direction of the
shock wave. Across the interface, pressure and flow velocity
remain. constant while the temperature may change. In the
region between the shock wave and the interface, the limiting
value of Mach number applies while no such limit exists for
the gas between the interface and the expansion wave. The
gas between the shock wave and the interface is compressed
by the former, and therefore, its temperature is raised. If the
shock strength is increased to infinity, both the temperature
and the flow velocity behind the shock become infinite in such
a way, however, that the Mach number approaches the finite
limit stated above. If subscripts c and e are used to refer to
the compression and expansion chambers, respectively, and if
the speed of sound before breaking the diaphragm is denoted
by c the pressure ratio across the shock (defined so as to be
greater than unity) which will just produce sonic flow in the
region between the interface and the expansion wave may be
computed as

(Note that y = 1/( of reference 1 =X of references 2 and 3.)
For the special case of a, =a, and y, =y, =1.4, this formula

yields y=3.16. This compares with a pressure ratio of 4.76 to
produce sonic flow between the shock wave and the interface
computed from the relation given in reference 1. In other
words, it is possible to obtain supersonic flow in a shock tube
even though the shock is not strong enough to produce super-
sonic flow immediately behind itself. The Mach number in
the region following the interface will always be higher than
that in the region following the shock unless the temperature
in the compression chamber was so high initially that even
after expansion, the speed of sound in the expanded region was
still higher than in the compression region between the shock
and the interface.

To illustrate how the Mach number in a shock tube may
reach the value 2.42 presented in reference 1, an example was
worked out by means of the method of characteristics. The
shock tube was assumed to be filled with air (y=1.4) and the
initial conditions for pressure, and speed of sound were
p, /p, =106, and a, =a.=350 m/sec. The length of the com-
pression chamber was taken as 0.70 m and the test section
located at a distance of 0.35 m from the position of the
diaphragm. The tube was assumed long enough to eliminate
effects from wave reflection. Figure 1 shows the value of Mach
number at the test section as function of time. As soon as
the shock passes the test section the Mach number becomes
1.15. About 200 microseconds later the interface reaches the
test section and the Mach number is increased to 2.42. This
value is then maintained for about 400 microseconds after
which the Mach number decreases gradually. It is seen that
using the flow following the interface not only eliminates the
Mach number limitation but also may lead to a useful testing
time which is considerably longer than that corresponding to
the flow ahead of the interface.

The fact that there may be two distinct supersonic Mach
numbers occurring during one shock tube experiment is,
perhaps, not generally realized and some of the observed
transients during which steady supersonic flow is established
may, in part at least, be due to the passage of the interface.

+ These comments are based on related work on non-stationary gas flow
vvhich is being supported by ONR through Project SQUID.
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FIG. 1. Variation of Mach number with time at the test
section of a shock tube.

'HE beta-spectra of Sr" and Y~ have been examined in
this laboratory, using the magnetic lens spectrometer

previously described, ' and were found to exhibit a shape
similar to that recently reported by Langer and Price2 for
the forbidden transition of Y".

The Sr~ —Y~ spectra were first investigated here using a
composite source, ' in equilibrium, mounted on a thin Formvar-
polystyrene film carried by a Lucite holder. The observational
data were corrected at low energies for the transmission of the
window of the Geiger-Miiller counter; the correction factor
for this window, which would pass electrons of energies of
12 kev, was estimated by determining the eBect of additional
foils in front of the counter and was significant only for
electrons of kinetic energy below 230 kev. For making com-
parisons with the theoretical momentum distributions, care-
fully computed values of the Fermi function were used which
were in very good agreement with the values obtained by the
use of Bethe's' approximation.

A Kurie plot of the data obtained with the composite source
is shown in Fig. 1, in which the points for the spectrum due to
Sr~ alone were obtained by subtraction of the estimated con-
tribution from the Y~ component. The non-linearity of the
curves thus obtained indicates that the spectra of these two
activities differ significantly in shape from that expected for
allowed transitions and frequently found for forbidden spectra.
To obtain more definitive data on the spectrum of Sr" alone,
a portion of the strontium activity was separated from the
composite source and examined in the spectrometer. A Kurie
plot of the data so obtained, after correction for residual Yso,
is shown in Fig. 2. The non-linear character of this graph
resembles closely that illustrated by Fig. 1.
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FrG. 1. Kurie plot, (N jIF)& es. W, of beta-spectrum obtained
with composite Srdo —Y» source.
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On the basis of tPe theory of shell-structure in nuclei, as
developed by Feenberg and Hammack, ~ it would be reasonable
to consider these transitions to involve a spin change of two
units, together with a parity change. Introduction of the
factor

a = (W' —1)+(Wo —m')',

which is theoretically appropriate for transitions of this type,
leads to the modified Kurie plots shown in Fig. 3. The linearity
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FrG. 2. Kurie plot of beta-spectrum obtained with separated Sr'0 source.
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FlG. 3. Modified Kurie plots, (1V/laF)& ms. W; for the upper, or Y'0
portion of the beta-spectrum obtained with the composite source and of the
spectrum obtained with the separated Srdo source.

thus obtained affords evidence that the transitions are of the
type indicated, for which the special form found for the spec-
trum becomes in agreement with that predicted theoretically.
These spectra are of perhaps particular interest in that the
initial Sr" nucleus and that of the final Zr" product are each
of the even-even type.

The upper limits found for the Sr~ and Y~ spectra are, from
Fig. 3, 2.05 mcs (0.537-Mev kinetic energy) and 5.37 mc2

(2.23-Mev kinetic energy), respectively. These values, deter-
mined in light of the special form found for the spectra, dier
not inappreciably from those reported by Meyerhof, ~ whose
data also, however, give some indication of the same type of
departure from the conventional spectral shape as that re-
ported here.
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'HE bremsstrahlung spectrum has been measured for
19.5 Mev electrons produced by a betatron and directed

against a 0.005-in. thick platinum target. The relative in-
tensity of the x-rays as a function of energy was determined
from the energy distribution of the pair electrons produced in
the gas of a cloud chamber, which was air. Since the pair
production cross section is known for a low Z material (air)
to better than 10 percent at energies between 1 and 20 Mev, '
the x-ray intensity spectrum from platinum can be reliably
inferred from the pair electron spectrum.

Two reports on determinations of betatron x-ray spectra
have been published. ' Neither work permits a conclusive test
of the Bethe-Heitler bremsstrahlung theory applied to elec-
trons of 19.5 Mev energy.

In the present experiment, the x-rays from the betatron
target are collirnated by means of a tapered hole in a 16-in.
thick lead wall. The defining aperture for the rays was the
—,-in. diameter entrance opening of the collimator, which
defined an x-ray beam whose total angle was 0.24'. The half-
intensity total angle of the x-rays from the thin betatron
target was approximately 6'.

Pair electrons produced in an air pressure of 1.4 atmospheres
were curved by a magnetic field of 1540 gausses. 40,000
stereoscopic pictures were taken on 35 millimeter film. Of this
total number, 10,300 pictures have been analyzed. Data were
obtained on approximately 1300 pair electrons produced in
the field of a nucleus and 33 pair electrons produced in the
field of an electron.

The analysis of pair energies was divided into two parts:
{1)The direct image of the film was carefully reprojected on a
plane normal to the cloud-chamber magnetic field direction.
The x and y coordinates of the pair origin, the radii of the
pair particle arcs, and the corresponding chord lengths were
measured. (2) The film was reprojected through the original


