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Transport Phenomena in a Bose-Einstein Gas
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This paper develops the forrnal first order perturbation theory of transport phenomena in an ideal
Bose-Einstein gas.

The perturbation relaxation time is an unknown parameter in the theory. The ratio of thermal
conductivity to viscosity is independent of this relaxation time; it increases discontinuously by a
factor almost 2 at the Bose-Einstein condensation temperature Ty. The isothermal Knudsen heat of
transport through a small hole, classically equal to 2kT, drops rapidly to zero as T falls to Tp. the
Bose-Einstein gas flowing isothermally through a small hole carries no heat when its temperature is
below Ty and it exhibits corresponding thermo-mechanical eGects.

The mathematical analysis is carried out in terms of an approximation in which the lowest energy
states of the gas are treated discretely while above an arbitrary level they are treated by an integration
approximation. The treatment is capable of generalization to models in which there are anomalies in
the lowest level spacings.
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S briefly reported previously' the transport
phenomena in an ideal Bose-Einstein gas show

some interesting analogies with the peculiar phe-
nomena in liquid helium II. In the previous work
only the first approximation was used, namely the
integration approximation familiar in discussions of
the equilibrium properties of the Bose-Einstein
gas. ' Here we proceed to the second approximation
and include a finite (arbitrary) number of the lowest
states from zero up to e, summed discretely. The
transition temperature rg at which condensation
in momentum space sets in depends on the energy
~, chosen, and this dependence is examined in some
detail.

Velocity distribution functions are set up and
first order perturbations are defined. Boltzmann
equations for the rate at which these perturbations
tend to be removed by collisions are expressed in
terms of a relaxation time 7-„. This relaxation time
could in principle be calculated from quantum
theoretical considerations if a definite model were
adopted for the atomic forces. ' However such a
calculation would involve considerable speculation
especially with regard to the collision cross section
of the particles condensed into the lowest state. 4

We therefore confine ourselves to a formal develop-
ment in terms of 7.„as an unknown parameter.

The perturbations here considered are such that
the total number of particles in any given energy
range of the continuous spectrum or in any one
level in the discrete spectrum remains constant and
equal to the equilibrium number. It is the spherical
symmetry of the velocity distribution in each such

'W. Band, Phys. Rev. 75, 339A (1949).' J. E. Mayer and M. G. Mayer, Statistical Mechanics
(John Wiley and Sons, Inc. , New York, 1940).

'E. A. Uehling and G. E. Uhlenbeck, Phys. Rev. 43, 552
(1933);E. A. Uehling, Phys. Rev. 40, 917 (1943).

4 J. de Boer and J. van Kranendonk, Physica XIV, 442
(1948); J. de Boer, Physica X, 348 (1943).

range or level that is perturbed. It is implied here,
as in all classical first-order perturbation theory,
that the relaxation time of such perturbations is
long compared with the relaxation time for adjust-
ment of equilibrium between the numerical popu-
lations of the various states. This assumption may
in fact be invalid below the transition temperature
where, according to ideas expressed elsewhere, ' the
transition probabilities between the lowest state
and the excited states may become so low that even
perturbations like time dependent variations of
temperature may necessarily involve disturbances
of equilibrium in the numerical distribution. We
shall not consider this kind of complication in the
present discussion.

The energy per particle in the lowest energy
state may be assumed independent of the popula-
tion in that state. This is consistent with the
picture of an ideal gas in an infinite enclosure and
essential to the validity of statistical formulas.
Under this assumption the first-order perturbation
theory leads formally to the interesting result that
below the transition temperature a temperature
gradient produces a mass flow which cannot be
prevented by any opposing pressure gradient. This
is because below the temperature r~ the condensed
particles exert no pressure and the pressure of the
excited particles is a single valued function of tern-
perature and independent of the density of the gas.
The temperature gradient causes excited particles
to flow along with the heat current and condense
into the lowest state at the point of heat removal;
but there is no mechanism provided for the return
flow of the lowest-state particles in spite of the
concentration gradient set up. However admitting
that the particles have finite size and that the
energy of the lowest state is not entirely inde-
pendent of its population, we are able to imagine

~ L. Meyer and W. Band, Phys. Rev. 74, 386, 394 (1948).
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that the concentration gradient of lowest-state
particles will drive them up the temperature
gradient and so balance the mass flow of the excited
particles down the temperature gradient.

The thermal conductivity of such a model is
found to increase by a factor of about 2 as T drops
through T&, but then to drop rapidly with further
decrease of temperature. There is no supercon-
ductivity for heat in the ideal Bose-Einstein gas.

The viscosity of the gas is found to equal the
product of relaxation time and pressure. The curve
of pressure v. temperature decreases more rapidly
below T& than above, and this is roughly analogous
with the behavior of the viscosity in liquid helium,
but there is no quantitative similarity. In particular
both the heat conductivity and the viscosity are
proportional to the relaxation time so that it is
impossible to have a decrease in the viscosity and
at the same time an increase by many orders of
magnitude in the thermal conductivity no matter
what anomalies one might postulate in the relaxa-
tion time. The ratio of thermal conductivity to
viscosity is independent of ~„, and this is found to
have a discontinuity only just twofold at T&, in
liquid helium the factor is about 10'.

This is the greatest apparent difference between
the transport properties of the Bose-Einstein gas
and those of liquid helium. This result is quite con-
sistent with the idea' that the anomalously high
heat conductivity of helium I I is due not directly
to statistical degeneracy of any form, but to the
presence of second sound waves. These waves are
believed to be essentially a disturbance of equi-
librium between the numerical populations of the
lowest state and the excited states, which has been
explicitly excluded from the present calculations.

The isothermal heat transport Q& carried by unit
mass flowing under a pressure gradient is calculated
from perturbation theory and the result checks with
the thermodynamic expression Q2 P+P V. Q~ falls——
slowly from its classical value 2.5kT at high T to a
limit 1.28kT~ at T~.

Consider two enclosures filled with the same Bose-
Einstein gas and connected by a hole so small that
no significant perturbations are caused in the
velocity distributions of either enclosure. In the
presence of the temperature difference AT there
will exist a pressure difference ~ if no net mass
flow is permitted through the hole. The ratio
~/AT is sometimes called the Knudsen pressure
coefficient. ~ The Knudsen isothermal heat transfer
Qi is defined as the heat carried per unit mass in a
flow due to a pressure difference across the hole but
no temperature difference. Both these quantities
are found from an ordinary kinetic theory calcu-

'L. Meyer and W. Band, Phys. Rev. '73, 226 (1948).
~ M. Knudsen, Ann. d. Physik 34, 603 (1911);S. Weber,

Zeits. f. Physik 24, 267 (1924).

lation in terms of the Bose Einstein velocity dis-
tribution functions, and the results agree with the
thermodynamic relation'

AP/6 T= X(Q2 —Qi)/T V.

The heat transfer Qi goes to zero rather sud-
denly at T&. This is remarkably like the thermo-
mechanical- anomaly in liquid helium fiowing
through fine slits it even implies a sudden increase
in the Knudsen pressure coefficient, and this may
be regarded as a close analogy with the so-called
"fountain pressure" effect in helium II.

In the Bose-Einstein gas this effect is due entirely
to the statistical degeneracy and has nothing to do
with the van der Waals forces. It is due to the fact
already stressed, that below T& the excited par-
ticles exert a pressure that is a single valued func-
tion of the temperature alone, so that if there is no
temperature difference across the small hole there
will be no net flow of excited particles either. It is
not due to any prevention of the flow of excited par-
ticles in either direction, but merely an exact
balance of flow in both directions. The only net
mass flow will be composed of lowest-state particles,
and the only pressure difference will be due to the
dependence of the lowest energy levels on their
population. The only energy transferred through
the hole will be this difference in the lowest energy,
and if we go to the limit of perfection in the ideal
gas this vanishes; and in any case it is negligible
compared with the thermal energy.

In the search for a theory of the peculiar proper-
ties of liquid helium we are confronted by the fol-
lowing obvious obstacle: the theory of a quantum
liquid could conceivably be derived unambiguously
from the theory of classical liquids by means of
some form of the correspondence principle, but no
really acceptable molecular theory of the classical
liquid as yet exists in a form that can be handled
with any degree of facility. The attempt to over-
come this obstacle and to approach the quantum
liquid via the classical liquid may be called the
vertical approach. It is well illustrated by the
recent work of Born and Green, " and also by the
present writer's extension of J. E. Mayer's classical
statistical thermodynamics of mixed liquids to
include the effects of quantum degeneracy. "

Another simpler if less rigorous approach is
however possible. The problem of the classical
liquid has been attacked from the theory of the

8 C. Wagner, Ann. d. Physik V3, 629 (1929); L. Onsager,
Phys. Rev. 38, 2265 (1931);R. S. de Groot, Physica 13, 555
(1947}.' L. Meyer and W. Band, Naturwiss. , in press (review of
the present state of the helium II problem).

M. Born and H. S. Green, Proc. Roy. Soc. A189, 103
(1947);A190, 455 (1947); A191, 108 (1947);A192, 166 (1948};
and Nature 161, 391 (1948}.

"W. Band, J. Chem. Phys. 16, 343 (1948).
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classical solid on the one side, and from the classical
gas on the other. Parallel to this attack, we may
approach the quantum liquid problem from either
side—the quantum solid or the quantum gas. Such
a horizontal approach to the quantum liquid was
employed in some early work by F. London;" it
has one significant advantage over the vertical
approach: namely that the theories of the quantum
gas and the quantum solid are fairly well developed
and comparatively elementary, so that the starting
point is more easy to handle than for the vertical
approach from the classical liquid.

In the present paper we have not attacked the
problem of the quantum liquid directly, but have
made a preliminary study of the transport proper-
ties of the degenerate Bose-Einstein gas in the
hope that by so doing we may consolidate the
horizontal approach to the quantum liquid. It is
at least encouraging that some of the transport
properties of the gas are found to be remarkably
similar with those of helium II.

states the s-states and the states in the integral the
n-states.

The statistical weight of the discrete state e, is
the volume in momentum space between the energy
levels t., and ~,+l.

w, = (4~/3h') t (2mp, +g) & —(2mp, )& }

= (2mmkT) &h '(4/3(s)") b (p,+g/kT) i. (1.2)

The suKx s+I has been used deliberately in the
last expression to permit the lowest state to be
included formally. To express (1.1) in a form that
is more easily handled we need a number of ab-
breviations and theorems that will be collected here
rather than in an appendix, because without seeing
them, the reader would find many of the ensuing
equations meaningless. The theorems have little
intrinsic mathematical importance so their proofs
are not given.

Definition:

EQUILIBRIUM PROPERTIES OF THE
BOSE-EINSTEIN GAS

2"+'/(~)l
I(n, j)—=

1 3 5 (2n —1) &~;„~&

Z "8 dZ

I(n j)=I(o j)

Fir'st approximations to most of the properties of
the ideal Bose-Einstein gas can be derived from a
smoothed integration over the entire energy spec-
trum. In this paper we use instead a method similar
to that due to F. London" in which the lowest
energy states are included discretely, and only those ' ~ = ) J (iv)&
states above some arbitrary level treated approxi-
mately by integration. Theorem:

The Gibbs free energy G=kT lnX is determined
by

p, /k T=p—,'/2mk T. (1.3)

[n, j=1, 2, 3, .]

(1.4)

X/ V = (4s/h') t X 'e&'~'"" 1}——'p'd p—

+Q w Ig—lees/kr 1 }
—1

e=0

where pq is the lowest momentum not included
discretely, e, is the energy of the sth discrete state,
m, the weight per unit volume of the sth state, ~0

and wp belong to the lowest state (pp=0), and p. , w,
to the highest state in the discrete spectrum. For
the purposes of the present paper it is convenient to
express this equation in the form:

X/V=(4s/h') t p' P X'e»" " dp
p, i=1

+P w, QX'e
s=0

2m —P/(~)$
+e 7P (r~)" ' '* (15)

&=p 1 3.5. . (2n —2k —1)

The integrals I(n, j) all approach unity in the
limit pl~0.
Definitions:

A(n, m) —=Q I(n, j)X / j",
i= 1

Ii(g, m) —= q& P e ~&X&/j"
i= 1

II,(g, m) —= ep, ' p e &'X'/j", q, = p, /kT (1.8).
i= 1

Theorems:

The radius of convergence of the j-series in A(n, m)
is

X = 1/(1 —e), all n, m.
For convenience we shall call the lowest energy The series H, jg, mj all diverge when

"F. London, J. Phys. Chem. 43, 49 {1939);Phys. Rev.
54, 947 {1938). g~gsslkT
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The radii of convergence, e"'~~ form a monotoni-
cally increasing sequence:

seolar (se&lkr (.. . (eeslkr (1/(1 y) (1 1 1)

The series Ho(q, m) is thus the first to diverge as X

increases. The following theorems on the first vari-
ations of the A's and H's are true if P~ is kept
constant:

2"/(~) &

AA(n, m) =A(n, m —1)A Ink+
1.3 5 (2n —1)

XIX(n+2, m —n —2)A lnT, (1.12)
H, .(0, 0) =Q e '"" =—'kT/r:, .

j=1
(1.18)

where the s=0 term is absent, and A, (1, 3) and
H„(0, 0) denote the values at X = 1. When T
goes below Tq the right hand side of (1.17) de-
creases, and the deficiency is made up by the
divergent H0 term.

In (1.17) the s-sum actually makes only a small
correction to the calculation of T~, and it is suf-
ficient to evaluate it to a first approximation. If we
agree to keep e,/kT((1, we have

To the same approximation the s-sum in (1.17)
becomes

AH, (q, m) =H, (q, m —1)A In), + {qH,(q
—1, m) s=1

AH(q, m) =H(q, m —1)A Ink+ {qH(q —1, m)

Hq, m——1 A lny, 1.13 g

(4/3(vr) ~) Q (kT/e, )A(r.,+g/kT) &

Theorem:

—H, (q, m —1) }A lny, . (1.14)
g

=: (2/(vr)&) P (kTr:,) lAr, -
s=l

2"/(s.)i = (4/(7r) &) {(e,/kT) & —(e,/kT) & }. (1.19)
A(n, m) =A(n —1, m) +13 5 (2n —1) The strict requirement for the accuracy of this

XH(n —,', m n+—~~) (1..15) result is thus
(../kT) ~&&1. (1.20)

In terms of the foregoing notation we now write
(1.1) in the form:

g

~/y = (2~mkT) &k 'A(1, -', )+—g(4/3(~) &)

s=0

XA(e„+g/kT) ~FI, (0, 0) . (1.16)

The lambda-transition occurs at that temperature
which forces ) to approach the smallest of the
radii of convergence: namely the value unity that
makes the series Ho(0, 0) diverge.

The individual terms in the s-sum of (1.16) are
generally exceedingly small compared with the
leading A-term; they represent the populations of
the individual discrete states, whereas the A.-term
represents the integral (or sum) over all the n-states.
As soon as the value of ) is close enough to unity
the population of the lowest state begins to in-

crea,se, and because when X=1, Hp(0, 0) actually
diverges, there is no limit to the population of this
state. However ) has to be so close to unity to
make Hp(0, 0) comparable with the A. term, that
we can write X=1 in all the other terms in (1.16)
in order to estimate the transition temperature.
This temperature, T& is therefore given by

Now the quantity e, is entirely arbitrary, and it
is clear that the correct value of Tg should be inde-
pendent of the choice of this parameter. The ap-
proximation (1.18) will therefore presumably be
acceptable if the parameter can be so chosen that
T~ has a stationary value with respect to variations
of e„all other quantities remaining fixed.

Using the definitions (1.3), (1.4), (1.6) and the
theorem (1.5) we can write the bracketed expression
on the right hand side of (1.21) in the form:

2 {I —I'((iy)')+(2/(~)')(iy)'s-"} j '
l

+ (4/(~) ') y'—= F'(y), (1 22)

where P(x) is the probability integral normalized
to unity. Differentiating this with respect to
we find, if y is small

BF/By = (y/~)'. (1.23)

On this understanding the transition temperature
is determined by

X/ V= (2vrmkT), ) &k

X {A.(1, —;)+(4/( )~)(../kT)~}. (1.21)

X/V= (2ÃmkT), )&k ' A, (1, -')+P(4/3(s. )~)

This is positive and vanishes only at y=0, but
yBF/By remains small compared with y for small y.

s=1 Thus any choice of y conforming to (1.20) is such
that there is no appreciable dependence of Tq on y.

XA(~ /kT~)tH (0 0) (1 17) Choosing for example y= 0.01 we have evaluated
F(y) exactly by direct summation and compared
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with the result given by integration approximation
(pp=0). We find

F(0.01) =2.616, F(0) = 2.612. (1.24)

The modification in Tg due to this second approxi-
mation is therefore less than 0.2 percent. * Implicit
in this calculation is the assumption that the
volume V of the gas is large enough to ensure the
presence of a considerable number (say ten or more)
of energy levels in the range 0.01kT. In fact the
volume has to be less than about 10 "ccbefore this
condition would be formally violated. '

Ke conclude that for the ideal gas the integration
approximation gives sufficiently precise values for
the transport properties: their computation gener-
ally involves series that converge more rapidly than
those involved in the evaluation of T~. The nu-
merical results given in the present paper have
been calculated only on this approximation, but
the formal analysis has been carried through in
terms of the second approximation because it will
later enable us to study the properties of special
models in which any desired anomalies may be
present in the lower energy levels.

Below the transition temperature T~ the number
of particles X„in the n-states is given by

N„/ U= (2mmkT)&h 'A, (1, P ) (1.25)

and the total number of particles in the s-states is
the difference

and write

Np/U=N/V —(2mmkT)&h '
X {&.(1, -', )+4/(~)&)(p. /kT)&I (1.27)

Because both A.(1, -', ) and p,/kT depend on T
below T&, this equation is not exactly of the same
form as that given by the integration approximation,
namely:

Nol V= (N'/V) i1 (T/T&)'*I

But because the T-variation of the expression in
{bracketsI in (1.27) is essentially proportional to
its q-variation, and because we have chosen y at T~
so that the p-variation is almost zero, we may
assume also that at least near to T~ its T-variation
is also almost zero. Hence the two expressions for
Xo almost coincide.

The total energy B„ofthe particles in the n-states
is given by

8 / V= (3/2)kT(2n. mkT)&h 'A(2, 5/2), (1.28)

while the energy in any one of the s-states is given
by

P =kT(2irmkT)&h 'A(2, 5/2)
P, =( 2/3) kTw, H(1, 0),

and obtain the total pressure exerted by the gas:

(1.30)

F.,/ V =u, kTH, (1, 0). (1.29)

The general relation P=2E/3V is still true here,
and we can immediately write down the partial
pressures due respectively to the e-particles and to
each of the s-states:

Q N, / U = N/ U —N„/ V.
s 0

(1.26)
P=kT(2smkT)Ph ' A(2, 5/2)+P(8/9(ir)&)

However the number in the lowest state alone has
to be found from a more precise calculation of the
s-sums in (1.1.7). Provided we keep close enough to
the transition temperature to allow (1.20) to
remain valid, we may use (1.21) instead of (1.17)

XA(p, +i/kT) &H, (1, 0) . (1.31)

Using (1.16) we then find the equation of state
in the more convenient form:

g

A(2, 5/2)+Q (8/9(ir)')A(p. +i/kT)&H, (1, 0)

I'V=XkT
z

A(1, 3/2)+P (4/3(7r)&)h(p, +i/kT)&H, (0, 0)

(1.32)

s=o

Going over to the integration approximation we find

T & T&„P= f(5/2)kT(2mmkT)lh —',
T=Ti„P= f'(5/2) k Ti, (2m mk Tg) ih ',
T ~&T),, , P/P), (T/T), ) |'(3/2) f (X—,—5/2)

—: 1 0. 3/2) 1 (1, 5/2),
~ This discussion of the lambda-point divers essentially

from that given by F. London and referred to above. In his
treatment the discrete set of states was lumped together and
the s-sum of our expression (1.1) was represented only by a
sing1e term in which the mean energy of the particles in the
discrete states appeared in the exponent. The radius of
divergence of this series was therefore e's "~ where e, was the

where f (n) is the Riemann zeta-function

2 1/i"
1=1

and 1 (X, n) is an "incomplete" Reimann zeta-

mean energy of the s-particles. London used a constant value
for this mean energy ~, =3~,/5 where e, was the energy of the
lowest state in the integral, or the highest discrete state.
This would be correct only at high temperatures, but near the
lambda-point the mean energy drops towards zero. London's
calculation would lead to a value of T'g appreciably diA'erent
from the result of the integration approximation even for the
ideal gas.
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function:

These are limiting forms of the A functions when q
is zero.

Figure 1 shows the temperature dependence of
the parameter X on the integration approximation,
and Fig. 2 shows the pressure curves for several
arbitrary values of 1&, calculated for a gas with
atoms equal in mass to those of He4.

= (m/h)' Q X&'e &'""'~" dvgv„dvg. (2.1)
j=1

The unperturbed distribution function for particles
in each s-state gives the number of particles per
unit volume per unit solid angle:

f.p(v)dQ=iv, H, (0, 0)dQ, dQ=sin8d8dC/4v. . (2.2)

The first function applies to all velocities v&~ pi/m
while the others apply only to the particular
velocities v„respectively, the magnitudes v, being
constant in each function.

Consider the perturbations that leave the energy
levels unchanged but which are of such a form that
the functions become

where

and

where

f (v) =f p(v) +f i(v)

&„i(v) = —r„v,8f„p(v)/8x

F = — v af.,,(v)/ix )... .
s=i, 2, 3- -.s

(2 3)

(2.4)

FIRST-ORDER PERTURBATION THEORY

The unperturbed distribution function giving the
number of n-particles per unit volume in a cell
dvQv„dv. of velocity space (see Eq. (1.1)) is

f„p(v)dvgv„dv,

In (2.3) v, =v cos8, while in (2.4) v has the mag-
nitude v, = (2 p, /m) & and v„=v, cos8.

These are Boltzmann type perturbation equa-
tions and involve no changes in the equilibrium
populations of any given energy range or in any
given discrete level. 7- and 7, are relaxation times
for the readjustment of equilibrium in the spherical
symmetry of the velocity distributions. One would
like to be able to compute these times from a com-
plete theory of collision probabilities between the
atoms. However such a calculation could hardly be
free of speculative elements specially with regard
to the collision cross sections attributable to the
particles condensed into the lowest energy level.
Fortunately, the formal theory can be developed
without such a calculation, the results being ex-
pressible in terms of the relaxation times as unknown
parameters. For notational symmetry we retain all
the 7, as distinct, but eventually only v o for the
lowest state will be considered as possibly different
from the others.

It will further be supposed that the relaxation
times are long compared with the relaxation time,
which must also exist in principle, for adjustment
of equilibrium between the relative numerical
populations of the various states: in other words
all the perturbation functions contain the same
value of the equilibrium parameter X at any given
point in space.

This last assumption may in fact be invalid
below the lambda-point, according to ideas de-
veloped elsewhere the transition probabilities
between particles in the lowest state and those in
the excited states may become so low as to cause
trouble. We shall not consider this kind of com-
plication in the present paper.

Using the above perturbed distribution functions
we obtain for the net flow of particles per second

P ni I0 dynes/cme

22—

0 2 20

I l
r 8 ToK

F&G. 1. The temperature dependence of the statistical param-
eter X calculated on, the integration approximation.

Flo. 2. The pressure-temperature curves for several arbi-
trary densities calculated for a gas with atoms equal in mass
to those of He4.
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across unit area in x-direction: tt -ie
~ X IO eras/deg cm sec

J=~ * v cos8f„t(v)dvgvydv,

&tiervna~ Canductiuity
Relocation Tinie

tg v vvvn Q gris —ime ltkrdvgv dv

1 3 5 (2n+3)
= (4/3)(~) t(2kT/m)"+' '

2"+3

XP I(n+2, j))'/j "+t. (2.6)
j~1

This theorem permits (2.5) to be written out:

I= —v „(kT/m) (2vrmk T) tk—'

X IA. (2, 3/2)d ink/dx

+(5/2) ~(3, 5/2)d lnT/dx I

2—P(2v, /3) (k T/m)tv, H, (1, —1)

X Id lnX/dx d ln tv, /d—x I . (2.7)

The net flow of energy per second across unit area
is similarly

. Cf't', ,W=*) J )
*-,'mv'v cos8f„,(v)dvgv„dv,

tI-0" e=0
e,v, cos8f, i(v)dD (2.8)

+Q J
v, cos8f„(v)dQ, (2.5)

ft=0 4'=0

where the integral sign ~ fff'* is intended to
indicate that the integration is to be taken only
over the region in velocity space outside of the
sphere of radius v, =(2e,/m)t. To handle this and
similar integrals we use the following additional
theorem:

15 Is I v
1 a TeK

Fzg 3 v'h. Thermal conductivity curves for a gas with atoms
equal in mass to those of He4.

XA(c,+i/kT) tH, (2, —1) )d lnli/d lnT

+ (35/4)~(4 7/2)+2 (8/9(x)')
8=0

X(v /v„)h(e, + /kT)tH, (2, —1) . (2.10)

The thermal conductivity is to be measured in the
absence of any net mass flow, and this condition,
namely J=0, used in (2.7) determines the variation
of lnX. Thus:

and again using (2.6) this can be written in the form:

W= —(v„/m)(kT)'(2vvmkT) tk '

X I (5/2) A(3, 5/2)d lnX/dx

+ (35/4) A(4, 7/2)d ln T/dx I

—P(2/3)(v, /m)(kT)'tv, H, (2, —1)

X (d lnkldx —d lne, /dx I. (2.9)

Expressed in terms of the temperature gradient,
we may write (2.9) as

W = —(d 1 Tn/d )(x/vm) (k T) (2vmvkrT) tk '

X (5/2)&(3, 5/2)+Q(8/9( )'*)(,/ .)

J=O, d lnli/d InT=—

g

(5/2)A(3, 5/2)+Q (8/9(vr)'*)(v, /v„)A(e, i/kT)tH, (1, —1)

g

A(2, 3/2)+g(8/9(vr)t)(v, /v„)A(e. /kT)tH, (1, —1)

(2.11)

At sufficiently high temperatures (2.11) reduces to
5/2 and the thermal conductivity becomes:

T»Tv„Z= W :dT/dx-
= —(5/2) (v „/m) (X/ U) k'T.

Generally on the integration approximation we find

&= —(5/4) (k'Tlm) (A'/ U)
XL7r(&, 7/2)/|(&, 3/2)
—5{i(l~, 5/2)/|(l~ 3/2)I'3 (2 12)
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T&&7)„q= 7 „I. (2.20)

This agrees with the classical kinetic theory if we
use the classical expression for the mean free path
and mean speed with which to express the relaxation
time. Generally the integration approximation gives

T& Tg and T&T)„g=r P (2.21)

a result which holds for all temperatures.
The most significant consequence of these cal-

culations is obtained by taking the ratio between
X and g, because this is independent of v. Figure 5
shows the curve. There is a discontinuity of about
two-fold at Tq, but K/q remains finite below Tq so
that it is clear that no assumed anomaly in ~„at 1~
could give both superfluidity and superconductivity
for heat below the transition temperature.

THE KNUDSEN PHENOMENA

Exclude from the range of integration the region
of momentum space in which the total momentum
is less than pi so that

P.'+Pm &~ P,' where P~ =P„'+P.'. (3.1)

The number of n-particles with x-momentum within
the range p to p, +dp, incident per second on unit
area normal to the x-axis is

n(p, )dp, = (s/3m) pgp, )t Q )j.'
P

j=l

Bu/By. The result turns out to be

q = 7„P.A(3, 5/2)/A(2, 5/2)
g

+Q r.P, (e./kT). (2.19)
s=0

We note specially that the lowest state contributes
nothing to the viscosity because it exerts no pres-
sure. At high temperatures (2.19) reduces to the
simple result:

~(- = ~~(1/2m) (p +p*') n(p*)d p'

The result is

(3.6)

e( =4s-m(k T) 'k '
X {H(0, 3)+EE(1, 2)+-,'H(2, 1) }. (3.7)

For the s-states, where each s-particle carries the
same energy for any given value of s, we find the
energy arriving per second per unit area:

e(, = —,'w, (1/2m) &(kT)'H, (-,', 0). (3.8)

To obtain the Knudsen phenomena, consider two
enclosures filled with the gas at slightly different
pressures and temperatures, and connected by a
hole so small that no appreciable disturbance in
the mean velocity distribution of the gas occurs in
either enclosure in the immediate neighborhood of
the hole. The net mass flow through such a hole
is its area multiplied by the first variation of the
number

2

n( n(„+—=P n(, .
s=0

(3.9)

n(„=— n(p, )dp, =2sm(kT)2k '
~0

X {H(0, 2)+H(1, 1) } (3.4)

and equals the total number of n-particles striking
unit area per second.

Assuming spherical isotropy of the velocity
distribution in each s-state, it is easy to calculate
the number of such particles striking unit area:

n(, =-', (X,/U) (p, /m) = -',m, (2kT/m)&H, (-,', 0). (3.5)

The pressure exerted by the gas can be obtained
from these by integrating expressions like 2p,
times (3.2). The results confirm Eq. (1.30). The
kinetic energy carried by the particles arriving per
second per unit area is found by integrating the
expression, for the n-states:

where
)(e—j (p~+pg2) /2rrsirTd*2

The condition for a steady state, zero net mass flow,
is

or
P =p~' —p*' lf

I p*l &
I p~ I

I p*l &
I pi I

This integral can be written in the form

(3.3)
an(=0. (3.10)

Put this condition in (3.4), (3.5) and (3.9) and
find the following value for the variation of lnX as
between the two enclosures:

6 InT

Z

2H(0, 2)+2H(1, 1)+H(2, 0)+P(2/3)g(e, +~/kT)&H, (-'„—1)
s=0

H(0, 1)+H(1, 0)+Q(2/3)A(e, +g/kT)&H, (-', , —1)
s=0

(3.11)

We next write out the first variation of the pressure enclosures required to prevent a net mass How
(1.31) and use thc theorems (1.12) to (1.14). Then under the temperature difference AT, by using
obtain the pressure difference between the two (3.11) in the first variation of the pressure. The
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result is the Knudsen pressure coefficient:

~(2 5)+Z(8/9(~)')~(e. +i/kT)'H. (1, —1)
e~o 5 ink

g 6 lnT
~(1, l)+2(4/3( )')~(.+ /kT)'H. (0, o)

a=o

(5/2) A(3, 5/2)++(8/9(s) &)A(e,+g/kT) & (H„(0, 0) IZ, (—1, —1)+EI,(1, 0) I

(5/2)A(3, 5/2)+Q(8/9(s)1)h(e. +g/kT)&H, (2, —1)
tt~o

Q2 (3»)

At sufficiently high temperatures most of the terms
in this expression be ome negligible and we find the
classical result:

T» T)„AP/AT = (Nk/ V) (5/2 —2)
= —,'Nk/ V. (3.13)

On the integration approximation

H(0, m) = I.(X, m)

while EI(n, m) =0, n WO. Therefore in place of (3.11)
we have

d, Ink/5 InT = —2I (X, 2)/I'(X, 1) (3.11a)

while the Knudsen pressure coefficient becomes

VhP/NkhT=SQ2/2 —2I'(X, 2)/I (X, 1). (3.12a)

The isothermal Knudsen heat transfer is obtained
from the isothermal variation of the energy flow

From quasi-thermodynamics it is expected that

VhP/NkAT = (Qg Qg)/—kT (3.16)

and it is obvious that the integration approxima-
tion, represented by (2.15), (3.12a) and (3.15) that
this relation is identically satisfied. If we use the
more exact expressions, and accept the same ap-
proximation as in (1.18) for evaluating the cor-
rections, we easily confirm that (3.16) is again
satisfied.

The actual value of Q& given by (3.15) is of con-
siderable interest. The denominator becomes infinite
at Tq and remains infinite at lower temperatures, so
that the heat transferred through the small hole
vanishes there. The same result follows on the
second approximation. Inspecting (3.11), which
yields this second approximation for Q&, we note
that the series

g

H(2, 0) and Q w,H. (-', ,
—1)

s=o
e(= e(-+Z e(' (3.14)

We use (3.7) and (3.8) and divide the result by the
isothermal first variation of n( given by (3.9) to
obtain the mean energy per particle flowin on
average across the hole when there is a pressure
difference but no temperature difference. This is the
isothermal Knudsen heat transfer Q~ and we find
that

Q&/kT is exactly equal to —b, InX/5 lnT

as given by the expression (3.11). We may write
this on the integration approximation:

Qg/kT=2/(X, 2)/I (X, 1). (3.15)

The curve in Fig. 4 is drawn from this equation.
It has the classical value 2 at sufficiently high
temperatures,

become the dominant terms in the numerator, while
the series

z

H(1, 0) and P w, H, (~, —1)
s=O

are the dominant terms in the denominator. The
ratio of these terms is not greater than e,/kT, and
in fact equals the mean energy of the lowest states
divided by kT, when T~& T&. The mean energy
vanishes at and below the lambda-point, because of
the greatly increased population of the lowest state,
so that again we obtain the same result: the Bose-
Einstein gas cannot transport heat during isothermal
gow through a small hole at temperatures below the
lambda transition.
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