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Several of the known solutions of the Einstein field equations are re-examined and it is shown that
these solutions are special cases of more general solutions of the field equations. The explicit solution
of the field equations in terms of known functions is also found for the case of Volkoff's massive
spheres. In the last section of this paper a mathematical procedure for generating solutions of the

field equations is outlined.

1. INTRODUCTION

N a paper published some time ago R. C.

Tolman! pointed out some of the difficulties in
obtaining explicit solutions of Einstein’s gravita-
tional equations in terms of known analytic func-
tions. It was pointed out how few such solutions
were known, and in this paper methods were con-
sidered by means of which eight solutions were
obtained. Some of these solutions had been dis-
covered by other people using different methods.
Tolman considered a sphere of fluid at rest in a
coordinate system for which the line element has
the form:

ds*=e’di® —erdr*—r’d6*—r? sin®6d¢?,  (1.1)

where A, v are unknown functions of 7 alone. For
an isotropic sphere of fluid described by (1.1) the
pressure p and density p must satisfy the relations:

8rp=e2(v' /r+1/r*) —1/r2, (1.2)
8rp=e(V'/2—NV' /A+ (' —N)/2r+2"2/4), (1.3)
8ro=e\/r—1/r)+1/r, (1.4)

p'=—(p+r)'/2, (1.5)

where the prime denotes differentiation with respect
to r.

It is well known that the equality of (1.2) and
(1.3) automatically ensures that (1.5) is satisfied.
For this reason the mathematical problem resolves
itself into obtaining solutions of the equation re-
sulting from the equality of (1.2) and (1.3). Since
we have two unknowns A and » and only one
equation the problem is indeterminate as it stands.
In order to ensure a unique solution it is necessary
to add a second relation involving A and ». The
most satisfactory procedure would be to choose
this relation by means of some physical condition,
say an equation of state involving p and p which
would then ensure that the resulting solution would
be of physical interest. Tolman has pointed out
however that such a procedure is almost impossible
to carry through because of the complicated non-
linear character of the expressions involved. For

I R. C. Tolman, Phys. Rev. 55, 364 (1939).

this reason, the usual procedure is to choose the
auxiliary relation so that a mathematical simplifi-
cation takes place in the equation to be solved.
This procedure is not too satisfactory in that most
of the solutions obtained in this way will not be of
physical interest.

It is useful to point out one or two guiding
principles in generating solutions of the field equa-
tions. If one assumes that the distribution of
density p=p(r) is known, then (1.4) can be inte-
grated to determine e~*. For ¢~ known, the equality
of (1.2) and (1.3) results in a Riccati equation of
the first order in ¥, It is of course well known that
this equation is not in general solvable by quadra-
tures but there exists an extensive literature on the
equation which can be used to find solutions ex-
pressible in terms of known functions. If it is
assumed that the gravitational potential e’ is
known, then the equality of (1.2) and (1.3) yields
a linear equation of the first order in e™. Such
equations can always be solved by quadratures.

In our present paper we shall use the methods
briefly outlined above to obtain several new solu-
tions of the gravitational field equations. We shall
also re-examine several of the known solutions and
show how they can be generalized.

2. BOUNDARY CONDITIONS

For a line-element of the form (1.1), the
Schwarzschild exterior solution is known to be:
e’=er=1-2m/r, (2.1)

where m is the mass of the sphere as measured by
its external gravitational field. For this reason any
solution for e” and e valid in the interior of this

sphere must satisfy the relations:
ee=er=1—-2m/r, (2.2)

where 7, is the value of 7 at the boundary of the
sphere. In addition we require the pressure p to
vanish when r=r,.

From (1.2) this implies:

eMrv+1)—1=0, at (2.3)

Since e is continuous at the boundary, the three
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boundary conditions are equivalent to the require-
ment that e’, e’»/, and e be continuous across the
boundary of the sphere. From this it is easy to see
that the solutions of the field equations which we
seek will be such that e’ contains two arbitrary
constants, and e~ contains one such constant.

3. VOLKOFF’'S MASSIVE SPHERES

When the density p is taken to be constant
Eq. (1.4) can be integrated to give

er=(x—x*+K)/x, (3.1)

where x=7/R and R*=3/8p, and K is an arbitrary
constant of integration. In order to avoid a singu-
larity at the origin, Schwarzschild took K =0 and
proceeded to find his well-known interior solution.
By means of this solution it was possible to conclude
that there must be an upper limit to the size of a
sphere of given density. More recently G. M.
Volkoff? has considered non-zero values of K and
has shown that solutions exist for which the possible
size of the sphere increases beyond that predicted
by Schwarzschild. In fact, by increasing K indefi-
nitely the possible size also increases indefinitely.
Unfortunately several of the statements in Volkoff’s
paper are incorrect and he did not obtain his results
in as complete a form as possible.

In the above mentioned paper Volkoff obtains
the equation

dP/dx = —[(P4+3)(Px*+v)/2x(x—2v)], (3.2)

where P is a quantity proportional to the pressure p
and v=x*—K. Volkoff states that Eq. (3.2) can
not be explicitly integrated in terms of known
functions. This statement is incorrect as (3.2) is an
equation of Riccati type for which an obvious
solution is P=—3. It is well known that Riccati
equations for which one solution is known can be
integrated by quadrature. In fact we shall show
that the integrals involved are elliptic integrals.
It is also stated that solutions exist which behave
near the origin like P~7K/x® Since all the solu-
tions do not behave in this manner it is obvious
that a behavior of this type at the origin implies
some condition involving K. This condition is not
given by Volkoff, but we shall be able to obtain it
by carrying through the explicit integration of the
field equations.
From the boundary condition to be satisfied by
e, (3.1) implies
2m/R=x—K, (3.3)

where x,=7,/R. Numerical integration of (3.2) for
several different values of K showed that xy~ux.,
where x, is positive solution of the equation

x1—x°+K=0.
2 (G, M. Volkoff, Phys. Rev. 55, 413 (1939).

(3.4)
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From (3.3) it was argued that x,~x; implied that
(3.5)

This argument is not correct. If we let x=x;—3,
where 6 is a small correction term and drop all
terms involving 8 we find

2m/R=x3+3x20— K =x,+3x20 ~xp+3x,25. (3.6)

Thus for (3.5) to be correct it is necessary to show
that for large value of x1, 3x,%8 is still small com-
pared to x;. As a numerical example we quote the
value K =80/7 for which Volkoff obtains x, =2.39+4.
Assuming that 2.39+4 means that x; could probably
be as large as 2.395 we find from (3.3) the largest
possible value of 2m/R to be 2.31 and not 2.39+ as
quoted by Volkoff. The behavior of 2m/R for
large values of K cannot be determined from (3.3)
alone. It is not possible to discuss this behavior
until the condition on K is determined which makes
P~7K/x? for small values of x.

In order to find the general solution of the field
equations we note that for constant p Eq. (1.5) can
be integrated to give

8r(p+p) =ae
Adding (1.2) and (1.4) and using (3.7) we find

e My +N) =ae 2

ZM/R’\/.’Xha—K =X1~Xbp.

(3.7

(3.8)
Hence
(d/dr)(e’)+(N'/2)(e"?) = (ar/2)e*.  (3.9)

This equation is a linear equation in e*? whose
solution is given by

td 2
e"=e‘>‘(bf re”""dr-i—c) ,
Tb

where b=a/2 and c is a second constant of integra-
tion. Thus the general solution of the field equa-
tions, for non-zero K, is:

er*=1—(r/R)}*+KR/r,

(3.10)

(3.11)

2

”=e—*(bf re”“dr—}—c) .
b

From the boundary condition (e )r=ry,=1—2m/r}
we immediately find that

K=x—2m/R, (3.12)

where x,=ry/R. Equation (3.12) gives an inter-
esting physical interpretation of K. If we let
M =4mpr*/3, the Newtonian expression for the
mass of the sphere, then

K=2(M—m)/R. (3.13)

Thus K is a measure of the discrepancy between
the Newtonian and relativistic values for the mass
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of the sphere. Since e must be positive as r—0 we
must have K >0 and hence m < M. Thus the rela-
tivistic value of the mass is always less than or
equal to the corresponding Newtonian value.

From the boundary condition (e”)r=rp=(e7)r=rs
we immediately have ¢=1. Further the continuity
of e*»’ with the corresponding Schwarzschild value
at r=r; gives us

b=3(1—2m/r)}/2R". (3.14)

At this stage we note that we have determined
the constants K, b and ¢ in terms of m, 7, and R.
We might thus expect that a knowledge of the
boundary radius and the constant density would
not determine the mass since m, 73, and R are still
independent variables. It is not until we examine
the internal pressure that we find another relation
connecting these three variables.

Using (1.2) and (3.11) we find

81rp=—3/R2+[2be,”2/(bf resmdr+1)]. (3.15)
TH

Since e?—0 as 7—0 we see that the pressure will
be negative near the center of the sphere unless

0
bf re2dr+1=0. (3.16)
rh

Since the boundary value 7, is the first place at
which the pressure vanishes we see that the pressure
would be negative throughout the sphere unless
(3.16) holds. From the fact that we have assumed
the sphere to be in equilibrium we see that the
pressure could not be negative throughout and
hence (3.16) must hold in order to give a solution
of physical interest. From (3.14) and (3.16) we
thus find that

Ty
f reMdr =2R*(1—2m/ry)~4/3.  (3.17)
0
Using (3.16) we find

81rp=—3/R2+[2e”2/f re”’ﬁdr]. (3.18)
0

For small values of 7, (3.18) implies that the pres-
sure behaves according to the law 8mp~T7KR/r.
Thus the only solutions with K50 which will be
of physical interest are those in which the pressure
behaves according to the law above. Moreover, in
order to obtain this behavior, relation (3.17) con-
necting m, 75, and R must be valid. This is the
relation which was not obtained in the Volkoff
paper, and it is the relation which enables us to
discuss the behavior of 2m/R for large values of K.
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Evaluation of fy" re®2dr

If we let y(z) be the Weierstrass elliptic function
with invariants 12, 4(27K2?—2), then it is well
known that

(dy/dz)*=(v'(2)) =4v*— 12y —4(27TK* - 2).

For this reason, the substitution

r=3KR/(y(z)—1) (3.19)
reduces the integral
I= f rédiady (3.20)
to ’
z dz
I=216\/3K2R2f (3.21)
o (v)?

From (3.19), dr=—3KRY'(z)dz/(v(z) —1)%. Thus
for positive dr and dz, v'(z) must be taken negative.
For this reason we must take

(4v3—12y—4(2QTK2—2))t = —+/(2).

By using the properties of elliptic functions,
(3.21) can be evaluated to give

I=[4V3RY/3(21K*—4)]{¢(2) —3(27K*—2)z
+[2y— QIR =2)y—4)/¥']} (3.22)

where ¢(2) is the Weierstrass zeta function defined
by ¢(2) = — [v(2)dz and the condition {(z) —1/2—0
as z—0. Although (3.15) is the expression of the
integral in terms of known functions, it will not be
much value for numerical computation. At the
present time no tables of values of the Weierstrass
elliptic functions seem to be in existence. For such
work numerical integration of (3.20) is still neces-
sary.

We have previously stated that K=0 leads to
the Schwarzschild interior solution which is. ex-
pressible in terms of elementary functions. The
only other value of K for which this is true is
K =2/3V3. For this case

s R2[1524+2522+8
ol z(1422)e

where 2= (2R —3%)%/(3%)}. For this case the bound-
ary values are 7,/R=1.13 and 2m/R=1.06. For
the Schwarzschild solution, (K=0), the corre-
sponding values are 7,/R=0.944 and 2m/R =0.838.
Thus we still find an upper limit to the size of a
sphere of given density, but these upper limits are
greater than those predicted by the Schwarzschild
solution.

For general values of K we have from (3.1) that
x—x34+K>0 throughout the sphere. Thus if x;
denotes the only positive root of x—x3+K =0, we
find for large values of K that x;<K3+1/3K%

157
+ 15 tan™!z —'—2—"], (323)
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For this reason x,<K'4+1/3K} Since 2m/R is
positive, (3.12) implies x,> K% and therefore K<,
<K¥*+1/3K}Y With this restriction on x; it is
possible to show that

Th
lim reN2dy = oo,
K— 0
Hence from (3.17) 2m—r, and 2m/R—ux, for large
values of K.

4. DENSITY PROPORTIONAL TO A POWER OF r

In the previous section we assumed the density
p to be constant. As a generalization we shall now
assume that p=ar"2, where a and N are as yet

unrestricted constants. From (1.4) we immediately
find
e*=1—(r/R)N+K/r, (4.1)

where R~V =8wra/(N+1), and K is a constant of
integration. In order to avoid a singularity at the
origin we restrict K=0 and N>0. Thus

er=1—(r/R)V. (4.2)

Since e™ must be positive we find that r<R.
Equating (1.2) and (1.3) we find that the equation
to determine » is

(1=@r*(2v"+ (")) —rv'(2+(N—2)g)

+29(2—N)=0, (4.3)
where g=(r/R)". The substitution
v=2logy, x=(1—¢g)}
reduces this equation
(1—a?)(d?y/dx*) —2((N—2)/N)x(dy/dx)
—2((N=2)/N?)y=0. (4.4)

For certain values of N, Eq. (4.4) does possess
solutions which can be expressed in terms of ele-
mentary functions. However, for arbitrary values
of N the general solution can only be expressed by
means of the hypergeometric function F(a, b;¢c; 2)
to be

y=AF(a, b; 3; %) +BxF(a+3%,b+3%; §; %), (4.5)
where
a=[(N—4)+(N?—16N+32)}]/4N  (4.6)
b=[(N—4)—(N>—16N+32)¥]/AN (4.7

and 4 and B are arbitrary constants. For large
values of N, the solution (4.4) approaches that
given by

y=A+Blog{(1—x)/(1+x)}. (4.8)

There are an infinite number of values of N for
which Eq. (4.4) will have solutions which can be
expressed in terms of elementary functions. For
example, if one of @ or b is a negative integer, at
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least one of the solutions can be expressed in
terms of elementary functions. Similarly if one of
a+3% or b+4% is a negative integer such a solution is
possible. If 2(N—2)/N is an odd integer, it can be
shown that the general solution can be expressed
in terms of elementary functions. In addition to
those mentioned there exist many other values of
N for which a solution of this type exists. As an
example we take the case N=4. For this value of
N the differential equation becomes

(1 —x?)(d*y/dx?) —x(dy/dx) — (1/4)y=0. (4.9)
The general solution of this equation is
y=A4 sinh(} arc sinx+ B), (4.10)

where 4 and B are arbitrary constants. This leads
to
er=1—(r/R)4,
e’=A?sinh’[ % arcsin(1—(r/R))*+B] (4.11)

as a rigorous solution of the field equations. For
this solution the distribution of density p is given by

8mp=572/R4. (4.12)

The distribution of pressure can be exactly obtained
from (1.2) and (4.11) but the expression is compli-
cated. From the boundary condition (e)r=ry
=1—2m/r, we find that m=r,5/2R% Thus we see
that the relativistic expression for the mass is the
same as the Newtonian expression for the mass of a
sphere of radius 7, corresponding to a distribution
of density given by (4.12).

For most bodies the quantity 7/R is extremely
small. Thus one can expand the expression for e’,
given in (4.11), in powers of /R and obtain a
simplified approximate solution for e’.

5. TOLMAN’S SOLUTION VI

In the paper previously mentioned, Professor
Tolman determines eight solutions of the field
equations, five of which were new at that time. We
propose to show in the next sections of this paper,
that three of these solutions can be generalized.

The sixth solution given by Professor Tolman is

»=(4rt—n— Brltn)?, (5.1)

where 4, B, and # are arbitrary constants. Corre-
sponding to this solution the pressure p and density
p are given by

er=2—n?

(1—n)?4A —(1+4-n)2Br*"

5.2
(2—n?)r*(A — Br?) (5:2)
1_ 2
81rp=(——n—)—-. (5.3)
(2—n?)r?

Before proceeding to the generalization of this
solution we should like to note some restrictions on



1934

the parameters occurring in the solution which
have not been pointed out before. Since the solution
is symmetric with respect to # and —n, there is no
loss in restricting # > 0. Further, to ensure that e
is positive we must have 0 {7 <V2. For this range
of values the density given by (5.3), will be positive
only if 0<#<1. In the particular case n=1 this
solution reduces to the solution corresponding to
special relativity. If one leaves #, A and B as
constants to be determined by the boundary condi-
tions, then the solution does contain the proper
number of arbitrary constants. However, if we
desire to fix » arbitrarily independently of the
boundary conditions then, of course, only two con-
stants remain with which to satisfy the three
boundary conditions. This procedure would of
course immediately place a condition on the bound-
ary conditions. In the detailed discussion of this
solution Professor Tolman arbitrarily assigns the
value § to #. On this basis the mass m must satisfy
m=23r,/14. Thus the mass m becomes completely
determined by the boundary radius of the sphere
and no arbitrary constant remains that could be
interpreted in terms of the average density of the
sphere. If we choose n=% we have from (5.3),
8rp=3/7r%, and hence the distribution of density
becomes completely determined, and therefore the
corresponding solution can apply at most to one
sphere. We shall show that there exists a solution
of the field equations which includes the present
solution as a special case and in which the constant
n can be arbitrarily assigned without imposing a
condition on the boundary conditions. Moreover
we shall show that in our new solution the range of
n is not restricted to be 0<n< 1.
We shall retain the expression

e’ = (Ar="— Brltn)? (5.4)

since, for fixed n, the expression still retains the
proper number of arbitrary constants. Equating
(1.2) and (1.3) we find that the equation to deter-
mine e is
(r'+2r)(d/dr)e >+ (2r20" + 122
—2r'—4)er=—4. (5.5)
When » is given by (5.4), Eq. (5.5) becomes a
linear equation of the first order in e, Its solution

can easily be determined to be
er=02—n)"+art[A(2—n)—BQ2+n)r*J¢, (5.6)

where a is an arbitrary constant of integration,
b=2n*—2)/(n—2) and ¢=2(2—n?/(n*—4). This
solution is valid providing #» does not have the
value 2% or 2. For the case z=2 we find

er=—14areane,

e’=(Ar1—Br’)?.

(5.7)
(5.8)
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Similarly for n=2% we find
er=a+log[A4(2—2%) —B2+2Hr2]/r(24+2Y), (5.9)
e’ = (Ar—2t— Bty (5.10)

where @ is again an arbitrary constant of integra-
tion.

It will be noticed of course that a=0 in (5.6) will
give the Tolman solution, and in this sense our
solution will include the Tolman solution as a
special case.

We have pointed out that the Tolman solution
can apply only in the range 0<#<1. Moreover
for =1 this solution reduces to that of spacial
relativity. When #=1 in our generalized solution
we find

e’ = (A —Br?)?,
er=1+ar’(4 —3Br®)4.

(5.11)
(5.12)

This gives a new solution which does not reduce to
the solution corresponding to special relativity
unless a=0. Satisfying the boundary conditions
we find

A=1-=5m/2ry)/(1—=2m/r)?, (5.13)
B=—m/2r*(1 —2m/ry)}, (5.14)
a=—=2m(l—m/ry)}/r}(1—2m/ry)}, (5.15)

where m is the mass and 7; is the boundary of the
sphere. From (1.4) we find that the density p is
given by

8mp=—a(A —3Br?)~¥3(34 —5Br). (5.16)

For small values of m/r, we notice that 4~1,
B~ —m/2r?, and a~ —2m/r®. Thus the boundary
density p; will be given, approximately, by (5.16),
to be 8mpy~6m/r,2. Hence m~4wrpyrs®/3. Thus in
our solution the mass is determined by the bound-
ary radius 7, and a physical constant p, which will
be determined by the physical constitution of the
sphere. In the similar example of Tolman’s solution
it was found that the mass was determined only by
the radius of the sphere, and it was shown that this
solution would apply at most to one sphere. Since
the parameter p; still remains undetermined in our
solution it will be possible to apply this solution to
spheres of different physical composition.

In addition to the above we have, in our solution,
been able to remove the restriction that 0<%z <1
which was found necessary in order that the Tolman
solution should have physical significance.

6. TOLMAN’S SOLUTION V

In the same paper as mentioned before Professor
Tolman gives

e*=a—(r/R)Y, e =b,

(6.1)



DISTRIBUTIONS OF MATTER

where a=(142n—n?)"1 and N=2(142n—n?/
(n+1) as a new solution of the field equations. In
the above #n, R, and b are arbitrary constants. If
we take the point to view, as was taken in the
previous section, that # is an arbitrary constant to
be assigned independently of the boundary condi-
tions, then the solution (6.1) does not contain the
proper number of arbitrary constants to fulfill the
boundary conditions. We propose to show that a
solution of the field equations does exist which
contains (6.1) as a special case and which contains
three arbitrary constants in addition to #.

If we consider the value of e to be given by the
expression in (2.1) then from the equality of (1.2)
and (1.3) the equation to determine v is

V)2 — (N [44-1/20) v +1p"2
+(e/r*—=N\N/2r—1/r)=0. (6.2)

The substitution »=2 logy reduces this equation to
Y=\ /241/r)y + (/=N /2r—1/r)y=0. (6.3)

When X is known, this equation is a homogeneous
linear equation of the second order in y. For the
particular A which we have chosen we know, from
Tolman’s work, that y=r" is a particular solution
of (6.3). From the theory of linear equations of the
second order we know that the general solution of
(6.3) can therefore be obtained by a quadrature.
It is not difficult to show that this general solution is

y= cr"fx”dx/(l —x)¥+Brr, (6.4)

where x=(142n—n*)(r/R)Y and p=2n/(n*—2n
—1). The integral occurring in (6.4) can be evalu-
ated in terms of elementary functions only if p or
p—3% is an integer, either positive, negative, or
zero. For all values of p, (6.4) can be expressed by
the hypergeometric function to be

y=crF(3, p+1;p+2;
(1+2n—n?)(r/R)¥)+Br~. (6.5)

For this case the resulting solution of the field
equations is

er=(14+2n—n?)"1—(r/R)", (6.6)
e’=[cr"F(&, p+1; p+2;
(A42n—n2)(r/R)¥)+br~ 2. (6.7)

Since the above solution degenerates to the Tolman
solution of ¢=0 we thus have obtained a general-
ization of the Tolman solution. We note that the
constants #, R, ¢, and b are all arbitrary. Again
we can assign 7 in arbitrarily, and determine R, c,
and b from the boundary conditions.

As examples of elementary solutions we might
point out that =0 results in the Schwarzschild
interior solution. To illustrate a new solution we
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take n=1. Thus N=2, p=—1. For this case the
hypergeometric function of (6.7) degenerates into
a constant and the two particular solutions as
given in (6.7) are not linearly independent. Re-
turning to (6.4) we easily find that

e*=3—(r/R),
e’ = (crlog{(1—(1—2(r/R)»*/
I+ =2(r/R)*)H} +br)%  (6.8)

Similarly one can obtain from (6.4) many other
examples of solutions of the field equations which
can be expressed in terms of the known elementary
functions.

7. TOLMAN’S SOLUTION VIII

By making the mathematical assumption that
e »=const.r2%”, Professor Tolman was able to
obtain a new solution of the field equations. The
results as given by Professor Tolman are not quite
complete as we shall show when we generalize the
procedure introduced by him. If one replaces the
above mathematical assumption by the requirement

er=f(r)e, (7.1)

where f(7) is to considered an arbitrary but known
function, then it is possible to show that the final
problem of solving the field equation reduces to
the solution of a second-order non-homogeneous
linear differential equation. Since the theory of
such equations is well known this provides another
general procedure worth investigating in our at-
tempt to find solutions which are of physical

interest.
Adding (1.2) and (1.4) we find

8r(p+p)=e(N'+v)/r. (7.2)
From (7.1)
N+v'=—f(r)/f(r). (7.3)
Hence
8w (p+p)=—f(r)e/r. (7.4)
From (1.5) and (7.4)
8xp' =f'(r)e’v'/2r. (7.5)

Using (1.2) and (7.1) our expression for the pressure
P is given by

8rp=[f(nev' ]/r+Lef(r))/rr—1/r. (1.6

Differentiating (7.6) with respect to “#’’ and equat-
ing the result to the right-hand side of (7.5) we find

r*f(r) (&% /dr*) +5r°f'(r) (de’/dr)
+(rf'(r) =2f(r))er=—2. (7.7)

Thus with f(r) considered as a known function,
Eq. (7.7) becomes a linear differential equation of
the second-order to determine e’.

Since the procedure outlined is purely mathe-
matical, many of the solutions obtained in this way
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will be of no physical interest. Whether or not a
solution will be of physical interest will depend on
a suitable choice of f(r). Although we have very
little to guide us in making a suitable choice of f(r),
there are a few clues worth pointing out. Since
e and e’ are positive we must have that f(r) is a
positive function. Moreover, the boundary condi-
tion (¢7)r=rp = (¢”)r=rp immediately implies f(r,) = 1.
From Eq. (7.4) we can also see that f'(r) must be
negative since p, p, €%, and 7 are all positive quanti-
ties. These requirements of course provide very
little restriction on our choice of f(r) but at least
they do provide a guide in making such a choice.

In the solution obtained by Professor Tolman,
f(r) was given by f(r)=c»2 With this choice
(7.7) becomes

r’(de’/dr?) —br(de’/dr) —2(b+1)e*= —2r2%/c2. (7.8)

Tolman’s results are complete except for the one
case in which 7% happens to be a solution of the
homogeneous equation. The only positive value of
b for which this is true is b=142% For this case
the general solution of (7.8) is

e'=—{2r logr/c*(3b —1)} +ar®*+gri->,  (7.9)

where a and B are constants of integration and
b=1+42% From this

e?={—2logr/(3b—1)} +ac®+Bctr'=%. (7.10)

With the solution given by (7.9) and (7.10) Tol-
man’s results become complete for all positive
values of b. Negative values of b are of course
excluded because of the fact that f/(r) must be
negative.

As an example of a new solution found by this
method we shall take f(r) =a—br? where @ and b
are both positive constants. With this choice of
f(r) Eq. (7.7) becomes

7*(a —br?) (d%/dr®) —bri(de’/dr) —2ae’= —2. (7.11)

An obvious solution of the non-homogeneous equa-
tion is e*=1/a. In order to complete the problem
we must therefore find the general solution of the
homogeneous equation. For the homogeneous equa-
tion the substitution

e’=rYy, x=br/a
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reduces this equation to

x(1—x)(d?y/dx?)
+((5/2) —3x)(dy/dx) —y=0. (7.12)

This is a hypergeometric equation whose general
solution can be put into the form '

+Bx (=}, —}; — %), (7.13)

where 4 and B are again arbitrary constants of
integration. However, both of the hypergeometric
functions of (7.13) can be expressed in terms of
elementary functions and we find

y=(A/x)[(1—(1—x)/x)* arc sinx}]
+Bx{(1—x)t. (7.14)

This leads to the following solution of the non-
homogeneous equation

er=A[1—(R?/r*—1)}arcsin(r/R) ]
+(B/n(1—(r/R)*)i+1/a, (7.15)

e*=a(1—(r/R)%e". (7.16)

In this section we have given a brief outline of a
procedure that can be used to generate new solu-
tions of the field equations. We have pointed out
that the procedure is unsatisfactory in that a
judicious choice of f(r) must be made. It has
however been possible to point out a few require-
ments that f(r) must satisfy which help in making
this choice of f(r). Funetions of the form (a—br)™
and ae~*" would satisfy these restrictions, and the
resulting solutions of the field equations would be
worth investigating. However, in any case in which
the procedure of this section is followed, a thorough
investigation of the physical consequences of the
solution should be made in order to determine
whether or not the solution is of physical interest.

8. CONCLUSION

For the main part our paper has been a critical
examination of some of the known solutions of the
gravitational field equations. In many cases we
were able to show that the known solutions were
particular cases of a more general class of solutions
of the field equations. A new method of generating
solutions was outlined in Section 7 but it was
pointed out that this method is still not too satis-
factory from the physical point of view.



