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If a boson field theory is generalized to admit in the field
Lagrangian all the derivatives of the field coordinates up to
the oth in a particularly symmetrical way, then we find that
in the final expression for the interaction energy of fermions
the usual interaction is replaced by a weighted sum of o such
interactions, where the relative weight factor and the boson
mass associated with each interaction are given uniquely by
algebraic relationships involving the constants appearing in
the field Lagrangian. We thus are able to formulate a simple
principle for obtaining the interaction energy according to a
multiple-boson theory of the form suggested by our generali-

zations if the interaction energy is known for the one-boson
case. The principle is then applied to the non-relativistic and
relativistic interaction terms for electrons according to elec-
trodynamic (photon) field theory, and for nucleons according
to the meson field theories investigated by Kemmer. We find
that in almost every case the weight factors are such that not
only are the inadmissible R™3 and R~? singularities removed,
but also in three- and four-boson theory, the objectionable
R~ singularities. A closely related result is the fact that
generalization justifies the neglect of short wave-lengths in
the evaluation of the interaction and self-energy integrals.

1. THE BOSON FIELD
CONSIDER the quadratic Lagrangian density
L=(1/2a*)3", c,a®*Qx0On,, (1.1)

where a is a length, the ¢’s are dimensionless natural
constants, Q(x,) the field coordinate is a real or
imaginary potential, x,=(r, ict), dr\y=98/dxr and
O, =0n10ns+ - 97 Q. Applying the variational equa-
tion

ic&W=ic&fde th=ade9=0, (1.2)

using

OredQn, = (=D °QéQ

a—1

+3| T [=D)-a0nJo0n |, (19

7=0

and assuming that the potential and all derivatives
up to the order o—1 are held constant on the

boundaries of the four-dimensional space, we
obtain the equation of motion
(2, coa®(—[1)710=0. (14)

Alternatively, in performing the variation we may
obtain the same equation of motion by using in
place of Eq. (1.3), the relation

Ore60% = (=[])°QoQ
1 A e
+TZ=1I(T)[( L) 18Q . (1.5)

Applying Gauss’s theorem to convert successively
the 7-dimensional integral of a divergence into
7—1-dimensional integrals, we need only insist that
the potential be held constant on the boundaries
providing in four-space the Lagrangian contains
only derivatives up to the fourth. This Ilatter

generalization is thus a less radical departure from
the usual Hamilton’s principle.

We define the energy momentum tensor #,, and
the energy momentum four-vector P, by

oW = f s, 536, = P by, (1.6)
where éx, represents a displacement of a space-like
boundary, and the potential satisfies Eq. (1.4)
throughout the four-dimensional domain. Using
(1.3), Gauss theorem, and

0Qx = — (9,0r) 6, (1.7)

we find that
Z'Cl,_.y =L6“y - (1//02) chﬂaQU

X ZU—D)G—H&QM]@.@, 18

These results may also be obtained by application
of the formulas of Chang! to our particular Lagran-
gian. We may show without difficulty that 9,4, =0,
thus insuring conservation of energy and momen-
tum, and also that the antisymmetric part of £,
is a four-divergence.

The equation of motion of the field may be
written as

[(I,((]—&2/a®)]Q(x,) =0, (1.9)
where £,2 are the roots (dimensionless) of
F(&) =3 c,(—8)7=0. (1.10)

In view of the basic position of wave motion in
field phenomenon, it is satisfactory that our La-
grangian leads directly to a wave equation. A
solution of Eq. (1.9) is the generalized Fourier

1T. S. Chang, Proc. Camb. Phil. Soc. 44, 76 (1948).
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integral

0(x) = (1/2m)1, f [0, (k) exp(ikea,)

+Q.*(k) exp(—ik,x,) Jdk, (1.11)

where

k., = (k, ik,) and k,2—k-k=§2/a’=x,2 (1.12)
Comparing Eq. (1.12) with the energy momentum
relationship of special relativity, we find that
£, =am.c/h where m, are the masses of the bosons
associated with the field. If the masses are to be
real, then the ¢’s in the Lagrangian must all have
the same parity.

Using Eqgs. (1.8) and (1.11) we may express the
energy momentum four-vector in terms of Fourier
amplitudes. As an aid to calculation we use a
boundary corresponding to instantaneous space and
discard all time-dependent terms. Both steps are
permissible because d,f,,=0. We obtain

Po=Fu(v0/0) f s[04 (1) Q,* (k)

+0.*(k) Q. (k) Jdk, (1.13)

where
Yo= — Zf TC,-( - Evg)r—l = [dF/dEQ:IE:Ev'

The +'s which arise naturally in our theory during
this last calculation are factors which weight the
fields associated with the different bosons. They
alternate in parity, which means that alternate
bosons make negative contributions to the total
energy and momentum of the field. From (1.13) we
see that the field Hamiltonian has the form

(1.14)

H=Y,7 f 2,200, (k) 0. * (k)
+0,4(k) 0, (k) Jdk.

This same expression would be obtained from a
field Hamiltonian of the form

(1.15)

H=Y.(v./2) f {62[Q. (6 T
+[vQ.(x,) 12+m,2}dV,

where 7,=098Q,(x,)/cdt. Our Hamiltonian is thus a
weighted sum of o-terms, each of the form usually
used as a starting point in the treatment of the
boson field.

(1.16)

2. THE INTERACTION OF FERMIONS

In the field theoretic treatment of the interaction
of two fermions which are coupled by a boson field,
one may assume that the interaction Hamiltonian

FIELD THEORIES
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TaBLE I. Parity of combinations for positive c's.
\\i -2 —-1 0 1 2 3 4 5 6
1 - - - - - - - - -
11 - - 0 + + + + + +
I11 - - 0 + 0 - - - -
v - - 0 4+ 0 - 0 + +

involves only the potentials as (for example) in the
charge-like interaction

H;=gQ(x;*)+gQ(x,"),

or their first derivatives, as in the dipole-like
interaction

H:=—ga[o*-vQ(x;*)+0" VO] (2.2)

The g's are coupling constants having the dimension
of charge, and a is a length which must now be
identified with the Compton wave-length of the
fermion. In the generalized cases we simply replace
Q(x;) by X, Q.(x;). Taking either (2.1) or (2.2) in
conjunction with (1.16), we obtain, after application
of a classical? or quantum-mechanical formalism,
the chief interactions

(2.1)

Va=—2.(g>4mv,R) exp(—«,R), (2.3)
Vay=a*0-v)(0*- V)2 ,(g%/4mv,R)
Xexp(—«.R). (2.4)

These two special cases demonstrate the general
principle governing the change in the interaction
energy between fermions which takes place in
going from a one-boson theory to the corresponding
generalized boson theory. The principle which also
follows from general considerations may be stated
in two ways.

1. If a one-boson theory gives an interaction
energy V, then the corresponding result according
to generalized theory is 3, V,/v,.

2. If a one-boson theory gives an interaction
energy of the form oJ where o is an operator which
does not involve the Compton wave-length of the
boson, then the corresponding result according to
generalized theory is 03 ,J,/ ..

The principle is changed in no way when applied
to a theory based upon a vector or tensor field
having a plurality of components, or a field with
two or three components in isotopic space such as
the charged or symmetric theories, providing each
component has been introduced and treated in a
manner suitable for generalization. Unfortunately,
it is sometimes difficult to determine whether these
conditions are fulfilled because of the variety of
complicated mathematical treatments given to
theories which are actually identical in physical

2W. Pauli, Meson Theory of Nuclear Forces (Interscience
Publishers, Inc., New York, 1946), pp. 4-7.
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substance. Further, the Lagrangian used may
appear quite different from a sum of our one-boson
Lagrangians, yet only differ from such a sum by a
four-divergence. It may also happen that actual
differences in the field Lagrangian are compensated
for by the auxiliary conditions or by the symmetry
conditions imposed on the potentials. In cases
which are doubtful, the principle may be applied
on heuristic grounds.

In ordinary meson theory, J is the Yukawa
potential which may be written

Jt=—(g*/4macip) exp(—£p)

—(g*/4mac)(1/p—E+£p/2
—£02/64 1),

(2.5)

where p=R/a and v= —¢,.

In ordinary electrodynamics, J is the Coulomb
potential which is simply a special case of the above,
corresponding to £=0.

For higher degrees of generalization we have,

upon inserting the explicit expressions for the v's,

JU = —(g2/4wac:Vaip)

X[exp(—£1p) —exp(—£20) ], (2.6)
JM = — (g2/47rac;;V-nV31V32p) [Vsz eXp( —£1p)
—Vsrexp(—£2p) +Vaexp(—£p) ], (2.7)
JV = —(g*/41acsV21V31V32V 01V 42V a3p)
X [V32V42Vy3 exp(— £1p)
—V31V41V4s exp(— £2p)
+ V21V Ve exp(—£3p)
—VaVaVsexp(—£p) ], (2.8)

where Va1 = £2°— £,2, etc. It may be verified that these
functions are static solutions of Eq. (1.4). The
power series expansion of J! suggests that in
generalized theory we investigate the properties of
> +&:'/vs, for various integral 7's, a study which
may be carried out by algebraic methods. It turns
out that the parities of these combinations are
independent of the magnitudes of the £'s. They are
given in Table [ for positive ¢’s (reverse each sign
for negative c's).

Now in the various forms of field theory, J
appears in interaction terms preceded by differential
operators which result in combinations such as
J'/R, R(J'/R)!, R(R*J')', and R3[(J'/R)'/R7Y
(where prime denotes differentiation with respect
to R). Upon carrying out these differentiations, we
observe that the zeros of 3, £°/v, occur at exactly
the critical values of 7, which cause the elimination
of the R—%, R, and R™! singularities which would
ordinarily appear.® This remarkable result is closely
related to a consequence of generalized theory
which may be noted by examining the quantum
field theory expression for our generalized potential,

3 The reader is invited to test Table I and these results with
arbitrary numbers for the ¢'s.
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namely

J=[g*/(2m)*]
X f {20 explike (.0 —x,%) ]/ 2k, |dk.  (2.9)

Setting the times equal, and integrating over the
angles in polar % space, we obtain

J=[g*/(2m)*]
xfx[z.,k sin(kR) /v, R(E*+x,2) 1dk, (2.10)

for large values of k£ the integrand is

2oLsin(kR)/kR](1/v,— &/ vok*a?
+&4 voktat— o). (2.11)

In generalized theories this integrand vanishes
strongly even in the unfavorable case for R=0
which arises in the self-energy calculation. If the J
in Eq. (2.10) is preceded by a differential operator,
then after differentiation, terms with additional k's
in the numerator of the integrand will appear. In
these cases it will be the zeros of X, &%/v, for
1=2, 4, etc. which will make the integrand vanish
for short wave-lengths. Integrating (2.10) we get
our generalized potential

J=23.(g*/4may,p) exp(—&p).
3. THE INTERACTION OF ELECTRONS

The field Lagrangian often used as a starting
point in ordinary electrodynamics is a sum of four
terms of the form (1.1) corresponding to ¢;= —1,
and all the other ¢’s equal to zero.* 5 The interaction
energy for one photon processes which follows from
the usual quantum theory is Breit's interaction,

V=[1—a* a®/2+(1/2R)
X(a®-R)(a®-R)d/AR]T=®J, (3.1)

where J is the Coulomb potential and ®& is Breit’s
operator.

To obtain the interaction energy of electrons on
a generalized theory which admits second deriva-
tives of the field coordinates, as in the theories
initiated by Bopp® and by Podolsky,” we replace the
Coulomb potential by the non-singular potential
given by (2.6) with £ =0. The same result follows
from a detailed investigation.® For further gener-
alization of electrodynamics we use (2.7) or (2.8).

A reduction of the 16-component Dirac wave
equation to a 4-component Pauli form® shows that

1 L. Rosenfeld, Zeits. f. Physik 76, 731 (1932), Eq. (8).
5 J. Schwinger, Phys. Rev. 74, 1442 (1948), Ea. (1.9).
8 F. Bopp, Ann. d. Physik 38, 345 (1940).

7 B. Podolsky, Phys. Rev. 62, 68 (1942).

8 A. E. S. Green, Phys. Rev. 72, 628 (1947).

9 G. Breit, Phys. Rev. 51, 258 (1937).
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the relativistic interaction terms (retardation, spin
orbit, spin-spin, tensor force, and Dirac character),
which arise at this stage of approximation, are
associated with the derivatives of J previously
listed. Thus, we find that all the R—% and R™?
singularities vanish upon generalization as well as
the R™! singularities (which are here not objec-
tionable) in the three- and four-boson cases.

4. THE INTERACTION OF NUCLEONS

The most extensive investigation of the inter-
action of nucleons due to one-meson fields is that
of Kemmer,® who derived eight distinct meson
interactions. After making the necessary modifica-
tions in constants, his results for neutral mesons in
the non-relativistic limit may be written (in
obvious notation) as

Vog=J=—TV4, (4.1) Ver=Vps=0, (4.2)
Vs =20°a?a?R>(R2J")' /3
—Sa@’R(J'/R) /3= =V, (4.3)
Vpsg =¢g%- oba'“’R_Q(R2J')'/3
£ Sua®R(J'/R) 3= —Vpuyy  (4.4)

where Sip=3(¢*-R/R)(¢*-R/R) — - a®.

We see that all of the usual Kemmer interactions
become well behaved upon generalization because
of the immunity of our generalized potential to
singularities when subjected to the above operators.
Here it is advantageous to go to the three- or four-
meson case to eliminate the R singularities which
are now objectionable because of the infinite self-
energies they imply.

Consider for further illustration several of
Kemmer's relativistic forms.

Vi = —B°B%J, (4.5)
Vi =a*(e*-V)(a®-Vv)J, (4.6)
Vil =[1—a a?+(1/x%)(a®-V)(a®-V)]J. (4.7)

The relativistic terms due to V,,/, V,/, and the
first two parts of V,,’ are well behaved in the
generalized cases, however, a retardation term and
spin orbit term arising from (1/«?)(«®-V)(e®-V)J
have inadmissible singularities which do not vanish
upon generalization. By an alternate formalism
involving, among other things, a different treat-
ment of the supplementary conditions, the writer
has obtained in this case!! the interaction V,,/’=®J,
whose relativistic terms are well behaved in the
generalized cases. The complications which arise in
the treatment of the supplementary conditions,
however, require that the efficacy of generalization

10 N. Kemmer, Proc. Roy. Soc. A166, 127 (1938).
1A E. S. Green, Phys. Rev. 73, 26 (1948).
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for the relativistic terms in the vector and also in
the pseudo-vector case be regarded as provisional.

The fact that the generalized meson potential and
its important derivatives have simple, well-behaved
shapes enables us to compare qualitatively the
results of the numerous possible generalized meson
theories with the more successful phenomeno-
logical theories. We can thus readily find one-
meson interactions which, upon generalization, will
account roughly for the position of the 3S and 1S
levels of the deuteron and the sign of the quadrupole
moment. However, to arrive at quantitative con-
clusions concerning these and other equations
would require a specific assignment of the meson
masses and the g or f (or g’s and f’s if more than one
force is used) followed by detailed numerical com-
putations. Such a task involving a many-parameter
set of numerical computations might appropriately
be undertaken by a computation laboratory.

Examples of generalized potentials which cor-
respond to meson masses which have been reported
are12,13

J=F(A4/p)[exp(—0.10p) —1.07 exp(—0.16p)
+4+0.07 exp(—0.5p) ],

J=F(B/p)[exp(—0.05p) —1.527 exp(—0.10p)
4+0.530 exp(—0.16p)
—0.003 exp(—0.5p)]. (4.9)

There is an intimate connection between gener-
alized meson theories and mixture theories. Thus,
a two-meson generalization of V, will give exactly
the interaction obtained by mixing V,, with V,,
where the masses are different but the couplings are
equal. A three-meson generalization of V,, will give
exactly the interaction obtained by mixing two V,,’s
with one V,, where the masses are different and the
relative couplings are determined by (2.7). A
similar conclusion follows for the four-meson
generalization and for the other sets.

It must be noted that, although the mixture
theories which have been used are the least objec-
tionable of the relativistic theories of nuclear forces,
they may be criticized (1) for their ad hoc nature,
(2) for the inadmissible singularities which persist
amongst the relativistic terms,!* and (3) for their
failure in quantitative details.!® Generalized theories
are certainly free from the first objection and quite
possibly from the second. It remains to be seen
whether other theoretical objections will be raised
to generalization, and whether a generalized meson
theory will succeed in quantitatively accounting for
nuclear phenomenon.

(4.8)

2 [ attes, Occhialini, and Powell, Nature 160, 453 (1947).

131, Leprince-Ringuet and M’Lheritier, J. de Phys. et rad.
7, 66 (1946).

4 Ning Hu, Phys. Rev. 67, 339 (1945).

15 W. H. Ramsey, Proc. Phys. Soc. 61, 297 (1948).



