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constant in primary energy suggests diffraction fol-
lowed by inelastic background scattering as in the
first case considered. However, in the present case
the maxima occur at about 1 18 ev which is 3.5 ev
greater than the 114.5 ev for the diRraction peak.
As in the first case we may associate this difference
with a variation in the eFfective value of inner
potential. It may also be attributed to a discrete
energy loss of 3.5 ev (which agrees approximately
with the value for the first discrete loss peak) which
precedes the diFfraction. The experimental evidence
is not sufficient to justify a definite conclusion. The
number of observations was limited by a failure in
the experimental tube.

SUMMARY

The following processes have been postulated to
interpret the results:

(1) For the results in the vicinity of the 59.5-ev diAraction
beam, —Diffraction followed by inelastic backgrou nd scat-
tering. However, the maxima occur at 3.5 ev below the 59.5 ev
of the diEraction beam.

(2) For the results in the vicinity of the 114.5-ev dif-
fraction beam. —{a) Inelastic background scattering followed
by diffraction, for energy losses below 10 ev. The maxima
occur at the secondary energy of 114.5 ev which checks with
the 1 14.5-ev diffraction peak. (b) The same as {a) plus d if-
fraction followed by inelastic background scattering, for
energy losses above 10 ev. The maxima for the latter process
occur at 1 18 ev instead of at 1 14.5 ev which corresponds to the
diff raction maximum.
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An expression is derived for the photoelectric current produced at the surface of a metal, the
conduction electrons being supposed free and the potential barrier of arbitrary shape. The validity
of the common assumption that the current arising from conduction electrons of a particular
momentum can be expressed as the product of an excitation function and a transmission coeKcient
is examined. It is concluded that the assumption is in general valid. The production in the photo-
electric current of beat frequencies between spectral lines is also briefly discussed.

I. INTRODUCTION

N discussions of the surface photoelectric effect
in metals, particularly in deriving an expression

for the threshold frequency at O'K from data ob-
tained at higher temperatures, it has frequently
been assumed that the photoelectric current arising
from conduction electrons of given momentum in
the metal may be expressed as a product of an
excitation function and the transmission coeFficient
of the surface barrier for the excited electrons. The
excitation function is then assumed not to vary
rapidly near the threshold frequency.

No general proof of the validity of this factoriza-
tion appears to have been given in accessible
literature, but doubts as to its validity have been
expressed. ' 2

An extension of earlier work' is given below in
which a formal expression of great generality for the
photoelectric current is derived. From this it
appears that the factorization mentioned and the

II. ASSUMPTIONS

If we suppose that the conduction electrons are
free in the interior of the metal and neglect their
interaction, the potential energy of each may be
represented near the surface by a potential V(x)
which has some such form as shown in Fig. 1(a).

The wave function u for an electron unperturbed
by incident light satisfies

(h'/2m) V'u+ihBu/Bt Uu =0. —
Putting

u =u,. =PI, exp( iEkt/h), —(2)

then
P„=aiyp(x) exp(ik~y+ikgs);

smooth variation of the excitation function near the
threshold are in general justified. The theory is
easily extended to enable discussion of the possible
production of beats between spectral lines.

1 R. H. Fowler, Statistical Mechanics {Cambridge University
Press, London, 1936), p. 358.

~ E. Guth and C. J. Mullin, Phys. Rev. 59, 868 (1941).
3 R. E. B. Makinson, Proc. Roy. Soc. A910, 367 (1937).

The same notation is used here. Fssentially the present dis-
cussion was given in a Dissertation by the author, University
of Cambridge, England, 1938.

where

@'"—IP'+(u/h) ~(x) t4~ =o

p = (ti vg —k, ') & )0, p = 87r'm/h,

k' =kP+km'+ki' ——(87r'm/h ) (Ey+hvo).
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0

i.e. ,

2Eal4s~'=uo,

nl, ' ——(1/Sm')dkgdk2dk~ at T=O'K.

For generality in the following discussion we note
that Bardeen4 has shown that a more accurate
description of the electron gas than is given above
may be obtained by replacing the potential V(x)
in (1) by the effective potential

in which
Ur, (x) = V(x) —Ba(x),

Bg(x) = (1+c)Ar,(x),

the function Ar, (x) representing an exchange energy
and cA~(x) a "correlation energy, " both being
dependent on A. "Each electron has, so to speak,
to have its own barrier. " The constant c was
assigned the value 0.24 by Bardeen and calculations
of Bq(x) were given for sodium. We suppose there-
fore in the following that u satisfies the unper-
turbed wave equation,

(h'/Ss'm) V'u (h/2x—i)Bu/Bt Ur, (x)u =—0, (1a)

In the interior of the metal

tt q =exp(ikqx) +al, exp( —ik~x)

with ~a.
~

=1. We restrict k~ to positive values.
At temperature 1=0'K, k »&ka where ko gives the

electron wave number at the top of the Fermi dis-
tribution, so that ko'/3s'=no, the number of con-
duction electrons per cm'. The normalizing factor
n~ is supposed chosen so in the interior of the metal

a cartesian coordinate in the plane of the surface
and the plane of incidence.

Let u=uJ, +vI, where u„- is the solution corre-
sponding to (2) of the unperturbed Eq. (1a). Then
to the first order

(h'/8 sr'm) V'vq —(h/2vri) itv~/rent U,—(x)vr,

= —(ihe/2nmc-)(A Vur, + ', ur-, V A)

Neglecting the terms in exp {—2+i(Er„—hv)t/h },
which correspond to stimulated emission, and
putting

v& ——n&8&(x) exp {ik2y+ik&s 27ri—(E&+hv)t/h
2rrivy si

—n8/c},
we find that 6& must satisfy

rI g"+ {r' (u—/h) Ul, (x) }PL ———(4vrie/ch)
X {a,rtg'+i'll(avkm+a, ka)+ 2yaka, '}, (4)

on neglecting two small terms involving v/c, where

r= {kr2+u(v —v.) }I)0,
and v, is now the function of A'. given by

hv, = —Ug( —~).
We have to find the solution of (4) which for

large positive x represents an outward stream of
photoelectrons:

V, =B„e'"-, x»0,
= C„e-' *, x«0,

where
g=(kP+uv)I.

Let x,(x) be the solution of
where the functions Uq(x) are of the general form*
sketched in Fig. 1(b).

{A e will further assume that all the barriers tend
towards the form of an image-field barrier' of shape—e'/4x as x—&~, Br, (x) vanishing faster than the
latter function.

x."+{r'—(u/h) ~~(x) }x.=o,

which satisfies the boundary conditions

x, =e '~ x&&0
G„e'"~+K„e '"' x&&0. (Sa)

}III. THE PHOTOELECTRIC CURRENT

In the presence of incident plane waves of light
of frequency v, which we may describe classically
by a vector potential A and scalar potential 4, a
perturbation is introduced into (1a); thus, neglect-
ing a term in A',

(h'/Sm'm) V'u (h/2') —itu/itt U&(x)u-
= —(ihe/2n. mc)(A Vu+2uV A) —eCu. (3)

M,'e may put 4 =0 and

A(x, y, t) =a(x) exp { 2' v(y s—ine/c+t) }

+conjugate,

where 8 is the angle of incidence of the light and y

08
0.6
C7

p(x)

U„(x)

4 J. Bardeen, Phys. Rev. 49, 653 (1936}. Fra. 1. (a} General shape of potential barrier at metal*See reference 4, p. 661. surface, supposed independent of electron momentum AA.' J. Bardeen, Phys. Rev. 49, 640A (1936); 58, 727 (1940). (b) Barrier dependent on k (see reference 4).
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Multiplying both sides of (4) by x„, integrating
from —~ to + ~ with an extinction factor e~

(6 small), using (5) and integrating by parts, we find

B,=(2'/hc)M(k, v)/(H„r),

where

3l(k, v) = I a.x„yl'+ 2yiy„-a, '

+ig,p, (k,a„+ksa, ) }dx. (6)

Now the photoelectric current density in x))0 cor-
responding to 8~ is

dJ.= (2ek/47rmi) (v~Bvv, */Bx vt, *Bvt,—/Bx)
= —(ck/xvi) la~I'rl&, I'. (&)

The transmission coefficient of the barrier Ui-, (x)
to the wave e '"* incident from the outside (or e'&'

incident from inside) is

D(r) = cj/(r
I
H„')

hence

dJ,= —
I
nk

I
'e D(r) (47re'/bric'g)

I
M(k, v)

I

'. (7a,)

It is to be noted that this contribution to the
photoelectric current, arising from the electrons
with momentum kk, is in the form of the product
of the electronic charge, the normalizing factor

I
a~

I

', D(r) the transmission coeflicient of the
barrier for the excited electrons, and the function
4E(k, v) where

E(k, v) = (&re'/kmc'q)
I
M(k, v) I

'

We may describe E(k, v) as the probability per
unit time of the excitation of one electron per cm'
of surface from an unperturbed state A'. to that of
an outgoing photoelectron. (There are four elec-
trons in the state k with the normalization used
here. )

Integrating over all values of A,', we have for the
photoelectric current density in e.s.u. per cm' at
O'K .

I = ( e/2 ')J~J~J—~E(k, )D(r)dk dk dk, (9)

the integration being taken over the hemisphere in
k space: kg'+k22+k32~& kp', kg&0.

In principle, the value of the vector potential A
near the surface may be calculated' from classical
wave theory and a knowledge of the electron density
variation near the surface, the latter being cal-
culable from the unperturbed wave functions u~.

If the surface is "perfectly plane" (i.e. , with
irregularities small not merely in comparison with
a light wave-length but with the electron wave-
lengths as at a face of a perfect crystal) it may be

shown' that a„and c, are nearly constant through
the region in which U&(x) varies appreciably, which
is much less than a light wave-length. The com-
ponent c„on the other hand, varies rapidly in this
region, inversely as the dielectric constant ei(x) +ie2
where ei(x) = 1 —ne'/(vrmv') and e has a small value
representing damping. In this case the photoelectric
current arises only from the component of the
incident light polarized in the plane of incidence
and vanishes for normal incidence. If, now, fol-
lowing Bardeen, ' the function U~(x) is supposed to
depend only on the magnitude of k and not upon
its direction, the excitation function E(k, v) sim-
plifies to the form

E(k, ki, v) = (e'/64m. km)H, (0)'
Xsin'8I X(k, ki, v) I'/(v'g), (10)

where H.(0) is the amplitude of the s-component of
the magnetic field at the surface and

X(k, ki, v) = (y,yg' —yl y, ')/{ ei(x)+i&2}dx.

The results obtained previously' for a square bar-
rier, representing potassium, are easily seen to
follow from the foregoing as a special case.

The effect of optical roughness of the surface,
the scale of irregularities being greater than a light
wave-length, results in emission for any polarization
or angle of incidence, ' but for monochromatic light
one can show that it remains of the form

J=const. G(v) R

where

G(v)=(1/")J J J LD(r)/a]

X
I
X(k, ki, v)

I
~dkid¹dki (11)

and R is a purely geometrical factor describing the
roughness of the surface, involving also the angle
of incidence and plane of polarization.

The same conclusion holds** when there exists
roughness on a scale small compared with a light
wave-length but large when compared with the
barrier width or when both types of roughness are
present together.

IV. THE EXCITATION FUNCTION

M~e conclude that it is legitimate in all cases to
regard the photoelectric current, arising as a
surface effect from electrons of a given momentum

' K. Mitchell, Proc. Roy. Soc. A153, 513 (1~36).**See reference 3. The more general barrier here considered
does not affect the essentials of the discussion.
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Ak within the metal, as the product of an excitation
function and a barrier transmission coefficient.

This formal separation is of course of little value
unless the excitation function B(k, v) given by (8)
does not in fact vary sharply with frequency in the
neighborhood of the threshold frequency v, . We
need therefore to show that the function M(k, v)

given by (6) cannot vary sharply near v, .
In the integrand of (6) we see from (Sa) that

&t„(x) is not critically dependent on v near v, (i.e. ,

as r-+0) except for values of x near the top of the
surface barrier, but in that region the factor pg(x)
is falling off exponentially and has become small;
we are also well away from the maximum of a .
Further, if the barrier is always of the image type
for large x, as appears to be the case, the trans-
mission coefFicient D(r) for the wave x, (an in-
coming wave with the transmitted portion always
of unit amplitude) approaches a limit" only a little
less than i as r~0. Thus 6, and II„ increase no
faster than r ' as r~0.

It seems clear then, that in general, the major
contribution to the integral (6) arises from vaues
of x where the integrand does not vary sharply
with v near v, although lengthy numerical calcu-
lations would be necessary to make a quantitative
statement in a particular case. We therefore expect
the integral (6) and hence the excitation function to
vary smoothly with frequency near the threshold.

It has sometimes been assumed" that the excita-
tion function is proportional to the component of
electron momentum normal to the surface. Equa-
tions (8) and (10) give no support to this assump-
tion.

It may be added that the theory of the tem-
perature-dependence of the photoelectric current
near the threshold is complicated in a different
manner by the dependence, referred to above, of
the effective surface barrier on the momentum of
the conduction electron excited. This invalidates
the expressions given by Fowler' and by Du Bridge,
to an extent uncertain in the absence of numerical
computation for particular cases. Conclusions based
on discrepancies found experimentally, ' " for
which other reasons have been advanced" are
therefore in some doubt. Similar remarks apply to
expressions which have been derived for the total
energy distribution of photoelectrons. '

"L. KV. Nordheim, Proc. Roy. Soc. A121, 626 (1928).' A. G. Hill, Phys. Rev. 53, 184 (1938).' H. Bradner, Phys. Rev. 71, 269 (1947)."M. M. Mann and L. A. Du Bridge, Phys. Rev. 51, 120
(1937)."R. J. Cashman, Phys. Rev. 52, 512 (1937).

'- C. F J. Overhage, Phys. Rev. 52, 1039 (1937).13'. V. Houston, Phys. Rev. 52, 1047 {1937).

V. BEATS BETWEEN SPECTRAL LINES

It has been proposed" to excite a resonant cavity
at microwave frequencies by means of "beats" in
the photoelectric current produced by two sharp
adjacent spectral lines. The general expressions
given above enable the possibility of this to be
examined from another angle.

If we assume for simplicity that both spectral
lines are perfectly sharp, with frequencies v& and v2

we start as before from (3), putting C =0, and

A(x, y, z, t) = ai(x) exp {—2grivi(y sin0&/c+t) I

+ag(x) exp {—2&rivg(y sin8g/c+t) I

+conj ugates.
Ke now put

vg ——ng8g "&(x) exp {ikgy+ikgz 2'—(Eg+hv&)t/h
2&r—iv&y sin8, /c I +nkA&'&(x)

Xexp {ikgy+ikgz 2&ri(—Z g+hv g)t /h—2&rivgy sinog/c I

and find that BI,") and 6&&2) both satisfy equations
of the form (4) with vi, vg written respectively for v.

We write r~, r2 for r and B„&", 8,(2) for B„when
v = vi, vg. Let B,&" =

~
B,&'& {exp(it&&), B &'& =

~

B„&"
~

Xexp(il&g). Equation (7) for the photoelectric
current arising from electrons with a particular
value of k now becomes

dJ = —(eh/vrm) I
ig&g

I

'
{ri I

B "' I'+r g I
B "'

{
'

+(r&+rg) [B,&"B„"&{cosL(r& rg)x—
—2&r(v& —vg)t+(I&& —t&g)] ). (12)

It is clear from (12) that, at fixed x, the current
varies at the "beat" frequency. If v&

—v2 is very
small, so that v~ v2 v say and B„"' B„&", the
current oscillates sinusoidally between zero and
twice its mean value, i.e. , with 100 percent modu-
lation.

However, the expression (12) has to be integrated
over all values of k for which r~, ~&0. The total
electron stream thus contains components with a
continuous range of velocities from zero up to that
of the most energetic photo-electrons ejected at
frequency v, each component is intensity-modu-
lated, the phase (bi —

&lg) of the modulation at x =0
varying with velocity. The percentage modulation
of the total photoelectric current at the beat fre-
quency is therefore certainly very small.
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