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A theory of electron oscillations of an unbounded plasma of
uniform ion density is developed, taking into account the
effects of random thermal motions, but neglecting collisions.

The first problem considered is that of finding the frequen-
cies at which a plasma can undergo organized steady-state
oscillations of small enough amplitude so that a linear ap-
proximation applies. It is found that long wave-length
oscillations of plasmas with a Maxwell distribution of electron
velocities are characterized by the steady-state dispersion
relation oP =cop'+(3xT/m)(2m/X)'. Here cop is the plasma fre-
quency, 1the absolute temperature of the electron gas, ) the
wave-length, and ro the angular frequency of oscillation. It is
also shown that organized oscillations of wave-lengths smaller
than the Debye length for the electron gas are not possible.

The theory is then extended to describe the processes by
which oscillations are set up. It is found that, for a given wave-
length, a plasma can oscillate with arbitrary frequency, but

that those frequencies not given by the steady-state dispersion
relation describe motions in which, after some time, there is
no contribution to macroscopic averages. These additional
frequencies lead asymptotically only to microscopic fiuctua-
tions of the charge density about the organized oscillation of
the plasma. In this way, one can describe the manner in which
the system develops organized behavior.

The treatment is then applied to large steady-state oscilla-
tions for which the equations are non-linear. One obtains solu-
tions in which particles close to the wave velocity are trapped
in the trough of the potential, oscillating back and forth
about a mean velocity equal to that of the wave, One can also
obtain non-linear traveling pulse solutions in which a group
of particles, moving as a pulse, creates a reaction on the sur-
rounding charge, which traps the particles and holds them
together.

I. INTRODUCTION

~ ~

~ ~

GAS containing a suitably high density of
free positive and negative charges is known as

a plasma. As a result of the electrical interactions
between the charges, a plasma displays certain
forms of ordered behavior which make a descrip-
tion of the system regarded as a whole more ap-
propriate than one in which the individual par-
ticles are treated separately. The ordering processes
characteristics of a plasma result in a tendency to
remain approximately field-free and electrically
neutral. If electric fields are introduced, either by
an external disturbance or by incomplete space-
charge neutralization, the highly mobile free
charges automatically respond to the forces in such
h way as to shield out the fields. One can therefore
regard a plasma as a medium which tends to re-
main near a field-free and neutral equilibrium state,
resisting eSorts to produce deviations from this
state, just as a liquid tends to remain near an
equilibrium state of definite volume, resisting
eA'orts to produce changes in this volume.

In order that the concept of a medium be gener-
ally applicable, it is necessary that the dynamic
behavior as well as the static behavior show charac-
teristic organized properties. Let us return to our
example of the liquid. When a given volume con-
tains an excess of molecules the resulting pressure
gradient creates a net Aux of particles out of the
region, but after a uniform density is reached, the
particles still have a net outwardly directed mo-
mentum. This eventually results in a deficiency of
molecules in the volume so that the motion is
reversed; systematic oscillations about the equi-

* Now at Harvard University, Cambridge, Massachusetts.

librium state will occur, and as a result, sound
waves will be transmitted through the liquid. Be-
cause the particles are locked together by inter-
atomic forces so that the system responds more or
less as a unit, one does not have to take into ac-
count the details of individual particle motions.

The behavior of a medium near its equilibrium
state can be described with the aid of a dispersion
relation defining the angular frequency, ~, as a
function of the wave number, ' k=2'/k. Because
of the linearity of the equations of motion for
small displacements, one can Fourier-analyze the
motion, and thus regard an arbitrary displacement
as a superposition of waves. From the value of the
displacement and of its rate of change at every
point in space at a given time, combined with the
dispersion relation, one can then calculate the
subsequent behavior of the medium. For sound
waves in a liquid, for example, the angular fre-
quency is co = ~kv„where v, is the speed of sound,
which is independent of wave-length. The group
velocity, v, = Bco/Bk, then yields the speed at which
energy is transmitted through the system. For a
liquid one obtains v, = ~v„a well-known result.

In a plasma a similar medium-like organization
of the particle motions is made possible by the
electrical forces. If, for example, a given region
contains an excess of electrons, they repel each
other and therefore begin to move out. By the time
neutrality has been established the electrons have
gaint;d momentum so that they keep on going and
create a deficiency of negative charge which at-

' There may be one or more values of co for each k; e.g. , in a
crystal, there may be one frequency corresponding to ordinary
sound waves and a higher frequency corresponding to excita-
tion of intra-molecular vibrations with the same k.
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tracts the electrons back in. In time the motion is
reversed, and a systematic oscillation of the charged
region is set up. For the case in which the random
thermal motions of the charges are slow enough
to be neglected, Langmuir and Tonks' have studied
these oscillations and have shown that their angular
frequency is given by

cop ——((47rnoe') /m) &,

where no is the density of charged particles, and m
is their mass. For a typical density of 10"electrons
per cm', the plasma frequency is about 10" c.p.s.
This equation is modified somewhat by the e8ects
of random thermal motions in a way which will be
discussed further ahead.

These oscillations are irrotational and therefore do not
radiate. Transverse plasma oscillations are, however, also
possible, but we shall not study them here because a reason-
ably complete theory' already exists for them. Because the
ions are so much heavier than the electrons, their motions
will be so small that we can neglect them altogether and
assume they remain at rest. The positive ions can also oscil-
late, but at a much lower frequency. ' In this paper, however,
we shall consider only electron oscillations. For wave-lengths
much greater than interionic spacing, it is a good approxima-
tion to regard the charge of the positive ions as uniformly
smeared over the region.

For a plasma we observe that ~ is independent of
k, so that the group velocity is zero. This means
that in this approximation plasma oscillations are
not transmitted through the system at all. Consider,
for example, an arbitrary disturbance, which at
1=0 is localized in a definite region of space. The
displacement g(x, t) cari be expressed at t=0 as a
Fourier integral, $(x, 0) = J'f(k) expik xdk Th. e be-
havior as a function of time can be found by in-
serting the proper frequency co(k), and we obtain
g(x, t) = ff(k) expi(k. x —~t)dk. Since ~ is inde-
pendent of k, exp —idiot can be taken out of the
integral so that the disturbance remains localized,
regardless of the size. or shape of the region. " Such
an oscillation is reminiscent of the behavior of a
very thin jelly; hence, the name plasma oscillation.

The dispersion relation (1) does not take into
account the eA'ect of random thermal motions of the
electrons. In Paper A we extend the theory to
include random motions, showing when and how an
ionized gas exhibits medium-like properties. This
problem has a general interest because the plasma
is the only system which is simple enough so that
the origin of medium-like behavior can be traced

' I. Langmuir and L. Tonks, Phys, Rev. 33, 195 {1929).
'H. R. Mimno, Rev. Mod. Phys. 9, 1 {1937};H. Lassen,

Ann d. Physik 1, 415—28 {1947);H. Margenau, Phys. Rev. 7'3,
297 {1948),' R. Rompe and H. Steenbeck —Ergeb. d. exakt. Naturwiss.
Bd 18, 303 {1939}.

Actually one must take into account the fact that ~ = +~~
and that both initial displacement and velocity must be
speci6ed. The above analysis can easily be carried through
with this correction.

out in detail with the aid of kinetic theory. In addi-
tion to giving a complete discussion of the case of
small potentials, for which the equations are linear,
we also obtain exact non-linear solutions for several
cases where the linear approximation fails. In
Paper B we discuss the conditions under which
plasma oscillations can be excited and damped.
In Paper C we discuss the eR'ects of spatial bound-
aries. These are particularly important in plasmas
occurring in discharge tubes where the extent is
limited by the walls of the tube.

II. MICROSCOPIC PROCESSES LEADING TO
MEDIUM-LIKE BEHAVIOR

In any medium each particle moves in a field of
force which is the sum of the forces due to all the
other particles, plus those arising from externally
imposed fields, if any. In general, this problem is
too complex to be solved, because as a given particle
collides with other particles, it experiences a
rapidly Huctuating force, which is very difhcult to
take into account. In order to simplify this problem,
one must take some sort of average of the field,
and one must therefore consider aggregates large
enough to contain many particles at once. If a
disturbance is to be discussed in terms of oscilla-
tions of a medium, it is therefore necessary, at the
very least, that the wave-length be considerably
larger than the inter-particle distance no &.

Further conditions must be satisfied, however,
before the motion predicted by the average forces is
a good approximation to the motion produced by
the actual forces. In general, such a simplification
is possible in either of two limiting conditions: (a)
the forces have a short range and the density is so
high that many collisions occur during the period
of an oscillation, (b) the forces have a long range
and the speed of the particles is so low that the
mean distance between most of the interacting
particles does not change appreciably during the
period of an oscillation. The former occurs with
sound waves in a gas or a liquid, the latter in a
plasma.

Jf condition (a) is satisfied, each particle experi-
ences so many small impulses in a short time that
its mean motion is determined very accurately by a
short-time average momentum transfer. It is in this
way that organized medium-like behavior is pro-
duced. Jf, for example, the density in a given region
is not uniform, so that in macroscopic terms there is
a pressure gradient, each particle will be struck
more often from the denser side than from the
rarer, and will therefore tend to accelerate in such a
way as to leave the denser region. This is the process
responsible for the tendency of a liquid or a gas to
maintain its static property of constant density.

There are further processes, however, which cause
the particle motions to interlock to a much higher
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degree than that necessary simply to produce a
tendency towards uniform density. If, for example,
a particle moves faster than the mean velocity of
the surrounding particles, it will be struck more
often from the forward than from the backward
directions, so that it tends to slow down to the
mean velocity, If the particle is slower than the
surrounding particles, it will in a similar way tend
to speed up to the mean velocity. Thus, the colli-
sion processes interlock the time average velocity
of each particle to the average flow velocity pre-
vailing at each point. This high degree of interlock-
ing makes the hydrodynamic equations, in terms
of the velocity and density prevailing at each point,
a good approximation to the actual motion.

Let us now contrast with the above, the type of
interlocking process which occurs when condition
(b) is satisfied. The forces then have such a long
range that each particle is continually colliding
with many particles at once, but with small mo-
mentum transfers for each collision. Here, it is
necessary to trace the actual orbit of the particle
resulting from the forces, rather than to regard the
interaction as a sudden process, completed in a time
too short for any significant average motion to
occur. In fact, each particle moves almost freely,
except that it experiences a gradual change of
velocity caused by the cumulative and simul-
taneous forces produced by all of the other particles.
Under these conditions one can simplify the prob-
lem by taking a space average of the potential, in
the sense that one smooths out the fluctuations
resulting from the point character of the charges.
This method is more or less analogous to the Har-
tree self-consistent 6eld method, used in quantum
theory, and was 6rst applied to the plasma by
Vlasov. ' He applied this method also to the short
range forces, but this is not permissible because the
smoothed-out average field, neglecting the large
fluctuations which occur in collision, is then a poor
approximation to the actual 6eld.

The use of the smoothed-out average 6eld neg-
lects those few Coulomb collisions which occur at
short range, and which involve large momentum
transfers delivered during a time which is short
compared with the period of a plasma oscillation.
Collisions between electrons and gas molecules are
of the same kind. At the low pressures typical of
gaseotis discharges, the mean time between such
close collisions is much longer than the period of a
plasma oscillation. When a collision does occur,
however, its effect is to destroy the ordered com-
ponent of the motion, since the time of collision
is independent of the state of the average held.
In Paper 8 this problem is treated in detail, and it
is shown that in most plasmas collisions lead to a

4 A, Vlasov —J. Phys. U.S.S.R. 9, 25, 130 (1945).

small damping of oscillations which can usually be
neglected without much error. In this paper we
shall therefore ignore collisions altogether.

III. THE DISPERSION RELATION

Ke shall now solve for the organized motion of
the particles in a plasma. It is sufficient to seek
solutions in which the potential varies trigonometri-
cally in space and time, i.e. , q =Re ppp expi(k. x—ppt).

In any small disturbance in which the plasma acts
as a medium, the potential can be represented as the
sum of waves of this kind, but ro must satisfy the
dispersion relation which we shall now obtain.

One can simplify the problem considerably by
going to the coordinate system in which the wave is
at rest; such a coordinate system moves with the
velocity V~ = cok/k', and in this system, the po-
tential is equal to p = ppp expi(k x). It consists
simply of a static potential wave. In general, par-
ticles which are far from the wave velocity will
move across this wave, suffering small periodic
changes of velocity as they go from crest to trough
and on to the next trough. Particles which are close
to the wave velocity, however, may be unable to
go over the crest of a wave, and can thus be trapped,
so that they oscillate back and forth inside a
single trough.

Since the potential is static in the wave system,
one can integrate the equations of motions by
means of conservation of energy. Let us take the x
axis in the k direction. If Uo, is the x component
of the velocity in the wave system' at the point
where y = 0, one obtains for the velocity, U„at
any other point

U.' = Up.'+ (2pp/m).

(Note that p is positive by definition, and that we
are dealing with electrons. )

The condition for trapping is then obtained by
setting U, =O where p=y;„. The result is, for a
trapped particle,

Up*' & —(2py;„./m).

In order to obtain solutions which are static in
the wave system, and therefore oscillations in the
laboratory system which have reached a steady
state, we shall have to wait long enough for the
number of particles of any given velocity to become
constant at each point in space. It will be necessary
to take as given, the final distribution of velocities
at some specified point. For the untrapped particles,
it is convenient to choose this point at pp =0 (where
V =Vp). We suppose that the velocity distribution

' In general, velocities in the laboratory system will be
denoted by V, those in the wave system by U.
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nof(Vp), Up ~dUp
dX=

nof(Vo)dUo

2 v(x)&'
I 1+

m Uo,o)

(4)

The total electron density is found by integrating
over-all Up. The positive ion density does not change
appreciably; hence, it remains equal to the mean
density, n p. The total charge density is then

f(Vp)dUp
p(x) = +npe 'npe (5)

( 2epp(x) ) '
1+

m Up.o)

This charge density results from the action of the
assumed average potential, p (x). In order that
q (x) be a solution it is necessary that the potential
generated by the charge p(x) be equal to the poten-
tial causing the charge; or, according to Poisson's
equation, that

f(Vo)dVo—VP&p = +4' p = 4vren p 4xeno Jf— (6)
(

I
1+

m Uo, ')

The above is a non-linear integro-differential equa-
tion, defining pp(x). In general, y(x) may not be
trigonometric in form, but the assumption that p
is static in the wave system restricts us to solutions
in which all quantities are functions only of
(x Vie); i.e., to travel—ling wave solutions.

function for these particles is given by

dXo = nof(Vo)dVo =nof(Uo+Vw) dUo,

where f is normalized to unity. In most plasmas,
f(Vp) will be close to a Maxwellian function. We
shall see that the wave velocity, V~, is usually far
above the mean thermal speeds. This means that
for most particles, U, =V, —Vg, will be very large,
so that for moderate potentials, very few particles
are trapped. These few trapped particles make
only a small change in the final result; hence, it is
permissible to neglect them. We shall therefore
assume in this section that f(Vp) =0 over a small
region in the neighborhood of Vp ——Vg . In the next
section, however, we shall study in detail the effects
of the trapped particles.

Because of the average potential, pp(x), each
particle undergoes a periodic change of velocity
and a corresponding change of its contribution to
the density. To obtain the particle density at any
point x, we note that if the particle distribution has
reached a steady state in the wave system, the
contribution of a given particle to the density is
inversely proportional to its speed. Thus, one
obtains

For small values of 2epp/mUp, -', one can expand
the square root, obtaining the linear approxima-
tion

4prnoe'
l f(Vp) dV p

PJ' U' 2

f(Vo)dVo
k2p

((o —k Vo)'

4Vrnpe'

There are two conditions yielding a solution

or
4prn pe' ( f(Vp)dV p

1 =
m & ((a —k Vp)'

(9)

The first condition is equivalent to V2p =0. In
other words, any solution of Laplace's equation
yields a solution of the plasma equations. To obtain
a non-zero solution of this kind, however, one must
have bounding electrodes on which the charge does
not vanish. This type of solution will be discussed
further in Paper C. For the present, however, we
consider only condition (9), which is an integral
equation defining co as a function of k; this consti-
tutes the dispersion relation. In the linear approxi-
mation, this result reduces to a relation first ob-
tained by Vlasov4 by a diAerent method.

Under the assumption that V~ is so large that
very few particles are present for

~
Vp,

~
)

~
Vpr~, the

above result can be simplified by expansion in a
series of powers of k Vp/co. Since it turns out that

is usually somewhat larger than the plasma fre-
quency without random motion (Eq. (1)) it is clear
that this expansion is good for small k, i.e., long
waves. One can then neglect the small contributions
of those particles in the regions for which the
expansion does not converge, and one obtains

4mnp~' p k Vp
1+2

IDGE co

(k Vo)'
+3 + f(Vo)dVo (10).

By definition, ff(Vp)dVp=1; ff(Vp)(k'Vp)dVp

4ornpe' l f(Vo)dVo
Jl

— (7)
m L (Vo, —Vs)'

In the above, it is essential that f(Vp) vanish in a
range near V =V~, otherwise, the expansion is not
permissible. This is equivalent to neglecting the
trapped particles.

To obtain the dispersion relation we write
Vpe=a&/k, and V'op = —k'pp. The result is
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=k V, where V~ is the mean plasma velocity in the
k direction, and J'f(VO)(k Vo)'dVO =k'V', , where
Vl, ' is the mean square velocity in the k direction.
For an isotropic distribution one obtains V~' ——3V',
and Vk vanishes. Solving for co up to second order in

k, one obtains

($2~(4~/0/~/m)+k2P2=~p'+(3gT/ m)k .2(11)

As k approaches zero, the above becomes equivalent
to Eq. (1), obtained with the neglect of thermal
motions. Ke see that, for small k at least, plasma
oscillations are possible for any distribution func-
tion which falls off rapidly enough to make the
integrals converge. In this approximation the form
of the dispersion relation is also independent of the
precise form of f(VO).

J. J. Thomson and G. P. Thomson' have obtained a similar
relation using a macroscopic transport treatment, but their
result is not exactly the same. Instead it is oP =~q'+ (~T/m}k'.
The macroscopic theory, however, makes arbitrary assump-
tions about the distribution function which are not quite
correct, and which lead to an error of a factor of 3 in the latter
term.

IV. DESCRIPTION OF ORDERED MOTION

Let us now consider in detail the processes by
which ordered plasma oscillations are maintained.
Ke first observe that except for the particles near
the wave velocity, which we are not now consider-
ing, each particle experiences only a small perturba-
tion in its velocity and in its contribution to the
density. Despite the random motion, however, the
contributions of all particles are coherent because
they are all in phase with the average force which
produces them. Because of the long range of the
Coulomb force, the small perturbations in density
suffered by the individual particles can still produce
a large cumulative contribution to the net poten-
tial. The ordering is unlike the ordering of motion
in a liquid where the velocity in each particle is
interlocked with the local average. In a plasma,
the local average velocity is of no significance be-
cause it does not directly control any forces; the
local average density is not even what is important.
Hence, the motion of a plasma shows only long
range organization, while locally it is almost in-
distinguishable from a perfect gas.

The oscillations obtained so far describe only the
behavior after the distribution has become constant
in the wave system; the process by which it ap-
proaches constancy will be discussed later.

It is instructive to view the motion of the par-
ticles in the laboratory system. From Eq. (2), one

' J. J. Thomson and G. P. Thomson, Conduction oj Elec-
tricity in Gases (Cambridge University Press, London, 1933),
third edition, Vol. 2, p. 353.

obtains to a first approximation

ago expi(kx —cot)
U = Uo.+; U, = Vo, + . (12)

mUO* m(VD —Us)

Thus, each particle suffers a wave-like perturbation
in its velocity, which is larger for particles moving
in the direction of the wave than for those moving
in the opposite direction. The reason is that par-
ticles moving in the direction of the wave stay in
phase longer and, therefore, experience a larger
change of momentum in any given direction before
the electric field, which imparts the momentum, is
reversed. Particles going with the speed of the wave
would stay in phase with the wave indefinitely, and
thus the change of momentum, Dp =aJ'Edt, would
grow indefinitely with time. This is the description
in the laboratory system of the reason for the
infinity in Eq. (12) at. Vp=Vs (in the hnear ap-
proximation).

It is clear that random thermal actions make the
localization of an oscillation impossible, because
these motions carry the disturbance from one
region to another. The average eAect is not, how-
ever, isotropic, as one might first suppose. Because
the particles moving in the direction of the wave
experience a larger change of density, there will be
a net tendency to carry the disturbance in the
direction of the wave. This can be demonstrated by
calculating the group velocity

Vg ——&co/Bk = (3~T/m) (k/co). (13)

This equation shows that for long wave-lengths and
low temperatures, the energy transport is small, so
that almost complete localization is possible.

It is noteworthy that in plasma oscillations en-
ergy is transported by random thermal drift, which
bodily carries the excitation from one region of
space to another. This is in contrast to the process
of transfer in a liquid or in a gas, where the energy
transfer is mainly by direct impacts of molecules
which are very frequent during a period of an oscil-
lation. This means that in plasmas of low density
such as we have been considering, the hydro-
dynamic description in terms of a Huid with a
definite velocity at each point, in which the force
on a particle is determined by the pressure gradient,
is inappropriate. Thus, the treatment of Linder, '
which is along these general lines, can be applied
only to plasmas of very much higher density than
are commonly met with in applications. ~

' E. G. Linder, Phys. Rev. 49, 753 (1936).
Linder also assumes that the oscillations are isothermal.

This assumption requires more study, even at plasma densi-
ties so high that formulation in terms of a pressure gradient is
permissible.
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V. ORIGIN OF MEDIUM-LIKE BEHAVIOR

In this section we shall investigate the non-
steady-state solutions for plasma motion, and show
that the steady-state oscillations, obtained in the
previous work, describe the limiting behavior of the
plasma, which is approached after a suitable period
of time. The corresponding non-steady-state solu-
tions in a liquid would, for example, involve a
description of the details of the collision processes
responsible for interlocking the time average of the
individual particle velocities to the local average
velocity.

In order to obtain a steady state of plasma oscil-
lation with a given k, it is necessary that the initial
perturbations in velocity and density match those
demanded by Eqs. (12) and (4). If the actual initial
conditions are different we shall see that waves of
a given k are not restricted to frequencies given by
the dispersion relation, Eq. (9), but can exist with
arbitrary frequency. In time, however, oscillations
with frequencies not given by the dispersion rela-
tion tend to get out of phase with each other, and
only the organized plasma oscillations, for which
the frequency is given by the dispersion relation,
continue to contribute to macroscopic averages
such as the mean potential. The other frequencies
then correspond to the excitation of random micro-
scopic motions, which are essentially a form of
heat energy. One can therefore regard the plasma
oscillations as a dynamically stable limiting form
of motion, about which small deviations corre-
sponding to random or disorganized particle mo-
tions occur. Hence, for calculating macroscopic
averages, one can ignore all frequencies of oscilla-
tion other than the plasma frequency; and regard
the system as a medium constrained to oscillate
only with the plasma frequency, and with the
perturbations of the individual particle velocities
apparently interlocked in such a way that Eq. (12)
holds.

We shall, for simplicity, consider a one-dimen-
sional plasma. If there are X particles in this sys-
tem, there are N degrees of freedom, which may be
taken as the initial coordinates of each particle.
We shall find it convenient to group particles of the
same initial velocity together, and to regard each
of these groups as the origin of a beam. The con-
tinuity of the range of velocities leads to formal
difficulties which can be avoided, as is commonly
done in other problems, by considering only a dis-
crete set of velocities, U;, which are separated by
an interval, ), so small that no important physical
quantity changes in the step from one velocity to the
next. We shall further assume that the system
contains so many particles that the Auctuations in
each beam due to the particle nature of the charges
can be neglected.

One can then specify the state of this system
by giving at each point in space the initial charge
density in each beam, Xn, (x, 0). For our purpose it
is more convenient to Fourier-analyze this func-
tion, writing

n;(x, 0) =no, +~t 5ni„e' *dk, (14)

r

X(x, 0) = t rto(Vp)d Vo+ l 5n„(VO)e' 'd Vodk.
J

By suitably specifying bnI, ;, one can produce an
arbitrary initial distribution of charge. To take into
account the fact that each beam is made up of a
finite number of particles, however, one should
limit the maximum k so that the number of de-
grees of freedom is equal to the number of particles
in the beam. We shall assume here that there are
enough particles so that we can describe in this
way waves of as short a length as interest us. '

Our program will be to treat first a perfect gas
of non-interacting particles, and then to show how
these results are modified by the introduction of
Coulomb forces.

In the perfect gas, each particle moves at a
constant velocity equal to its initial value, Up, .
Its position is therefore given by x =xp+ Up f.
To obtain the density at any other time, we simply
replace x in Eq. (15) by x t VO;, this —means that
each group of particles carries its own perturbation
in density bodily with its own velocity. We get

X(x, t) =Xp;(n„+Akp&bn„;e*"* e '"r"') (1{j)-
It is instructive to consider first a special case in
which all of the bnl, ; are zero except one, which we
denote as bnj, ;. We then get for the variable portion
of the density,

8Xq, (x, t) = Abner, expi(kx —k Vo,t).
This shows that if one starts out with a trigonomet-
ric spatial variation of density of particles of a given
velocity, one obtains a wave with a definite angular
frequency, ~=kVp;. This is because the wave is

' We are interested here in only giving a schematic descrip-
tion, which will apply rigorously to adequately high densities,
but is intended more generally to give a qualitative picture of
the processes by which medium-like behavior is set up.

where )np; is the mean density, and XbnI, ; yields the
variation about this mean. To avoid problems intro-
duced by continuity, we also restrict k to a set of
discrete, but closely spaced, values, separated by
Ak. The total initial density can then be written

X(x, 0) = XQ;(no;+hkg~hni, ;e"*), (15)

and in the limit, as X and Ak approach zero, the
sums become integrals, so that we get
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being carried only by the motion of the particles.
The frequency of this wave is determined by the
Doppler shift.

One can now build up an arbitrary initial distri-
bution from waves of this kind, simply by adding
with suitable coefficients terms coming from differ-
ent values of k and j. Each different wave can be
regarded formally as a normal mode, from which
one builds up arbitrary solutions. One obtains es-
sentially a double Fourier series for X(x, t). This is
in contrast to the results obtained for steady-state
plasma oscillations (Eq. (9)) as well as those of any
other medium, where for each k there are, in gen-
eral, at most a limited small number of allowable
values of ~.

In order to obtain a definite frequency in a per-
fect gas, however, it is, as we have seen, necessary
to vary the density of only one beam of particles.
As X approaches zero, there will be fewer and fewer
particles in each beam, hence, only a negligible
variation in charge density having a definite fre-
quency can be obtained in this way. ' To obtain
appreciable variations, one must sum over par-
ticles of many velocities. In order to illustrate the
effects of this, let us assume that all particles in the
range Vo; —(5/2) to Vo;+(b/2) have been given the
same trigonometric variations in density, bnj„e'*.

From Eq. (16), one obtains the total variation
in density,

Voi+(~ /2)

gX(x, &) =Xak P &nl„e""*-"""
Vo i—(& /'2)

For small X, this may be approximated by the
integral,

VI. EFFECTS OF ELECTRICAL FORCES

The effect of electrical forces is, as we have seen
in Section I I I, to couple the motions of particles
of different velocity, and thus to make possible
organized oscillations. In this section we shall trace
out in detail how the normal modes of the perfect
gas, consisting of waves carried along by the motion
of each group of particles, go over into organized
plasma oscillations.

Let us begin with the equation of motion for
each particle,

m(d V/dt) = eely. (19)

Suppose that in the absence of an oscillation, the
velocity of a particle is Vo„and that, more gener-
ally, the velocity is V, = Uo, +8V;(x, t), where we
note that the small perturbation, 5V; depends, in
general, on the position and time. One can there-
fore write dV/dt= (BV/Bt)+ U(8 V/Bx), and with
the neglect of the second order term, 6V,(85V;/&x),
one obtains

(Bb V;/Bt)+ Vo;(88 V,/Bx) = (e/m)(pe/Bx). (20)

leads to

8E~(x, t) = expikx exp —k'a'9/ 4 (Ak).

The physical process responsible for the decay of
these waves is essentially the random diffusion of
particles of different velocities, which tends to
carry particles away from regions where they are
initially in excess and into regions in which they
are initially dehcient. Thus, we see that in a perfect
gas, there can be no medium-like oscillations. '

(I Vo=vo i+{&/2)

bK(x, t) = Snab, e""hk
~ Vp= Vp i—(5 /2)

e
—ikvp&d V

(Bn,/Bt)+(8/Bx)(n, V;) =0. (21)

The charge density is obtained from the equation
of continuity, applied to each beam,

bnl e"&* vo" &sin(kit/2)-
= -2ak For a small oscillation, the density takes the form

n„=no, +8n, (x, t), (22)

We see that as t gets large, 5X(x, t) approaches
zero. This means that a wave-like disturbance
involving a range, r, of particle velocities dies out
in a, time of order t=2/kr. The reason is that the
waves, associated with particles of different ve-
locity, get out of phase with ea,ch other. (One can
obtain similar results with almost any distribution,
which falls off with increasing velocity. For ex-
ample, a Gaussian initial distribution,

Snab( Vo) = (2/ops) exp —Uo'/0',

' It can be seen that the possibility of obtaining waves of
arbitrary frequency comes from splitting the distribution into
beams of discrete velocities. This step'is a way of taking into
account some of the fluctuations resulting from the particle
nature of the elementary charges.

(8/Bt) 5 U;+ik UO, 5 V; = (ie/m) k p,

(8/Bt) 6n, +ik Vo;8n, = ikn0, 8 V;.—
(24)

The most general initial conditions on the above
equations are that, at t = 0, 5 U, = 5 V(); and 6n; = 8no, .

g Sound waves in a real gas are made possible by collisions,
which are caused by short range interactions of particles,
as a result of which the gas ceases to be perfect.

and in the linear approximation, Eq. (21) becomes

(8/Bt) Sn, + Vo;(88n;/Bx) = no;(86 V—,/Bx). (23)

For a trigonometric perturbation, where 8 V, and
Bn; are proportional to expikx, one obtains
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The solutions satisfying these conditions are

~ke
g U &

tkVot—t &tkVo;r+(&)d&+ g V &
—tkVott

m aJ p

Pn; = ikn—p,e *"vo" e'k o"tt U;(r)d'7
"o

+Qg .e—tkV0j t

k2no e i
t

tkVOII etkVoio(t r) &(r)dr

(25)

tial, q» exp —idiot, is not only to produce a component
of charge density which has the "forcing fre-
quency, "

cu, but also other components having the
frequency, k Vp;, which result from the "free oscilla-
tion" terms. In order that bn; vary only with the
frequency, cv, one must choose the following
boundary conditions:

I) Vp ' = (kp/m) (pop/k Up ' tp),
(28)

I')np; (k——op/m)np;[yp/(k Vp; —tp)']
+g„b(tp k—Vp;),

Jp

+~no e-"~0"—ikno ~ Vo'te-" o".

The equation determing p is obtained from Pois-
son's equation

otto= k tto=41I'pXQ 'o)vt

=4orplt. p, k'mp, (p/m)e "v'*'—

X~~ e'"'o"(t r) ~(r)dr—
0

+ bn p;e "vo" ikn-p;5 Up, t—e 'kv"t (—26)

In the limit as X goes to zero, this becomes an
integral equation defining y as a function of the
time. It can be solved with the aid of a Laplace
transform, as was done first by Landau. ' We shall
adopt, however, the method of obtaining the normal
coordinates, and subsequently expanding an ar-
bitrary solution as a sum of normal modes, because
in this way, the physical processes responsible for
the origin of medium-like behavior can be made
more evident.

We begin, therefore, by seeking solutions in
which p = q p exp —i~t. One then obtains from
Eqs. (25)

ke +pe
(1 ei{o—kVOI) t) +g U e ikVoit. —I (kVO; —td)

$eknp pp
e—2ca) t

m aVo;

St{ra kV t)t)O—
X

~ ~

—oknp;8 Vp;te "v'*'
(kUp; —cd) )

.e—~kvo;t

(27)

~ L. Landau, J. Phys. U.S.S.R. 10, 25 (1946}.

The above equations show that, in general, the
response of a particle of velocity Vp; to the poten-

where l)(od —k Vp;) = 0 unless Up; ——Id/k, in which
case it is unity and gives an arbitrary constant. "
The term g„t)(op —k Vp„) represents an initial trigo-
nometric perturbation in the density of particles of
a definite velocity, Vp;. As in the perfect gas, this
leads to a wave of definite frequency, co =k Vp;. The
remaining terms represent the response of the rest
of the plasma to the total potential. Note that this
response is the same as that given in Eq. (12), as it
should be, since in both cases one is solving for the
steady-state solution in the linear approximation.

We then obtain for the velocity and density
perturbation of each particle

ke ape
8V, =—

m (k Vp' —op)

k2eno k po
6n;= +g lt(tp —k VII;) e—' '

.m(k UI); —p))'

(29)

At this point we encounter the difhculty that,
according to the above formula, the response of the
particles to the potential becomes infinite at the
wave velocity, Up;=to/k. This is because, as shown
in Sections (III) and (VII), the linear approxima-
tion breaks down when

~

Vp —ip/k
~

'((2ppop/m).
We shall see in the next section that the actual
response of these particles, in the exact non-linear
treatment, is finite and not usually very important,
except when there are many particles near the wave
velocity. In order to keep the procedure of expand-
ing the oscillations as a sum of normal modes, how-
ever, we shall find it desirable, if possible, to retain
the linear approximation. From Eq. (27), one sees
that over a finite time, t, the response of bV, and
bn; to the potential always remains finite, even at
the wave velocity. Since this response is propor-
tional to yp, one concludes that over any finite
time, t, however long, it will always be possible to
choose a yp so small that the linear approximation
is good for all particles. The time, t, can still be
chosen long enough so that plasma oscillations can
go through many cycles. Although this procedure

It will turn out that, for all of the permissible frequencies
of oscillation, cu/k will be equal to the velocity of some one of
the groups of particles.
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may restrict us to rather small potentials, it should
still give a qualitatively correct description of
what happens with moderately large yp, since only
a few particles near the wave velocity need then
be treated in a non-linear way.

Let us separate the range of velocities into two re-
gions. In Region I,

~
Vo —co/k~ )a(2o»oo/m)», where

n is a number of the order of 10 or more, while
in Region II,

~
Vo —ca/k

~
&a(2oooo/m)». In Region I,

where the linear approximation applies, we adopt
the boundary conditions leading to a steady state,
Eqs. (28). In Region II, we cannot adopt these
boundary conditions, because they imply an in-
finite perturbation in the velocity and density. We
shall see, however, that if we adopt instead the
conditions, 5Vo; ——0, and 6no„——g„h(co —kVo;), then
over a finite period of time, however long, it is
always possible to choose qp so small that the re-
sponse of these particles to the potential can be
neglected altogether. To show this, we note first
that the number of particles in Region I I is pro-
portional to the range of velocities for which the
linear approximation fails, which is a(2o»oo/m ).
Since, for a finite time, the response of each group
of particles is proportional to yp, the total charge
density contributed by the response of particles in
Region II is proportional to pp&. It is always possi-
ble, by choosing yp small enough, to make this
negligible in comparison with the response of the
particles in Region I, which is proportional to q p,

since the number of particles in this region is
practically independent of pp.

To complete the calculation, one must now
satisfy Poisson's equation, which now takes the
form,

np;
(30)

l m ((o —k Vo;)'&

where the summation is carried out only over
Region I. As X goes to zero, the sum may be re-
placed by an integral, and one obtains

47ro' t nof(Vo)d Vo)
k'( 1—

~» o=4~og„, (31)
E m &, (co —kVo)'&

where ~=A Vp, for some j. Note that when the
expression on the left hand side is zero, cu is equal
to the "plasma frequency, " from the dispersion
relation (9).

From the above equation, one concludes that
an oscillation of definite frequency, co, can be set
up by starting the particles in Region I according
to Eq. (28), with co set equal toy&, , while in Region II,
one takes the initial conditions, 6 Vp; =0, 6np;
=g 8(oo —k Vo,). Each one of these oscillations is a
normal mode, and since one obtains an oscillation
only when oo, /k is equal to the velocity of some

beam, one concludes that there are as many oscilla-
tions of this kind as there are beams of particles.
One obtains, therefore, just as many normal modes
as were obtained for the perfect gas.

Let us now investigate the general character of
the oscillations. The second term on the left hand
side of Eq. (31) represents the response of all
particles to the total potential. In general, this
response modifies the potential resulting from the
g„5(co—k Vo,) term, which latter represents the
effects of particles at the wave velocity. When co

is far from the "plasma frequency, " however, the
coefficient of q p remains large, so that the potential
is of the same order of magnitude as»oo ——(4orog„)/ko.
Since there are very few particles near the wave
velocity, the maximum potential that can be ob-
tained from such an oscillation is very small. The
general character of the wave is not very diferent
from that of the waves in a perfect gas, since an
oscillation is possible only if it is supported by
inhomogeneities in density of particles at the wave
velocity. Although the potential is somewhat modi-
fied by the response of the other particles, there is
no real organization of the motion.

As co approaches the plasma frequency, however,
there is a qualitative change in the nature of the
motion, resulting from the fact that the potential
associated with a given value of g„becomes larger
and larger. This means, for one thing, that the
maximum potential attainable with waves of a
definite frequency increases. When co is equal to the
plasma frequency, one obtains waves with g set
equal to zero. This means that the oscillations are
no longer supported by periodic pulses of particles
at the wave velocity, but that, instead, the charge
density is made up of the cumulative and coherent
contributions of all particles to the total potential.
The motion therefore shows a considerable degree
of organization. The amplitude of an oscillation at
the plasma frequency is not limited by the number
of particles at the wave velocity, since the latter
play no role at all in maintaining the motion. Thus,
even in the linear approximation, large potentials
may be built up at the plasma frequency made
possible by the fact that all particles act in unison
with long range forces.

In order to obtain a single frequency, it is neces-
sary, as we have seen, that all particles be started
out with exactly the right phase relations. With
most mechanisms of excitation, however, it will
be very unlikely that exactly these initial conditions
will be produced. More generally, one can expect
that a whole range of frequencies will be excited.
As in the perfect gas, it will be impossible to excite
to any high degree these normal modes involving
mostly a few particles near the wave velocity, and
if these modes have any appreciable energy, there
will be a corresponding range of frequencies, which
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eventually get out of phase with each other and
produce no macroscopically observable results. The
plasma frequency, however, can be highly excited,
and its oscillations produce a potential which per-
sists indefinitely. Thus, in the long run, only the
plasma oscillations will be observable. This means
that a system starting in an arbitrary way will

eventually seem to have all of the particles inter-
locked with the velocity perturbations (Eq. (12))
characteristic of organized plasma oscillation. Thus,
the complexities introduced by the degree of free-
dom in which oscillations are carried mainly by
particles at the wave velocity can be ignored, be-
cause they produce no macroscopically observable
effects. In this way, the system takes on the be-
havior of a medium. '

The above conclusions apply only to plasmas in

which there are no large number of particles with a
common, sharply defined velocity. If the latter are
present, their macroscopically observable charge
density does not cancel out after a long time. In
other words, pulses of charge in a beam of well-
defined velocity can persist for a long time. Hence,
such beams continue to contribute to the total
number of degrees of freedom, and are best de-
scribed as separate plasmas, interpenetrating the
original plasma, and interacting strongly with it.
Ke shall have occasion to consider the enects of
such beams in Paper B.

g(U, )d V.
k' =(up' = F(a)/k);

( V.—~/k)'

g( V.) = Jt ~
f(V)d V,d V.,

(32)

where a small range of velocities near V, =co/k is

excluded. f(V) may be taken as the Maxwellian
distribution with mean speed V.

For large co/k, F is approximately equal to
cop2/(sa/k)'. Because f(co/k) is so small, F has a
value practically independent of the range near the

' Landau (see reference 7), using a Laplace transform, has
obtained essentially the same result as ours: i.e., no matter
what are the initial conditions, the system oscillates asymptoti-
cally with the plasma frequency. Our method differs primarily
in that it uses a discrete but closely spaced set of velocities,
with the aid of which the particle nature of the charge is taken
into account schematically in a more convenient way than
cg, g, be done with a continuous distribution of velocities.

VII. MINIMUM %'AVE-LENGTH FOR PLASMA
OSCILLATIONS

Thus far we have studied the dispersion relation
in detail only for the case of small k. To extend the
investigation to arbitrary k, we rewrite Eq. (9) as
follows: (we take the x axis in k direction and inte-
grate over s„, s,.)

wave velocity which has been cut out. As co/k

approaches zero, F reaches a maximum, the value
of which depends fairly strongly on the range which
has been cut out. It is clear, therefore, that there is
a maximum k, for which ordered plasma oscilla-
tions are possible. (There is, of course, no maximum
if we seek oscillations which are, as shown in Eq.
(31), supported mainly by the few particles near
the wave velocity. )

One can easily show that for oscillations in
which co/k is of the order of V or less, most of the
response to the potential will come from particles
as near the wave velocity as one can get before
reaching the cut out region. (See, for example,
Eq. (31), noting that if f(co/k) is large, the main
contribution to the integral comes from near
V = co/k. ) Hence, the degree of organization is very
rudimentary in this region, and the motion is
difficult to distinguish from disorganized free par-
ticle motion. A rough dividing velocity, above
which the contribution of particles near the wave
velocity becomes small, occurs where co/k = V.
Beyond this point, the frequency also depends only
weakly on how large a range of velocities is cut out.

With V = (SzT/xm) &, one obtains for the critical
wave-length X.=2s/k=2'(V/a&). From Eq. (11),
one can show that when

and
co/k = V, (a'= 2a&~' ——(87rno~'/I)

X.= 2'(~T/vr'noe') &

' P. Debye and E. Huckel, Physik. Zeits. 24, 185 (1923).
& This limitation has also been discussed by Vlasov (see

reference 4), and Landau (see reference 7).' I. Langmuir, Proc. Nat. Acad, Sci. 14, 627 {1928).

A similar limiting wave-length was obtained
by Debye, ' who showed that static disturbances
could not be shielded out in a distance less than
(~T/4s. no&')&. Since shielding is the characteristic
static property of a plasma, considered as a me-
dium, one concludes that both statically and
dynamically, aggregates smaller than a Debye
length cease to act like an organized medium. &

Langmuir' has given a simple qualitative picture
of why the Debye length should be the minimum
wave-length for a plasma oscillation. A particle,
moving much slower than the wave, experiences
almost the same force as a particle at rest; hence,
its contribution to the charge density is nearly the
same as with the neglect of thermal motion. A
particle moving much faster than the wave covers
many wave-lengths during the period of a plasma
oscillation, so that the average force on it tends to
cancel. It therefore does not take part very strongly
in the organized motion. When the wave velocity
is so low that most particles are as fast as the wave
or faster, organized oscillation becomes impossible.
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VIII. EXACT NON-LINEAR TRAVELING %AVE
SOLUTIONS

In a steady state of oscillation, " the condition
for breakdown of the linear approximation is that,
in the wave system of coordinates, there exist
many particles for which the kinetic energy is
comparable with the potential, or for which

ey—(m/2) U02=m/2(VO —V)r)'. (33)

ln the neighborhood of the wave velocity the ex-
pansion (10) breaks down, and the equation for q

is no longer linear. We shall indicate here the general
lines on which an exact traveling wave solution,
y=p(x —V)rt), can be obtained, and shall also
give the solutions for a few cases. For convenience,
we shall restrict ourselves to the one-dimensional
case. Although the restriction to traveling waves
considerably decreases the generality of the treat-
ment, one can still solve a wide variety of problems
in this way. For example, if one has a standing wave
resulting from reflections oR boundaries, one can
express the potential as the sum of two waves
running in opposite directions, (( = F(x Vs t)—
+F(x+ Vrrt). Since the non-linearity is usually im-
portant only for particles close to the wave velocity,
it is a good approximation to solve exactly for each
running wave separately, and then to add the two
solutions. This is because the wave running in the
negative direction has only a slight influence on
particles trapped in the wave running in the posi-
tive direction, and vice versa.

Since only a small fraction of the untrapped
particles are usually near the wave velocity, and
since, as we shall see, the non-linear eRects intro-
duced by their coming near the wave velocity are
not qualitatively new, we shall assume that the
distribution of untrapped particles is such that
their density is given adequately by the linear
approximation, where it is understood that f( Vo) is
to be taken zero in a region surrounding V= V~,
and broad enough to exclude the velocities for
which the linear approximation fails.

The trapped particles, however, we shall treat
rigorously, because they lead to qualitatively new
eRects. It is convenient to specify the velocity
distribution of trapped particles in terms of the
velocity U&, with which they pass through the
bottom of the potential trough. We denote the
potential at this point by y= p&., note that it is a
maximum here, because we are dealing with elec-
trons. The distribution of trapped particles at this
point we denote by dX) =g(U))d U(. To compute the
distribution of trapped particles at any other point,
x, we note that, in the steady state, the density is

" In this section, rve restrict ourselves to steady-state oscil-
lations, and do not solve the initial value problem considered
in the section on the origin of medium-like behavior.

inversely proportional to the velocity. Ke obtain

g ( U)) i Ug i
d U)

ding =
(U ')+(2e/m)(p(x) —(()))&

(34)

This can be given a more convenient form with the
substitution

P = U)2 —(2e/m)(p( y(x—)); $d$= U)d U). (36)

We get

((2e /~) (y(*)—q 2) )

X)——
J 0

&&g((P —(2 /m)((o(x) —
~ ))')dk (3&)

The equation defining y can be obtained from
Poisson's equation, using the linear approximation
(7), for the contribution of the untrapped particles
to the charge density,

ey(x) ( f(VO)d V()PP =4' 6 N0 —tl+. —Q0
m & (Vo —V)r)'

((2e/~) (V —
q S))&

+)f g((e (2~/m)(—9 () )))')dk— (38)
0

where n0 is the mean density of untrapped particles,
and n+ is the density of positive ions.

To solve this equation for p, one must first know
g(U)). This function depends on the processes which
cause particles to be trapped in the wave. In actual
plasmas, the two most important processes of this
kind are (a) collisions, (b) processes by which
electrons enter the plasma, such as ionization, or
injection from a hot cathode.

In the present work, we have assumed that colli-
sions are so infrequent that their effects on particle
motions can be neglected. Yet, they will still be
important in determining f( Vo) and g(U)). For
example, they will tend to throw particles into the
range of trapped velocities, with a more or less uni-
form distribution, and they will also tend to throw
them back out. The net distribution function g(U~)
is the result of the balance of the rate at which

We must take into account the fact, however, that
particles with velocities less than U)2 = (2e/m)
X (p) —

q (x)) will never reach the point, x. If
q2 is the potential at the top of the trough, we
note also that particles with velocities greater
than U(2 = (2e/m) (p( —y2) cannot be trapped.
The upper limit on U~ is therefore always U~

=((2e/m)(y) —p2))&. The total density of trapped
particles at the point, x, is then

((2 I )(yl y2))) g(U))d U)
~

U)
~¹= (35)

"((~ ( )(q)—y(*))& (UP+(2e/m) (y(x) —y))) &
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particles enter the trapped region and that at which
they leave. The precise form of g(U1) is, however,
very hard to predict, but one can easily see what
are its main qualitative features. In general, one
expects to find more particles with small velocities,
U~, than with values of U~ so large that the particle
is barely trapped. This is because particles enter
the trapped region with a more or less uniform dis-
tribution in velocity, but leave more easily if
barely trapped, since a comparatively small colli-
sion is then sufficient to throw them out of the
trapped region. We shall take here for a typical
function of this type

g(Ul) =&((2p/»)(Pl —
~ 2) —Ul')' (39)

This function has g(U1) =0, for the critical value
of Ul which leads to escape (see Eq. (33)), and
g(U)) is a maximum for the most thoroughly
trapped particles ( Ul =0). This distribution in
taken primarily because it is a plausible one leading
to very simple mathematical results. We have,
however, carried out calculations with other func-
tions, and have obtained similar results which are
considerably more complicated in mathematical
form. The contribution of the trapped particles to
the density is then

((&s/~) (q (&)—q S))&

Xl(x) =a

linear in p2(x), (but not in the amplitude (p2). The
simplicity results from the special choice of g(U();
other choices lead to functions, Xl(x), which are
not linear in po(x), but which nevertheless yield
qualitatively similar results for the potential.
Poisson's equation becomes

—4~no~'-

I
f(Vo)d Vo 42rnlp

X +
( Vo —Vw)' q 1

—
p22

n1 p22

+
~

n, n+ — —)4«. (43)
(Pl 922 J

In order that the average field vanish over very
long distances, it is necessary that

n+ no (nl (o2/'pl (o2) ~

This relation will be brought about automatically
as a result of the processes which insure over-all
static neutralization.

The solutions of the remaining equation are of
the form

22=A cos(kx+(2) = (pol —(oo/2) cos(kx+n), (44)

X ((22/») (((2(x) —((22)
—f') 2dp (40). where

With the substitution, t = ((2p/»)(po(x) —(22)) &f,

the above becomes
I f( Vp)d Vp 42rpnl—

G7g 2

( Vo —Vw)' (pl —222

2Qe pl
(x) = (po(x) —p)2) I (& —1')

m J,

(p (x) —
( 2) (41)

2m

((~el~) (V r—n))&

nl —
J 0

g(U)dU

((2~ /~) (ol—oo))&

= ll
J

((2o/») (2 1 —Ã2) —Ul') 'd Ul,

The number "a" can be evaluated in terms of n~,
the total number of trapped particles.

and we have replaced p&
—

y& by 2A. For the case
that f( Vo) is negligible for Vp) Vw, one can expand
the denominator of the integrand in the above
equation, obtaining (for V=O)

»2/Vwo(&+3V2/Vwo+" )
= k + (4«nl/pol —

222) (46)

This is an equation defining U~ in terms of k and
the wave amplitude, q ~

—
q ~. The effect of increasing

the number of trapped particles n~ is to reduce the
wave velocity. To obtain the frequency, we write
Vw = (o/k. For the special case of no thermal
motion (V' = 0), we get

or
2ngm

oro (pl p)2)

co~~k~

k'+ (4«n 1/ pol (o2)— (4&)

(2 (x) —((2)
Nl(x) =nl

((1—( 2)
(42)

This expression is especially simple in that it is

By comparison with (1), we see that the effect of
increasing nj is always to lower the frequency of
oscillation. This is exactly the opposite of what
happens when one increases the density of un-
trapped particles, for this raises the frequency of
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plasma oscillation. The physical reason why trapped
electrons lower the frequency is that they tend to
concentrate in regions of positive potential, hence
shield out the forces which are causing the space
charge to oscillate. The untrapped electrons, on the
other hand, move faster through regions of positive
potential, hence tend to make the region more
positive still, and increase the forces tending to
cause oscillation.

It is interesting to note that for very long wave-
lengths (k~0), the frequency approaches

The dispersion relation here resembles that of
sound waves in a gas except that the speed of the
waves, Vw= co/k, is proportional to the square root
of the amplitude. It should be noted that the type
of plasma oscillation represented by these waves is
very dift'erent from those described by Eq. (11).
The low frequency waves appear only in the non-
linear approximation, and are made possible by the
contributions of particles near the wave velocity.
These waves are, in fact, of exactly the same type
as the oscillations supplied mainly by particles near
the wave velocity, obtained in Section VI except
that here, of course, the treatment is non-linear.

IX. TRAVELING PULSE SOLUTIONS

One can use the results of the last section to ob-
tain an interesting new type of solution, in which a
group of particles is trapped in a potential pulse
traveling through the rest of the plasma at con-
stant velocity. In order to see qualitatively how the
particles are trapped, let us go to the coordinate
system in which the pulse is at rest, while the
plasma electrons move past at high speed. In the
region where the potential is positive, the plasma
electrons speed up, thus contributing less to the
density, and tending to create an excess of positive
charge. This excess of positive charge in turn pro-
duces the positive potential, which we assumed to
begin with, and also traps a certain amount of
negative charge, overcoming the tendency of the
latter to blow up by mutual repulsion of its parts.

On either side of the pulse, which we take to be
symmetric about x=o, and to be within the limits,
x= &P, the plasma electrons are present with the
same density as that of the positive ions (n+). It is
consistent then, to assume no field in this region.
Since the positive ions have no time to respond as
the pulse moves past, their density inside the pulse
is the same as outside.

In order to show that pulses of this kind can
exist, one must now seek solutions of Eq. (38) for
the intermediate region which satisfy the following

For simplicity, we shall neglect thermal motions
of the untrapped electrons, which do not alter the
qualitative results in any important way. To do
this, write f(VO) =8(VD). Using the linear approxi-
mation (7), we obtain for the density of untrapped
electrons.

X(x) =n011+ (e/m) Lp(x)/ Vw'j I.
The first condition becomes

n+ = no(1+e p(aP)/m Vw')

The equation determining y(x) inside the pulse is

4s'Bye )V'y= —
1

cop'/Vw' — 1y
q, —q, )

-4~.
1
~+-»+

I (49)
A~

The most general solution, symmetric about x =0, is

( ngyg )
qr =A coskx —2~&1 n+ no+ —1x~, (50)

p1 +2~

where k is given by Eq. (47). We must satisfy the
definitions that at x =0, q = y~ and at x = &P, p = y2
(i.e. , x = &p is the last point at which particles can
be trapped). These conditions yield

pe=A,
y, =A coska —2xtP'(n+ —no+n, y, /yq —p2). (51)

The condition that 8p/Bx vanishes at x= &p is

0 = —kA sinkP —4xeP(n+ so++lpl/p1 p2) ~ (52)

The condition (1) on N(x) yields

n+ = no(1+~q 2/m Vw')

These conditions reduce to

(53)

t' npeqg ngrpg q

y2 = yy coskP —2xeP
1

+
(m Vw' y~ —rp2)

( @0&+2 +1P1
0= —kgb sinkp —4xep1 +

Lm Vw q&p
—yg]

' In this work we do not attempt to follow the processes by
which such a pulse solution can be set up. We merely wish to
show that in the steady state, such solutions can exist.

conditions, which permit one to fit the pulse solu-
tion continuously to the constant solutions outside
the pulse. '

1. The density of untrapped electrons at the
edge of the pulse must remain continuous.
Thus, the density must be N(+P) = n+.

2. The electric 6eld is zero at x= &p.
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Division of the first of these equations by the
second yields

pk
q e

——q ~ coskp+ —
p~ sinka

2

kp=
qadi coskp+ —smkp i (55)

2

Insertion into Eq. (52) yields

0 = —kq ~ sinkp

4s.e' pne
q~~ k sinkP+

m Ug'

kp
&(~ coskp+ —sinkp

~))
—47' pnl

kp
1 —coskp ——sink p

2
nee ( kp—4s'eP

( ] coskP+ sink—P
(mVw'E 2 l )

kp
4~ePn& —1 coskP— sin—kP—,

2

Ke can solve for q 1from the above, then for q 2 from
(55), and finally for n+ ne fro—m (53).This provides
a pulse solution, in which U~, the wave velocity,

(56) and n~, the number of trapped particles, may be
specified arbitrarily.
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Theory of Plasma Oscillations. B.Excitation and Damping of Oscillations

D. BQHM AND E. P. GRoss*
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The theory of electron oscillations of an unbounded plasma
is extended to take into account the e6ects of collisions and
special groups of particles having well-defined ranges of veloci-
ties. It is found that as a result of collisions a wave tends to be
damped in a time of the order of the mean time between
collisions. If beams of sharply defined velocity or groups of
particles far above mean thermal speeds are present, however,
they introduce a tendency toward instability so that small
oscillations grow until limited by effects not taken into account
in the linear approximation. An estimate is made of the steady-
state amplitude for plasma oscillations in which excitation
occurs because of a peak at high velocities in the electron
velocity distribution, and in which the main damping arises
from collisions. It is also found that in variable density

plasmas, waves moving in the direction of decreasing plasma
density show even stronger instability.

In absence of plasma oscillations, any beam of well-defined
velocity is scattered by the individual plasma electrons acting
at random, but, when all particles act in unison in the form
of a plasma oscillation, the scattering can become much
greater. Because of the instability of the plasma when special
beams are present, the beams are scattered by the oscillations
which they produce. It is suggested that this type of instability
can explain the results of Langmuir, which show that beams
of electrons traversing a plasma are scattered much more
rapidly than can be accounted for by random collisions alone.
It is also suggested that this type of instability may be re-
sponsible for radio noises received from the sun's atmosphere
and from interstellar space.

I. INTRODUCTION

X the preceding paper (referred to as A), we'. gave a theory of oscillations of an unbounded
plasma, neglecting collisions, and treating in detail
only ion gases with a continuous distribution of
velocities, which decreases monotonically with in-
creasing velocity. In this paper, we extend the
theory to include effects of collisions and more
general velocity distributions, showing how these
can bring about excitation and damping of plasma
oscillations.

II. EFFECTS OF COLLISIONS

A collision may be said to occur whenever two
particles come so close together that a sudden

~ Now at Harvard University, Cambridge, Massachusetts.

transfer of momentum takes place, which is so
rapid that for macroscopic phenomena, such as
wave motion, it may be regarded as instantaneous.
These momentum transfers occur at random rela-
tive to the phase of organized wave motion; hence,
their general e6ect is to disrupt it and to cause
damping. Because of persistence of velocity, not all
of the organized motion will be lost, but in a close
collision of an electron with a heavy object, such
as a neutral atom or an ion, the persistence of
velocity is not very important, and one can, in a
~ough quantitative treatment such as this, neglect
it altogether. We therefore take a simplified model
of these col.lision processes, and assume that par-
ticles emerge from a collision with no relation to
their previous velocity, but with a velocity distri-


