The Half-Life of Radiocarbon (C^{14})

ANTOINETTE G. ENGELKEMEIR, W. H. HAMILL,* MARK G. INGHRAM, AND W. F. LIBBY** Agonne National Laboratory, Chicago, Illinois (Received March 4, 1949)

The half-life of C^{14} has been found to be 5720 ± 47 years by means of the use of mass spectrometrically analyzed C14O2 as a part of the counter gas in brass wall Geiger counters. Some of the problems of absolute β -counting with internal counters have been investigated, particularly the coincidence and end corrections.

I. INTRODUCTION

'HE half-life of radiocarbon (C14) has been measured several times.¹⁻⁷ The discrepancies in the results and the increasing importance of radiocarbon seemed to call for a further measurement of the half-life. The use of the gas counting technique as a method of accurate, absolute measurement for radioactivities also appeared to be worth investigation. It was further realized that since most of the measurements available at the time this research was begun used solid counting techniques, the use of an entirely different procedure would lend additional weight to any agreement with the earlier results. Finally, it was thought likely that the gas counting procedure was capable of somewhat higher accuracy than the solid counting method.

Previously published results are tabulated in Table I, together with the methods of measuring the number of C¹⁴ atoms in the sample used and the methods of measuring the radioactivity of the sample.

Since the first three values depend upon more uncertain methods of determining the isotopic composition of the samples, they are not comparable to the later values; but it is clear that the more recent results scatter somewhat more than the estimated errors given by the authors. The agreement, however, is sufficiently good as to suggest that the true value lies near the mean of these values. The error in this mean is difficult to estimate, but it might be permissible to take it from the observed deviations from the mean. The result of such calculations is

² M. D. Kamen, Manhattan Project Literature, A-316.

- ⁸ A. S. Langsdorf, Jr., and R. L. Purbrick, Manhattan Project Literature, CP-G-3272.
- Reid, Dunning, Weinhouse, and Grosse, Phys. Rev. 70, 431 (1946). ^{5a} L. D. Norris and M. G. Inghram, Phys. Rev. 70, 772
- (1946). ^{5b} L. D. Norris and M. G. Inghram, Phys. Rev. 73, 350
- (1948). ⁶ Hawkings, Hunter, Mann, and Stevens, Phys. Rev. 74,
- 696 (1948). ⁷ L. Yaffe and Jean Grunlund, Phys. Rev. 74, 696 (1948).

 5687 ± 100 years. The difficulty in accepting such a mean is the possibility of systematic errors, especially since most of the measurements used solid counting techniques. It is true, however, that the different researches used different detailed procedures and different considerations for such corrections as back scattering, self-absorption, geometrical efficiency, and counter efficiency. It is interesting, therefore, that this mean lies close to the result of the present research, 5720 ± 47 years.

The general method used in this research was the following. A sample of barium carbonate obtained from the Isotopes Division in Oak Ridge was converted to carbon dioxide, the isotopic abundance of C¹⁴ determined, and an accurate dilution of several thousand fold performed. After mixing, carefully measured portions of the diluted sample were counted. The counting was done with brass-walled counters of different diameters and lengths filled with an argon-alcohol mixture to which the samples of CO₂ were added. The samples varied

TABLE I. Summary of the previously published values for the half-life of radiocarbon.

Half-life (years)	Method for isotopic composition of sample	Method for radioactivity of sample	Refer- ence
103-105	Estimated bombard- ment yield	Solid carbonate counting: CaCO ₃ in screen wall counter	1
26,000 ±13,000	Estimated bombard- ment yield	Gas counting: CO2 in counter	2
21,000 ±4000	Estimated bombard- ment yield	a. Solid sample counting: sample with thin window counter b. Gas counting: CO ₂ in counter	3
4700 ±470	Mass spectrometer (1.71%)	Solid carbonate counting: BaCO₃ with thin window counter	4
5300 ±800	Mass spectrometer (3.23 and 3.35%)	Solid carbonate counting: BaCO3 in low absorp- tion counter	5a
5100 ± 200	Mass spectrometer (3.23 and 3.35%)	Solid carbonate counting: BaCO3 in low absorp- tion counter	5b
6400 ± 200 or 6100 ± 200	Mass spectrometer	Gas counting: (Miller technique ^{a,b})	6
7200 ± 500	Mass spectrometer	Solid carbonate counting: BaCO ₃ with thin win- dow counter	7

^a W. W. Miller, Science **105**, 123 (1947). ^b S. C. Brown and W. W. Miller, Rev. Sci. Inst. **18**, 496 (1947)

^{*} On leave from the Department of Chemistry, University of Notre Dame, Notre Dame, Indiana. ** Institute for Nuclear Studies, University of Chicago,

Chicago, Illinois. ¹ S. Ruben and M. D. Kamen, Phys. Rev. 59, 349 (1941).

FIG. 1. Counter with Lucite ends.

from 0.01 to 0.1 cc S.T.P. End corrections were determined by comparing the results per unit volume of active gas from counters of the same diameter but of different lengths; a possible small variation in end correction was observed for counters of different diameters. It was assumed on the basis of previous experience reported in the literature and the basis of the absence of any appreciable variation with radius, that the counters were 100 percent efficient except for the end correction. Several CO₂ master samples were used, varying in composition from 1.24 to 6.14 atomic percent C14. There was no systematic variation attributable to either the master samples or the various methods of introducing the CO2 into the counters.

II. PREPARATION AND ISOTOPIC ANALYSIS OF THE MASTER SAMPLES; PREPARATION OF THE WORKING SAMPLES

Two methods were used for the evolution of CO_2 from the barium carbonate. The first method utilized the reaction of acid with the carbonate. About 10 mg of the Oak Ridge barium carbonate were placed in the bottom of a tube to which a ground joint had been sealed. The tube was immersed in liquid nitrogen and one or two cubic centimeters of concentrated sulfuric acid pipetted down the side of the tube so that the acid froze

TABLE II. The compositions and dilution factors for the radioactive carbon dioxide samples measured. Column 2 gives the isotopic composition of the master sample and column 3 the factor by which the master was diluted. Column 4 is the ratio of column 3 to column 2.

Desig- nation	Isotopic com- position of master (atomic percent C ¹⁴)	Dilution factor	Ratio stable to C ¹⁴ atoms
Ia	1.28 ± 0.01	1592	124370
Īb	1.28 ± 0.01	6410	500780
Ĩč	1.28 ± 0.01	1670	130470
Āa	3.28 ± 0.03	22750	693600
A	3.28 ± 0.03	7410	225900
Ha	2.55 ± 0.03	3722	145960
Hb	2.55 ± 0.03	4410	172940
Fa	2.55 ± 0.03	803.4	31505
$\alpha 1$	6.144 ± 0.042	6215	10160
α2	6.131 ± 0.038	7521	122670

FIG. 2. Counter with glass ends.

before coming into contact with the carbonate. While still immersed in liquid nitrogen the tube was connected to the vacuum line and thoroughly evacuated. The pump was then turned off and the tube allowed to warm to room temperature with consequent evolution of the CO2. The gas was condensed into a 50-cc bulb to which two sample tubes with break-off seals had been attached. The sample was allowed to stand in the bulb to ensure equilibrium with any CO₂ adsorbed on the glass walls or in the grease on the stopcock. After an hour or two one of the sample tubes was sealed off and analyzed on the mass spectrometer. The dilution was then made and the second tube sealed off to bracket the composition of the gas actually used in the dilution. It was found that the two compositions agreed within the error of the mass spectrometric analysis.

The second method of evolving CO_2 from barium carbonate, suggested by Dr. W. W. Miller in a private conversation, was the metathesis of the carbonate with lead chloride. The Oak Ridge barium carbonate was mixed with dry lead chloride powder in a mortar and transferred to a tube on the vacuum line. The tube was evacuated and the pumping continued during the initial stages of heating in order to outgas the mixture. The pump was shut off when the temperature reached 100°C. CO_2 was evolved as the temperature was raised, the evolution appearing complete and quantitative at 350°C. In terms of the metathetic reaction

$$BaCO_3 + PbCl_2 = BaCl_2 + PbO + CO_2, \qquad (1)$$

a 100 percent excess of PbCl₂ was used. A typical result by this procedure was that a sample of barium carbonate labeled 5.9 percent C¹⁴ by the Oak Ridge Isotopes Division yielded CO₂ of 6.144 ± 0.042 percent composition, indicating no appreciable dilution. By contrast, the acid evolution method gave samples varying from 1.24 to 3.28 percent from barium carbonate labeled 3 percent, the variation presumably being due to the introduction of inert CO₂, either in the acid or from the freezing of the acid in air.

The dilution was performed by allowing part of the master sample to expand from its storage bulb through the vacuum line into a McLeod gauge. A 0.3281-cc bulb had been sealed to the capillary of the McLeod, and the active CO₂ was forced into this bulb by raising the mercury. The vacuum line was thoroughly evacuated and the pressure of the CO_2 in the bulb measured. The vacuum line was flushed with inert CO₂, and a pressure of CO₂ allowed to build up, sufficient that, as the mercury was lowered, inert CO₂ was forced through the mercury into the McLeod to a pressure of 40 or 50 cm. The vacuum line was evacuated and the total pressure in the 503.1-cc McLeod volume measured. Care was exercised throughout the operation to keep the mercury level in the McLeod above the side arm to prevent the active sample from diffusing into the line. The gas was allowed to stand for a time to insure diffusive mixing although the bubbling attendant, upon the transfer of the inert CO_2 through the mercury, was sufficiently vigorous as to have assured fairly complete mixing. The sample was then transferred by condensing with liquid nitrogen into a trap sealed to a 500-cc storage bulb with a stopcock.

Each master sample was usually used to make more than one working sample. Table II summarizes the data on the masters and working samples.

The technique used for the isotopic analysis was identical with that described by Norris and Inghram.^{5b} It is considered that the accuracy of the measurement is not less than 0.6 percent, the principal error being uncertainty about the relative ionization probabilities of C¹²O₂ versus C¹⁴O₂. The precaution of using molecular flow conditions between the sample tube and the ion chamber eliminates any correction for fractionation of the gas during flow into the mass spectrometer source. The instrument was that used by Norris and Inghram.

III. ABSOLUTE GAS COUNTING

A. Counter Construction and Operation

As mentioned in the Introduction, an argon-alcohol mixture was selected for the counter gas because of previous experience with the mixture and the extensive information as to its high efficiency.8 The standard pressures employed were 1.2 cm alcohol and 7 cm argon. Two types of counters were used. The principal type, shown in Fig. 1, consisted of a brass cylinder with flat Lucite plugs waxed into the ends. Both De Khotinsky and Apiezon "W" waxes were used. The central electrode, 0.22-mm diameter, was iron wire carefully cleaned with fine emery before being put into the counter. The Lucite plugs were turned on a lathe and were $\frac{3}{4}$ thick, extending $\frac{3}{8}$ " into the counter. For about half the data, a movable Lucite disk, slightly smaller in diameter than the counter and $\frac{3}{4}$ thick with a $\frac{1}{8}$ hole through the center, had been placed in the counter to facilitate mixing the gases. In later measurements this disk was omitted. The second type of counter, used for a few early measurements, was a brass tube with glass ends, as shown in Fig. 2. Its use was discontinued because the end correction was so much larger than that for counters with flat ends.

It was found that the presence of small partial pressures of inert CO₂ in the standard argon-alcohol filling had very little effect on counter operation. Figure 3 shows plateau curves for the addition of various amounts of CO₂. The evidence clearly indicates that pressures of CO_2 up to 7 mm are tolerable; and that the pressure range in this research, namely, 0.01 to 0.5 mm, was completely safe. The precaution was always taken to record the response to an external standard (a piece of an old copper cyclotron-target). It was observed that whereas CO₂ at these pressures had no effect on the observed rate, considerable care had to be taken to guard against certain slightly volatile materials which reduced counter efficiency. Apparently these materials arose in the wax or in the Lucite, and extensive pumping was required for their removal. In the two and a half years spent on this research, this happened only 5 or 6 times in several hundred counter fillings. With the exception of these few runs, the counters always responded properly to the standard regardless of whether or not there was an active filling in the counter.

Memory effects were quite serious during the first weeks, especially with newly built counters. The background after evacuation and refilling with argon-alcohol was several percent higher, following the counting of an active CO_2 sample, than before. The initial background rate was restored by acid washing the counter, but heating to temperatures of 50–60°C for 12 to 14 hours in the presence of inert CO_2 did little good. Treatment with water

FIG. 3. Effect of CO₂ on counter plateaus. *Note:* Due to scale down, bottom right-hand line should read ". . . 1 cm on vertical axis=1500 c/min.

⁸ K. Greisen and N. Nereson, Phys. Rev. 62, 316 (1942).

	Diameter X lengtl (inches)	n Volume b e t (cc	ween ends	Dead volume (percent of total external to brass cylinder)	
A.	$ \begin{array}{r} 1 \times 6 \\ 1 \times 12 \\ 2 \times 12 \\ 2 \times 24 \end{array} $	10 48 100	48)6 34 55	34.3 16.4 24.5 13.1	
	Diameter X length (inches)	Volume between ends (cc)	Total vo (cc)	lume Dead volume (percent)	
В.	$ \begin{array}{r} 1 \times 6 \\ 1 \times 12 \\ 1.5 \times 9 \\ 1.5 \times 18 \\ 1.5 \times 27 \\ 2 \times 12 \\ 2 \times 24 \end{array} $	75.8 153.8 263.0 521.0 778.3 614.0 1232.0	76 155 265 522 780 615 1233	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

TABLE III. Physical characteristics of the counters.

vapor and CO₂ was fairly effective in reducing the background even at room temperature. The explanation probably is the formation of a chemical compound on the surface of the brass. The preparation of the cylinder before the counter was assembled included washing in dilute nitric acid and rinsing in distilled water. Presumably this left a surface oxide film relatively free of carbonate. Subsequent exposure to CO₂ would encourage the formation of zinc and copper carbonates. These being relatively stable compounds, particularly the zinc carbonate, only very high temperatures, acid washing, or exchange with CO₂ could be expected to effect their removal. Since this notion explained the observations, it was concluded that an efficient pretreatment ought to be exposure of the newly con-

FIG. 4. Counter backgrounds.

structed counter to inert CO_2 until the layers were saturated. CO_2 at 1 atmosphere was allowed to stand in the counter for twenty-four hours at room temperature. This pre-treatment proved to be completely effective provided no appreciable amounts of moisture were allowed to enter the counter, and for all practical purposes, the difficulty was solved. This procedure should serve for ion chambers and other instruments constructed of brass, and the notion applies more or less generally to other detection devices constructed of metal and operating with CO_2 .

The counter was operated on a scale of 64 with a commercial unit sold by Instrument Development Laboratories (Model 161). It was found necessary to modify this unit for the larger counters by the insertion of a 3-megohm variable resistor in the first multivibrator circuit of the set. Prior to this change, somewhat disconcerting behavior was observed with the larger counters, namely, that pulses were doubly recorded when the pulse height exceeded a certain value and that consequently the counting rate doubled about half-way along the plateau. Counters 2" in diameter and larger invariably showed this doubling, whereas it was never observed with 1'' counters even though these were made as long as twelve inches. The small alteration mentioned, however, was the only one necessary to use the commercial unit with even the largest counters.

The central wire was connected directly to the input lead and the counter wall grounded through a standard cathode-ray oscilloscope. This enabled the operator to determine the true pulse shape and not its first derivative, and proved convenient in setting the operating voltage so that reproducible pulse heights were obtained. It was observed that the middle of the plateau usually corresponded to a given pulse height; this served as a check on the counter behavior. There was also a linear relationship between pulse height and voltage, a change of 2 volts in the pulse height corresponding to a ten-volt change in the operating voltage.

The counters were shielded with $1\frac{1}{2}''$ of lead at the sides, ends and bottom. The top was left unshielded for convenience. Table III gives the dimensions of the counters used, Part A, the "glass counters" and Part B, the "Lucite counters" used throughout most of the work.

It was observed, particularly with the Lucite counters, that the background rate was a linear function of the longitudinal cross-sectional area of the counters. Table IV gives the data for the Lucite counters when shielded as described and lying in a horizontal position.

These data are plotted in Fig. 4. It is clear that linearity is fairly well established and that the slope of the line is in agreement with numerous

TABLE IV. Background vs. area for lucite counters.

Counter dimensions (inches)	Background (c/min.)	Ratio of bkgd./area (c/min./in. ²)
1×6	64	10.7
1×12	125	10.4
1.5×9	137	10.1
1.5×18	285	10.6
1.5×27	415	10.2
2×12	275	11.5
2×24	480	10.0

TABLE V. Resolving times for the lucite counters.

Counter dimensions (inches)	Resolving time τ (microminutes)
$ \begin{array}{c} 1 \times 6 \\ 1 \times 12 \\ 1.5 \times 9 \\ 1.5 \times 18 \\ 1.5 \times 27 \\ 2 \times 12 \\ 2 \times 24 \end{array} $	$3.86 \pm 0.2 \\ 4.20 \pm 0.15 \\ 5.61 \pm 0.5 \\ 5.81 \pm 0.2 \\ 5.50 \pm 0.3 \\ 6.93 \pm 0.15 \\ 7.04 \pm 0.14$

reports in the literature on backgrounds under similar conditions. It should be remarked that the addition of $1\frac{1}{2}''$ of lead above the counter reduces the slope approximately 30 percent, so that a rough rule for the background at sea level of a counter shielded in all directions by $1\frac{1}{2}''$ of lead is 7 c/min./ in.²

B. Coincidence Correction

The coincidence corrections were determined by the use of carefully paired Cs¹³⁷ sources mounted on thin copper disks. The formulas used were

$$y_1 = x_1 \exp \tau y_1, \tag{2}$$

$$y_2 = x_2 \exp \tau y_2, \tag{3}$$

$$y_1 + y_2 = x_{1,2} \exp \tau(y_1 + y_2), \tag{4}$$

where the y's are the true rates, the x's the observed rates, and τ the resolving time of the counter. The exponential form of the coincidence correction law was used rather than the linear form, although calculations with the linear form showed little difference in the correction obtained. In the case that $x_1=x_2=x$, then y_1 will be equal to y_2 , (y), and a general simplification results. In fact, since from (2), (3), and (4),

$$y_1y_2/(y_1+y_2) = x_1x_2/x_{1,2},$$

substitution gives

$$y = 2x^2 / x_{1, 2} \tag{5}$$

2.

which, when replaced in Eq. (2) or (3), gives a useful expression for τ .

$$\tau = (x_{1,2}/2x^2) \ln(2x/x_{1,2}). \tag{6}$$

In using this method it must be realized that the

background is measured as a part of both x_1 and x_2 , and that it enters only once in the measurement of $x_{1,2}$. This correction has been made throughout this work.

The values obtained for τ for the Lucite counters are listed in Table V.

The apparent conclusion to be drawn from these data is that the value of τ is a function of counter diameter alone. This appears reasonable on all bases previously considered.⁹

The values of τ tabulated above agree within experimental error with those obtained by means

TABLE VI. Half-life data for glass counters.

Sample	Vol. C ¹⁴ O ₂ used $(\mu \text{ cc S.T.P.})$		Specific a (c/min./	ctivity (µ cc)	7
A. $2'' \times 24''$ counter to	r (net vol. $= 100$ tal vol. $= 1225$ co	65 cc	between	cap	ends,
Ic	1.57	- /	5150 +	-600	
Ia	0.508		5570 +	-250	
Ia	0.671		5620 +	250	
Ia	1.163		$4880 \pm$	250	
А	1.463		$4540\pm$	400	
B. $2'' \times 12''$ counter	(net vol. = 484 o	c, tot	al vol. =	649 c	c)
Aa	0.870		$4200 \pm$:150	
Ic	1.39		$4680 \pm$:300	
lc	0.189		$5380 \pm$:250	
Ib	0.183		$5560\pm$:250	
Ia	0.446		$5280 \pm$	250	
	A	verage	e 4960±	150	
C. 1"×12" count	er (net vol. $= 100$	5 cc, t	otal vol.=	= 127	cc)
Ic	1.28		$4840 \pm$	250	
lc	0.427		$4520 \pm$	250	
ІЬ	0.180		$4900 \pm$	300	
	A	verage	$4710 \pm$	200	
D. 1″×6″ coun	ter (net vol. $=$ 48	3 cc, t	otal vol.=	= 73 c	c)
Ib	0.165		$3480 \pm$	250	
Ib	0.393		$3970 \pm$	250	
Ic	0.278		$3850\pm$:200	
Ic	0.485		$3740 \pm$:200	
Ib	0.138		$4360 \pm$	250	
	A	verage	$\frac{1}{3860\pm}$	150	
E. C $1 - 2''$ counters	alculated half-li	fe			
Geom. end correc	ction: 24	,, <u>1225</u>	$\times 5120 =$	5900	+150
	10	,1065	,	((70	
	1225 512		a 4000	0050	± 200
Formula end corr	ection: $\frac{1225\cdot512}{122}$	$\frac{0-64}{5-64}$	$\frac{9.4900}{9} =$	5330	± 600
Half-life	122				
Geom. end cor	rection:	24	″ 6010	years	± 150
		12	″ 5320	years	± 200
	Formul	a	6600	years	± 600

Average (geom.)	Formula	6600	$years \pm 600$ 5665 ± 300
Half-life			
Geom. end correction:		12''	6230 ± 300
Formula end correction	n:	6"	6030 ± 300 6030 ± 900
Average (geom.)			$\overline{6130\pm300}$

⁹S. A. Korff, *Electron and Nuclear Counters* (D. Van Nostrand Company, Inc., 1946), Chapter 4. _

I

I

I

 $\alpha 2^{\dagger}$

Table VII	. Half-life data f	or Lucite counters, 1"	$\times 6''$ counter.		1	"×27" counter	
Sample	Vol. of C ¹⁴ O ₂ (µ cc S.T.P.)	Specific activity (c/min./µ cc S.T.P.)	Date	IIb*† IIa*† IIb*†	$\begin{array}{c} 0.4352 \\ 0.5143 \\ 0.3720 \end{array}$	6326 ± 120 6125 ± 60 6071 ± 120	3/ 3/ 5/
IIh	0.4259	5631 + 50	12/12/46	IIa*† Fa*†	0.4080	6289 ± 250	5/
IIa	0.5592	5575 ± 50	12/13/46	IIb*†	0.5549	6103 ± 120	6/
Hb*†	0.4153	5730 ± 285	2/19/48	IIb‡†	0.7608	6103 ± 120	7/
Ila*†	0.5456	5768 ± 60	3/19/48	IIb‡†	0.4430	6022 ± 120	7/
110*7 115++	0.3914	5778 ± 100 5700 ± 60	7/22/48	α_{111}^{111}	0.5654	6078 ± 120	11
IIbit	0.1422	5905 ± 90	7/27/48	$\alpha 217$ $\alpha 217$	1.121 0.7540	6188 ± 120 6008 ± 60	11
(IIaࠤ	0.2540	5504 ± 60	8/4/48)	$\alpha 2 \ddagger \dagger$	1.032	6165 ± 120	11
(IIaࠤ	0.3162	5298 ± 110	8/5/48)		Average (correct	ed for dead volume)	6121 ± 38
(Ilaits) (Ilaits)	0.2989	5397 ± 60 5778 ± 110	$\frac{8}{9}$		2	$'' \times 12''$ counter	
Av	erage (corrected	for dead volume) 578	30 ± 36	Ha	0.4500	5760 ± 50	12
				IIa	0.9500	5736 ± 50	12
	$1^{\prime\prime} \times$	(12" counter			0.0740	5501 ± 50 5627 ± 60	12
				IIb	0.3440	6118 ± 50	5/
Ha	0.7952	5838 ± 50	12/4/46	Ha	0.2575	5887 ± 500	6/
Пр	0.7320	5881 ± 50	$\frac{12}{4}$	Ha	0.1930	5815 ± 100	6/
IIb Us	0.5150	5737 ± 50 5580 ± 50	12/12/40	lla* ∐₀*	0.3560	6130 ± 45 5020 ± 40	0/
11a 115*†	0.3933	5380 ± 30 5888 ± 230	2/19/48	Ha*	0.7190	5920 ± 40 6185 ± 50	6/
IIa*†	0.4934	6196 ± 60	3/19/48	IIa*	2.4800	6125 ± 100	6/
IIb*†	0.3561	6017 ± 60	6/30/48	IIa*	0.6380	6175 ± 100	6/
IIb‡†	0.3134	5910 ± 60	7/21/48	11b*†	0.7599	5921 ± 150	2/
	0.4035	5988 ± 00 5018 ± 110	7/22/48	Ha*† Fa *†	0.7804	0231 ± 180 5894 \pm 500	3/
(Hatts	0.3981	5683 ± 85	8/4/48)	Ha*t	1.0004	6275 ± 400	3/
(IIaࠤ	0.3376	5694 ± 60	8/5/48)	IIb*†	1.2446	5888 ± 120	5/
(IIaࠤ	0.4730	5792 ± 90	8/9/48)	IIa*†	0.7004	6180 ± 300	6/
(IIaࠤ	0.4158	5088±110	8/10/48)	Fa*† 115*+	1.0600	5770 ± 150 5077 ± 250	0/ 6/
Av	erage (corrected	for dead volume) 594	1 ± 50	Hb*t	1.1600	6015 ± 180	6/
				IIb‡†	0.5191	6013 ± 80	7/
	$1\frac{1}{2}''$	$\times 9''$ counter		(IIa‡†	§ 0.7506	5922 ± 120	8/
				$\alpha 1*1$	8 0.8850 1.2699	5805 ± 200 6008 ± 240	0/ 10
Hb*	0.7126	6170 ± 50	1/23/48	α^{2*}	1.0526	6218 ± 190	10
IIb*†	0.7228	5993 ± 300	2/19/48	$\alpha 1 \ddagger \dagger$	0.7096	6002 ± 40	10
110* 11a*t	0.7730	6143 ± 300	3/23/48	α1‡†	0.6276	5998 ± 60	10
IIb*†	0.9131	5911 ± 300	6/25/48		Average (correct	ted for dead volume,) 3981±30
IIb*†	0.7221	5980 ± 110	6/30/48		2''	$\times 24''$ counter	
IIb‡†	0.4588	5832 ± 60	7/22/48	Ha	0.8329	6244 ± 50	12
	0.1084	5555 ± 220 5732 ± 120	8/5/48	IIb	0.7946	6245 ± 80	12
(Hatts	0.6128	5752 ± 120 5551 ± 190	$\frac{8}{10}$	Пb	0.8170	5944 ± 60	12
α1‡†	0.3163	6045 ± 100	10/27/48	IIb	0.2650	6166 ± 120	12 D
α1‡†	0.1912	6060 ± 100	11/1/48		0.1780	6121 ± 120 6772 ± 500	By 1
$\alpha 211$	0.5073	5901 ± 00 5763 ± 100	11/8/48	Ha	0.3230	6143 ± 90	5/
α^{2+1}	0.5247	5808 ± 60	11/12/48	ĨĨb*	1.0070	6134 ± 50	1/
a=+1 A	anage (agregated	for dood volume) 50'	75 15	IIb*†	1.0770	6256 ± 370	2/
AV	erage (corrected	Tor dead volume) 59	5±45	Fa*†	6.0390	6224 ± 600 6442 ± 130	3/
				IIa*†	0.8295	6386 ± 190	3/
	$1\frac{1}{2}$	<18'' counter		IIb*†	1.1087	6163 ± 120	5/
	0.0.00	(00 F	2 /0 // 0	Ha*†	0.6274	6320 ± 90	5/
11b*† 11a*†	0.5150	0335 ± 600 6144. ± 110	3/9/48 3/22/18	⊦а*† Пь*+	0.9499	5927 ± 100 5886 ± 00	5/
IIa'i IIb*†	0.4391	6154 ± 90	5/7/48	IID IIb*†	0.8390	5000 ± 90 6045 ± 60	0/ 6/
Ila*†	0.4820	6133 ± 60	5/13/48	Îla*†	0.4223	5984 ± 60	6,
IIb*†	0.9829	5561 ± 160	6/25/48	IIb‡†	0.5841	5986 ± 60	7/
Fa*†	0.9362	5739 ± 150	5/27/48	IIb‡†	0.7220	5980 ± 150	7/
HDIT Hbtt	0.8269	0133±90 6160±120	1/21/48 7/23/48	11D‡† ~1*+	1.0103	5938±120 6027±120	10
IIbtt	0.2964	6366 ± 190	7/29/48	$\alpha^{2*\dagger}$	0.7218	6191 ± 120	10
(IIaࠤ	0.5825	5843 ± 60	8/5/48)	α1‡†	0.6290	6090 ± 60	10
(IIaࠤ	0.9132	5866 ± 150	8/10/48)	α1‡†	0.7765	6060 ± 60	11
α_{111}	0.0053	0073±00 5904±110	10/21/48	_	Average (correct	ted for dead volume,	0120 ± 30
α1‡†	0.6259	5992 ± 110	10/27/48	* Nex	w std. vol. introductio	on technique.	

TABLE VII	Half-life data fo	r Lucite counters	$1'' \times 6''$ counter.
TABLE VIL.	. пан-ше ната и	n Luche conners.	I AU COUNCE.

3/19/48 1.0004 6275 ± 400 1.2446 5888 ± 120 5/3/48 0.7004 6180 ± 300 6/11/48 1.0600 5770 ± 150 6/26/48 1.2380 5977 ± 250 6/24/48 6/25/48 1.1600 6015 ± 180 7/22/48 8/4/48) 0.5191 6013 ± 80 5922 ± 120 0.7506 8/9/48) 10/7/48 10/13/48 0.8856 5865 ± 200 6008 ± 240 1.2699 1.0526 6218 ± 190 0.7096 6002 + 4010/18/48 5998 ± 60 10/20/48 0.6276 ge (corrected for dead volume) 5987 ± 38 $2'' \times 24''$ counter 0.8329 6244 ± 50 12/6/46 0.7946 6245 ± 80 12/6/46 0.8170 5944 ± 60 12/6/46 0.2650 6166 ± 120 12/6/46 0.1780 6121 ± 120 By Pumping 0.1140 6772 ± 500 12/11/46 0.3230 6143 ± 90 5/22/47 1.0070 6134 ± 50 1/23/48 2/26/48 1.0770 6256 ± 370 6.0390 6224 ± 600 3/1/48 3/2/48 3/19/48 5/3/48 1.1146 6442 ± 130 0.8295 6386 ± 190 1.1087 6163 + 1205/11/48 5/26/48 6/24/48 6/25/48 0.6274 6320 ± 90 0.9499 5927 ± 100 0.8396 5886 ± 90 6045 ± 60 0.78646/29/48 0.4223 5984 ± 60 7/21/48 7/28/48 7/26/48 5986 ± 60 0.5841 0.7220 5980 ± 150 1.0163 5938 ± 120 0.8698 6027 ± 120 10/7/48 0.7218 6191 ± 120 10/13/48 0.6290 6090 ± 60 10/18/48 6060 ± 60 11/19/48 0.7765Average (corrected for dead volume) 6126 ± 30 * New std. vol. introduction technique.
† Pot. in IDL.
‡ Premixing technique.
§ Doubtful premix dilution value, omitted in calculating half-life.

3/9/48 3/23/48 5/7/48

5/13/48

5/27/48 6/25/48 7/23/48

7/29/48

11/1/48

11/8/48

11/11/48

11/24/48

12/3/46

12/4/46

12/4/46

5/29/47

5/30/47

6/3/47

6/3/47 6/5/47

6/5/47

6/11/47

6/11/47

6/11/47

2/26/48

3/2/48

3/1/48

Average (corrected for dead volume) 6082 ± 59

 6118 ± 120

11/24/48

0.7372

of a single sweep cathode-ray oscilloscope whereon the resolving time was observed visually. They agree also with values obtained by following the decay of 54-minute ln through several half-lives, as well as with values reported in the literature for counters with argon-alcohol fillings.

The register appeared to record faithfully for rates up to 40,000 c/min. It was assumed, therefore, that its characteristics did not affect the resolving time determinations in which the maximum rates did not exceed 30,000 c/min., nor did they affect the coincidence loss during the half-life measurements, since most of the measurements were made at rates well below 10,000 c/min. Furthermore, because the rates were less than 10,000 c/min., the coincidence corrections were never more than a few percent.

C. Sample Introduction

The problem of introducing the CO₂ samples into the counters was one of the most serious encountered. The method first used involved measuring the pressure of CO_2 in a 0.982-cc bulb and condensing this CO_2 with liquid nitrogen into a glass U-trap between the counter and the vacuum line. The stopcock between the trap and the line was closed and the CO₂ allowed to sublime into the counter. The residual active CO2 was swept into the counter in the course of introducing the alcohol and argon. Since incomplete transfer was suspected, a second method was devised. A second stopcock was sealed to the counter filling tube (see Fig. 1), and the volume between stopcocks calibrated. With the stopcock towards the vacuum line open and the stopcock adjacent to the counter closed, active CO₂ was introduced into the vacuum line and the pressure and temperature measured. The calibrated volume was closed off from the line and the stopcock to the counter opened. The line was evacuated, and the alcohol and argon were let into the counter. This method seemed to be quite satisfactory except for the possibility that grease from the stopcock might change the volume by $\frac{1}{2}$ to 1 percent. A third procedure consisted of introducing a known amount of CO_2 into a liter bulb, adding approximately a liter of argon and measuring the total pressure. Since the volume of the bulb was known, it was then possible to calculate the $CO_2/argon$ ratio. After standing several hours to insure diffusive mixing, the gas was ready for filling counters. The counters, the volumes of which were known, were first filled with alcohol at its vapor pressure at 0°C; the CO₂-argon mixture was added and the pressure of the alcohol plus the mixture measured. When necessary, additional argon was used to bring the total pressure to 8.2 cm. The data from all three methods agreed well on the average, although the scatter seemed to be greatest in the first and least in the third.

Sample	Counter	Specific activity (corrected for dead volume)	Calc. end correction (percent)
		A. Premix data	
Ha	$1'' \times 6'' \\ 1'' \times 12'' \\ 1\frac{1}{2}'' \times 9'' \\ 1\frac{1}{2}'' \times 18''$	5599 ± 72 5772 ± 52 5719 ± 172 5867 ± 117	6.2 ± 3.2 3.0 ± 1.6 5.2 ± 5.4 2.5 ± 2.6
Hb	$1'' \times 6'' \\ 1'' \times 12'' \\ 1\frac{1}{2}'' \times 9''$	5816 ± 70 5992 ± 60 $5862 \pm 115(1\frac{1}{2} \times 18)$ $(1\frac{1}{2} \times 27)$	6.1 ± 3.2 2.9 ± 1.5 11.6 ± 6.9 5.4 ± 5.1
	$1\frac{1}{2}'' \times 18''$	$6196 \pm 99 (11 \times 27)$	5.4 ± 3.2
	$1\frac{1}{2}'' \times 27''$	$(1_2 \times 27)$ $6075 \pm 120(1_2 \times 9)$ $(1_2 \times 18)$	-5.9 ± 7.0 1.8 ± 1.7 -4.0 ± 5.2
	$2^{\prime\prime} \times 12^{\prime\prime}$ $2^{\prime\prime} \times 24^{\prime\prime}$	5941 ± 100 6004 ± 90	2.1 ± 4.0 1.0 ± 2.0
α1	$1\frac{1}{2}^{\prime\prime} \times 9^{\prime\prime}$	6108 ± 92 (18)	-2.2 ± 3.8
	$1\frac{1}{2}'' \times 18''$	6042 ± 66 (9) (27)	-0.39 ± 3.4 -1.1 ± 1.9 2.5 ± 7.0
	$1\frac{1}{2}'' \times 27''$	6092 ± 120 (9)	-0.13 ± 1.1
	2''×12'' 2''×24''	$\begin{array}{c} 6011 \pm 100 \\ 6075 \pm 60 \end{array} $	1.0 ± 4.3 2.1 ± 3.9 1.1 ± 2.0
α2	$1\frac{1}{2}^{\prime\prime} \times 9^{\prime\prime}$	5914 ± 53 (18) (27)	7.5 ± 4.4 4.2 ± 2.3
	$1\frac{1}{2}'' \times 18''$	6137 ± 122 (9)	3.6 ± 2.1
	$1\frac{1}{2}'' \times 27''$	6080 ± 73 (9) (18)	-2.8 ± 7.0 1.4 ± 0.8 -1.9 ± 4.6
Counter	1	Average specific activity (corrected for dead volume)	Calc. end correction (percent)
	В. :	Standard volume data	
$1'' \times 6'' \\ 1'' \times 12'' \\ 1\frac{1}{2}'' \times 9''$		5749 ± 36 5793 ± 60 6050 ± 42 (18)	8.5 ± 2.7 4.1 ± 1.3 2.3 ± 3.0
$1\frac{1}{2}'' \times 18''$		(27) 6120±88 (9)	3.7 ± 1.2 1.1 ± 1.5
1 ¹ / ₂ "×27"		$ \begin{array}{c} (27)\\ 6199\pm46\\ (9)\\ (18) \end{array} $	3.8 ± 4.5 1.2 ± 0.4 2.5 ± 3.0
$2^{\prime\prime} \times 12^{\prime\prime}$ $2^{\prime\prime} \times 24^{\prime\prime}$		6068 ± 34 6158 ± 30	3.0 ± 1.4 1.5 ± 0.7
	C	. Total half-life data	
$1'' \times 6'' \\ 1'' \times 12'' \\ 1^{\frac{1}{2}''} \times 9''$		5780 ± 35 5978 ± 50 5975 ± 45 (18) (27)	6.9 ± 2.1 3.3 ± 1.0 5.0 ± 1.7 4.3 ± 1.3
$1\frac{1}{2}^{\prime\prime} \times 18^{\prime\prime}$		6124 ± 47 (9)	4.3 ± 1.3 2.4 ± 0.8
1 ¹ / ₂ "×27"		6148 ± 29 (9) (18)	1.2 ± 2.8 1.4 ± 0.4 0.8 ± 1.8
2''×12'' 2''×24''		6006 ± 34 6126 ± 30	3.9 ± 1.25 1.9 ± 0.6

TABLE VIII. End correction calculations.

D. End Correction

The problem of determining the inefficiency of the counters, due to inhomogeneous and weakening fields near the counter ends, was handled by comparing the observed rates per unit volume of radioactive CO_2 for counters of the same diameter but

Counter diameter	D/L = 1/6	D/L = 1/12	D/L = 1/18
A. Premix data 1"' 1½" 2"	6.2 ± 1.5 4.2 ± 1.5 2.1 ± 2.0	3.0 ± 0.8 2.2 ± 1.3 1.1 ± 1.0	1.2 ± 0.5
B. Std. vol. data $\frac{1''}{1\frac{1}{2}''}$ 2''	8.5 ± 2.7 3.2 ± 1.5 3.0 ± 1.4	4.1 ± 1.3 2.0 ± 2.0 1.5 ± 0.7	1.4±0.5
C. Total data 1''' 1½'' 2''	6.9 ± 2.1 4.5 ± 1.5 3.9 ± 1.3	3.3 ± 1.0 2.3 ± 1.0 1.9 ± 0.6	1.3 ± 0.7
Average (independent of diameter) K	4.7 ± 0.6 0.269	$2.3 \pm 0.5 \\ 0.270$	1.3 ± 0.4 0.231
Average (by diameter) 1'' 1 [*] / ₂ ''	7.2 ± 2.0 4.0 ± 1.2 3.0 ± 1.2	3.5 ± 1.0 2.3 ± 1.0 1.5 ± 0.6	1.3 ± 0.4

TABLE IX. End corrections.

of different lengths. If the observed rates are called R and r for counters of length L and l, respectively, and the count rate per unit volume for 100 percent efficiency is called ρ , then

$$\rho(L-l) = RL - rl, \tag{7}$$

(8)

$$(\rho - R)/R = (l/(L-l))(1-r/R)$$

for the end correction for the longer counter, and

$$(\rho - r)/r = L/(L - l)((R - r)/r)$$
 (9)

for the end correction for the shorter counter. The accurate determination of the end corrections was attempted only for the Lucite counters. For the glass counters, the formulas were used, and the results were in agreement with the assumption that the active volume ended at the beginning of the glass inserts. The corrections, however, were so large that the use of these counters was discontinued.

The data for the Lucite counters seem to indicate

FIG. 5. End corrections.

that the end correction is primarily dependent upon the ratio of length to diameter rather than upon the actual size. There is, however, some evidence for a slight variation in end correction from diameter to diameter, and the corrections were applied in both ways. Since the difference in the final results was small, the two were averaged. It is believed that the error in the end correction was the largest single error in the determination of the half-life. Since the magnitude of the end correction is small, the maximum correction being 7 percent, this error is less than 1 percent in its effect on the final result.

It is quite conceivable that a short-range radiation such as tritium or certain K capture gases will show a different end correction than C¹⁴. It is

TABLE X. Summary of half-life data by sample and counter; independence of master sample.

Counter	Sample	No. runs	Average specific activity (corrected for dead volume)	Correcte acti *a	d specific vity *b
1''×6''	IIa	1	5821	6094	6240
	IIb	4	5831	6105	6250
1''×12''	IIa	3	5917	6053	6124
	IIb	7	5953	6090	6161
1 <u>1</u> "×9"	IIa	1	6178	6468	6425
	IIb	7	5941	6220	6179
	α1	2	6108	6395	6352
	α2	3	5898	6175	6134
1 ¹ / ₂ "×18"	IIa	2	6157	6299	6299
	IIb	6	6138	6279	6279
	Fa	1	5757	5889	5889
	α1	3	6009	6147	6147
	α2	1	6137	6278	6278
1 ¹ / ₂ "×27"	IIa	2	6221	6314	6302
	IIb	5	6139	6231	6219
	Fa	1	5815	5902	5890
	α1	1	6092	6183	6171
	α2	3	6134	6226	6214
2''×12''	IIa	13	6015	6298	6195
	IIb	7	5930	6209	6108
	Fa	2	5842	6116	6017
	α1	3	6016	6299	6196
	α2	1	6229	6522	6416
2''×24''	IIa	6	6259	6403	6353
	IIb	12	6077	6217	6168
	Fa	2	6081	6221	6172
	α1	3	6064	6203	6155
	α2	1	6196	6338	6289
Average, all counters	IIa IIb Fa α1 α2	28 48 6 12 9		6276 ± 37 6193 ± 17 6032 ± 49 6245 ± 28 6308 ± 37	6278 ± 24 6195 ± 15 5992 ± 42 6204 ± 24 6266 ± 30
Average				6213 ± 30	6187 ± 31
Half-life				5700 ± 28	5724 ± 29

*a Average end corrections, independent of diameter. *b Average end corrections, by diameters.

Diam./ length	Counter	Average specific activity	Correcte acti *a	d specific vity *b
1/6	$1'' \times 6''$ $1\frac{1}{2}'' \times 9''$ $2'' \times 12''$	5780 ± 25 5975 ± 31 5976 ± 30	6052 6256 6257	6196 6214 6155
1/12	$1'' \times 12'' \\ 1\frac{1}{2}'' \times 18'' \\ 2'' \times 24''$	5941 ± 35 6082 ± 41 6126 ± 21	6078 6222 6267	6149 6222 6218
1/18	1 ¹ / ₂ "×27"	6121 ± 26	6213	6201
	Average (103 runs)		6192 ± 22	6193 ± 10
	Half-life		5719±20	5719 ± 10

TABLE XI. Summary of half-life data by counters (total averages, disregarding sample differences).

*a Average end corrections, independent of diameter. *b Average end corrections, by diameters.

intended to measure this effect to determine any

difference. Note added in proof.—Measurements with A³⁷ (34.1d)

Note added in proof.—Measurements with A^{sr} (34.1d; K capture) which give 2.8 kev pulses of Auger electrons have given no evidence of dependence of the correction on diameter and the corrections found agree within a small error with those reported here for C^{14} (dotted curve in Fig. 5). These results will be published later elsewhere.

IV. EXPERIMENTAL DATA AND RESULTS

Table VI presents the data obtained in the fall of 1946 with the glass counters described earlier. Part E of the table summarizes the half-life calculations from these data. A geometrical end correction was used rather than the formula end correction discussed in the previous section, because the errors in the individual rates were too large for the differences to be significant.

Table VII is a similar summary of the data from the Lucite counters. Specific activities are calculated from the observed rates after correcting for coincidence losses and background. The dead volume correction for each counter is made for the average specific activity. The data from sample IIa premixing are omitted in the average because of an error in the preparation of the CO₂-argon mixture.

Table VIII contains data used in calculating end corrections, Part A, data from the premix method of introducing CO_2 ; Part B, data from the calibrated volume method, and Part C, total averages. The premix data for sample IIa are included in the end correction calculations because an error in the dilution does not affect the end correction.

Table IX is a summary of the calculated end corrections.

The average end corrections are plotted as a function of length to diameter ratio in Fig. 5, and smooth curve drawn for the end correction independent of any diameter effect. The theoretical equation for the curve is given with the value for the constant K derived from the data. This equation

TABLE	XII.	Sum	mary	of	half	-life	values;
	prec	ision	and	bes	t va	lue.	

A.	Individual values 1. Glass counters 1" 2"	Average	6130±300 years 5665±300 years 5898±200 years
:	 Lucite counters Average by samples Average by samples (diameter dependent end co 	rrection)	5700±42 years 5724±57 years
	c. Total average (independent of sample)		5719 ± 40 years
		Average	5712 ± 46 years
B.	Best value (average by inverse square of	errors)	5720±47 years (mean solar)

is derived easily on the assumption that the correction depends only on the ratio of length to diameter.

The average specific activity obtained for each working sample with each counter is listed in Table X. The corrected specific activity is calculated for each value with (1) end corrections as a function of length/diameter only and (2) end corrections varying by diameter.

Table XI is a summary of the average specific activities independent of sample. End corrections are made in two ways, as above.

Table XII summarizes all the results, together with the standard deviation of the mean. The final result, 5720 ± 47 mean solar years, is obtained by weighting individual results according to the inverse square of their errors.

V. DISCUSSION

The published values for the half-life of radiocarbon (see Table I) exhibit a scatter somewhat beyond the errors estimated by the authors, and apparently random. The mean of the last 5 values in the table, when weighted according to the errors quoted by the authors in each case, is 5687 ± 100 years. It is difficult to know what significance the standard deviation ± 100 years has in this calculation. The agreement between the result of the present research, 5720 ± 47 , and the mean 5687 ± 100 , should not be overstressed since the validity of such an average is uncertain. It is interesting, however, that some accord does exist, and may add to confidence in a value close to this point.

The precision quoted for the present result (47 years) is the standard deviation of the mean; statistical deviations of the observed specific activities, the errors in the coincidence and end corrections, the error in the spectrometric analyses, and dilution errors were considered in computing this error. The "safe error" may be considered to be about twice this, or, in round numbers, ± 100 years.