PHYSICAL REVIEW

VOLUME 75,

NUMBER 12 JUNE 15,

The Meson Fields and the Equation of Motion of a Spinning Particle

R. C. MAJUMDAR
University of Delhi, Delhi, India

AND

S. Gupra
Tata Institute of Fundamental Research, Bombay, India

(Received April 20, 1948)

Following Riesz, the meson fields generated by a point dipole at a point outside the world
line have been defined in terms of the derivatives of an integral which is an analytical function
of a parameter, a, and converges for « lying between 2 <a<3. It is then shown that by the
process of analytical continuation of the parameter to the value a=2 for which the Riesz
fields satisfy the fundamental meson field equations, we not only obtain the classical Liénard-
Wiechert-Bhabha fields at a point outside the world line but also a field at a point on the world
line itself which is finite and represents the reaction of the field correctly. The equations for
rotational and translational motions follow immediately from the usual electrodynamical
equations of a dipole given by Frenkel. The equations thus obtained are free from singu-
larities and do not contain any arbitrary constant except the mass and spin angular momentum

of the dipole.

INTRODUCTION

T is now well known that the meson field
differs fundamentally from the electromag-
netic field in its interaction with the nuclear
particles, neutron and proton. Whereas the
interaction of the electron of charge e with the
electromagnetic field is completely described in
classical electrodynamics by the four potentials
of the field, the interaction of the nucleon with
the meson field requires for its description not
only a charge g; but also a dipole moment g,
which has an explicit spin interaction with the
meson field. It is this dipole type interaction
which is absent in the electron case although it
could always be introduced mathematically! and
it leads to a scattering of mesons which increases
as the square of their energy. Following Lorentz,
Heisenberg? first derived an equation of motion
for an extended dipole in a meson field and
showed that the effect of the reaction of the
proper field of the nucleon gives rise to an inertia
of the motion of its spin which considerably
reduces the scattering at high energies. Heisen-
berg’s theory was, however, not relativistically
invariant in that he assumed a dipole having
finite extension. A relativistically invariant
theory of the motion of a point dipole in a meson-
field was first developed by Bhabha and Corben3
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A178, 273 (1941).

and by Bhabha* following a method first initiated
by Dirac.’ The method of Lorentz had to be
abandoned as the equations of motion of a par-
ticle involve the field at its world line which is
infinite for a point particle in the usual classical
theory. It is therefore necessary to calculate first
the flow of energy, momentum and the angular
momentum out of a portion of a thin tube sur-
rounding the world line of the point particle, the
radius of which is ultimately made to tend to
zero. The equations of motion are then obtained
from the principle of conservation of energy and
momentum according to which this inflow must
depend only on the conditions at the two ends of
the tube. The infinities which appear in the ex-
pressions for the flow of energy, momentum and
angular momentum when the tube shrinks to the
world line are perfect differentials and are there-
fore subtracted away. The field which finally
contributes fundamentally to the equations of
motion is found to be the so-called radiation field
which is defined as half the retarded minus the
advanced field, and is finite on the world line.
It has already been shown by Wentzel® that by
introducing a time like four vector X it is possible
to form the limiting values of the field at the
world point of the particle by finally putting
A =0 (M\-limiting process), this limiting value rep-
resenting the radiation field. Harish-Chandra’
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has also been able to construct an effective field
expressed as an integral of the actual field at a
world point, the integral being taken over a
small closed three dimensional surface. The
effective field reduces to the radiation field on
the world line of the particle. The final equations
obtained by Bhabha and Corben and by Bhabha
can, therefore, be taken to represent the funda-
mental equations of motion of a point particle.
However, there is an element of arbitrariness in
the subtraction of the singular terms and the
introduction of radiation field. Further, the
equations are extremely complicated and involve
a number of arbitrary constants which are not
determined uniquely.

Recently Riesz® has developed an elegant
method for solving the differential equations of
the hyperbolic type, in which the well known
divergent difficulties, first studied by Hadamard,
are eliminated by a process of analytical con-
tinuation of an integral which is an analytical
function of a parameter a. The method admits
of a calculation of the meson fields generated by
the point nucleon not only at a point outside the
world line but also at a point on the world line
occupied by the nucleon itself. The field quan-
tities are first defined for values of « large enough
for the integrals to be convergent. Then by
analytical continuation with regard to the
parameter « the potentials and the fields are
determined. Riesz’s method has been recently
applied by Gustafson® to the problem of the
self-energy of a point particle and by Fremberg!®
in obtaining the classical equation of a charged
particle in a meson field. In the present paper we
shall show that by defining a Riesz potential for
the dipole which is convergent for a parameter «
lying between 2<a<5 and by analytical con-
tinuation to a=2 for which the field quantities
are found to satisfy the fundamental meson
equations, we can obtain not only the field quan-
tities generated by a point dipole at a point
outside the world line, but also finite values on
the world line itself. The latter fields describe the
reaction of the field correctly. The equations of
motion of a point dipole then follow immediately
from the usual equation for the dipole given by
Frenkel.!! The equations are free from singu-

8 M. Riesz, Conférence de la Réunion internat. des.
math., tenue & Paris en Juillet 1937 (Paris) 1939.

9 T. Gustafson, Nature 157, 734 (1946); Nature, 158,
273 (1946).

10 N, E. Fremberg, Medd. Fran. Lunds. Uni. Mat. Sem.

Band 7 (1946); Proc. Roy. Soc. A188, 18 (1946).
11 J, Frenkel Zeits. f. physik. 37, 243 (1926).
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larities and do not contain any arbitrary con-
stant except those which appear as mass and spin
angular momentum of the dipole.

1. THE MESON FIELD OF A DIPOLE

We shall use the ordinary tensor notation
throughout and take the fundamental metric
tensor g,, in the form gopo=1, g1=gor=gs3=—1
with all other components vanishing. We shall
put the velocity of light ¢ equal to unity for con-
venience. The particle shall be treated as a
point, its co-ordinates being z, which are func-
tions of the proper time, 7, measured from an
arbitrary point on the world line of the particle.
The spin of the particle will be described by an
antisymmetrical tensor, S,,, which will also be
considered as a function of 7 and which together
with its derivatives up to a certain order is con-
tinuous and bounded for 7—— . The meson
field generated by the spinning particle is de-
scribed by potentials, ¢,, and by field strengths,
G, which satisfy the following fundamental
equations

oG,y S
+x*p, =4mg (1)
Xy 90X,
where
do, Aoy
wy — - . (2)
dx*  ox’
Now assuming
a‘Pv/axu=Oy (3)
we obtain
3’ 9SS,
+xo, = 47rg2 (4)
9x,0x° 0x,
and
aG‘w 6Gv)\ aG)\u
=0. (5)
ax*  Ix*  Ix’

We define the Riesz potential for the dipole at a
point P(x*) outside the world line in the form

g2x4-—a 6 70
2@ (a/2) 3y VY _o
X (x8) @D J o gy (xs)d

Qova(P) = SN’(T)

(6)

where J,(x) is the Bessel function of order # and
s the four dimensional distance given by

S2=5,5%,  Su=X,— 2. @)
7o is the retarded proper time determined by
s?=0. The integral in (6) is convergent for

2<a<d.
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We assume that the world line has a time-like
asymptote for 7——o and that for a large
value of 7,

(1) =v—w“7+§ CHr™  (v_p*=lim,,_,v*). (8)

k=0

As the integrand in (6) is singular at 7= 7, care
should be taken to carry out differentiation
under the integration sign. We introduce s as an
integration variable and consider s and x, as
independent variables. 2, and consequently 7
then become functions of s and x,. We thus
obtain on differentiation and changing the
0% (P) =—

variable again to
T 9 (S“‘S,“,)
2217 (a/2) J_, 97 K

X(x8) @2 J q_gyn(x8)d7r  (9)

g2x4—a

where we have used

ds kK 01 S
=—-, —=—; k=S50

—= (10)
dr s Ox* o«

The integral (9) converges for 2 <a<5.
Correspondingly, we define the Riesz field of

the dipole by the equation
G = (9 ¢,%/9x*) — (3 pu*/9x"). (11)

Differentiation of the potentials (9) in the
manner described above, taking s and x, as inde-
pendent variables, gives

gzx4-a T0 a S‘”
e 2%
2@ (q/2) J_, L 97\ «

3 (19 [5,5°S,,—5,5°S,,
e P G 11
drlk dr K

X (x8) @2 q_gyp(xs)dr

(12)

which converges for 2 <a <7. [t is to be observed
that formulae (9) and (12) are exactly what we
would have obtained by carrying out directly
formal differentiation in (6) and (9) under the
sign of integration.

Now it follows from (9) that outside the world

line
div g =g"(d ¢,/ 9x*) =0, (13)
and
D¢#G+X2 ou = ‘Pua_2- (14)
Further, defining Riesz current density by
(0.Sw*/dx,) = (1/4m) @,*~*(P), (15)
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it can be proved that the introduced field quan-
tities satisfy the fundamental meson equations
(3) to (5). In particular, by analytical continu-
ation to a=2, we have ¢,9=0 outside the

world line and consequently
Ueu®+x*eu®=0. (16)

We shall frequently use the following formulae

Jna(x) = 2n/x) Ju(x) = Juna(x),  (17)
(@/dx) (x~"Tn(x)) = —x " Tupa(x),  (18)
(d/dx)(x" T n(x)) =x" T na(x), (19)
lim,oo(Ja(x)/x") =1/(2" n ). (20)

Using formula (17), the potentials (9) may be
gx' " (a—2)

expressed as
T 9 (S“S,,,,)
2@ (a/2) J_, a7\ «

X (x8) @012 J (q_gpp(xs)dT
g2x4—a

T 9 (s“S,.,)
20221 (a/2) J_, 37 K

X (x8) =P Jap(xs)dr

@.*(P) =

(21)

where the first integral converges for 2<a<7
and the second for 0 <a <5. We introduce s as the
integration variable and perform analytical con-
tinuation to a=2 with the help of the lemma

lim 8 wf(t, B)tt-1dt= £(0, 0),

B-+40 0

(22)

which is valid if the integral converges for >0
and f(¢, B) is continuous in t =8=0. The potential
at a point P(x*) lying outside the world line is
thus given by

19 7s*S,,
@, * =2 (P) = ¢,Y(P) =g2[— —( ]
0

KOt K

T 9 S"S‘w Jl(XS)
—ggxf —~(——~—-) dr
ar K s

—0

19 /s°S,, $2Sp
L 2(2)) ]
Kk dT K 0 k Jo

Ja(xs)

Fon f o Sp—dr, (23)

o s?

where the index 0 implies that the value of the
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function is to be taken at the point retarded
with respect to P.
Similarly, expressing the field (12) in the form

4—a T0 (9 S )
Gut = ——(a=) [ [2—( )
20127 (a/2) — L 07\ «

0 (1 9 /5525, —5,5°S,,
i )]
drlk dr K
X (x8) @ 9T @9y 2(xs)dT
Lxt fro [2 9 (SI“’)
2@ (0/2) J_, L a7\ «

3 (13 /5,55, —5,5°S,,
()
drlk dr K

X (XS) (a-4)/2Ju/2(Xs)de

(24)
analytical continuation to a=2 and repeated

partial integrations give the field at a point
P(x*) outside the world line:

oo 5)]
a1 |
(xs)

ZaX 1 8 7o J2
L
2 K OT 0 — 52

Ex'TKw o Ja(xs)
+ i gzxsf K;w dT;
8 K Jdo 53

—0o0

T

(25)

where

Ky = (5,878 — 555255, (26)
Expressions (23) and (25) were first obtained by

Bhabha, and by Bhabha and Corben.

2. REACTIONS OF THE FIELD

We now proceed to calculate the fields at a
point P on the world line. They will obviously
represent the reaction of the field on the motion
of the particle itself. We consider ¢,*(P) as given
by the expression (21) of which the first integral
converges for 2<a<7 and the second for
0<a<$5 even when P is on the world line. We
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divide the first integral into two parts, one in
the interval —o to 7p—e and the other from
To—e to 7o. The first part converges for a<7
and therefore vanishes, especially for a=2 on
account of the factor (a«—2). For the second part
we expand the integrands in power series of
(1—70). We take 7o=0 for simplicity and have

Su= = 1[0t (1/2)bur+(1/6)n,dirt+ (1/24), 579
+(1/120),v 74 4-0(7%) ],
= 72[1—(1/12) 72— (1/12) (d0") 7*
— {(1/40) (iv') + (1/45)v'} 744 O(7%) ],
k= —1[1—(1/6)8*12— (5/24) (in") 13

— {(3/40) (00i) 4 (1/15)9i2} 744 O(+%) ].

27)

In order to perform the analytical continuation
of the potential ¢,* to a=2 we expand the
quantities in the first of the integrals of (21) with
the help of the expansions (27) and directly put
a=2 in the second integral. We thus obtain for
the potentials on the world line:

0, =, = — g2{ %1.)27}’5:”'*_ %vii"s/w

+ 028,025, ) — (2x2/2)v°.S,,

T J2(xs)
+g2X2f SpSpv

—» N

dr. (28)

For the calculation of the field, F,,*(P), we
consider (24) of which the first integral con-
verges for 4 <a<9 and the second for 2<a<7
when Pison the world line. By partial integration
and using (18) we can express the second integral

in the form

grie(a—2) o

- [ s (D)
2@ (o/2)J_,

X (x8) @9 Jap(xs)dr

(29)
gzx_

6—a T0 a Kuv
+ i {2sm+—( )]
20020 (/2) J_,, IT\ «

X (x8) @812 J (g 19y 2 (xS)d,

where the first integral converges for 2<a<7
and the second for 0<a<5. Analytical con-
tinuation to a=2, carried out as before, gives
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for the fields on the world line

Gt =Gt = g2{ § S, (")
+ 38+ 3 Swiii+[(4/3)2,S,"”
+20,S) 9+ vt g, — Fu.iiorS,,
+(4/3)0,11S,” — (4/3)v,01108,,
— %@“viip oy — %vuv“"S,.
—20,0°S,,i14-22,S,” — 20,58,
+20,8, (00') — 0,00 S,,02+9,$,0% ]
+x* (38w +0.S) — §0.0° S, +§0,8,]-)

o Ja(xs)
+ 2g2X2f S;.w ! dr
—0 s?
™ Ja(xs)
—gox® f [sus?Sp ] ; dr, (30)
—00 S
where
$" = SVPvP, Sv, = S,,,T)P, Sy” = Sypiivp;
S,”’ — Sypiiiv’, (31)

and the minus sign as subscript denotes that the
terms inside the brackets are to be subtracted
with interchanges of u and ».

It is to be noted that the field given by (30)
is the retarded field at the point 7o on the world
line. This field agrees with the so-called radiation
field, i.e. } (retarded —advanced) field, as calcu-
lated by Bhabha and Corben, and by Bhabha
provided we take ki=3%, ko= —(7/15), k3=1%;
ks=(4/3), k¢=0 in expression (140) of B&C and
k=2 in expression (10) of Bhabha. There is, how-
ever, disagreement in regard to terms with
constant ks as has also been noticed by Harish
Chandra!? whose calculation of the radiation
field by retaining only the finite and unam-
biguous terms of the field given by Bhabha
agrees with our result (30).

3. THE EQUATION OF MOTION

A. The equation of rotational motion is now
obtained directly from the equation of a dipole

given by Frenkel
ISM =gl S -Gt g[S -Ge=t]\, (32)

where I is the spin angular momentum. The

12 Harish-Chandra, Proc. Roy. Soc. A185, 269 (1946).
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field G, et is given by (30) and it represents the
reaction of the field.

We now derive the equations of motion of the
spinning particle in which the dipole always
remains a pure magnetic dipole in the system in

which the particle is at rest. This is expressed as
Sﬂyy" = 0 (33)

and is one which is of physical interest. The rota-
tional equation (32) is now to be modified to

I{8n+nS) —v.S\'}
=g S\ { Gt — (Go™%'v,
=G 0%05) } 1 A-ga[ S\ Doyt ] (34)
with
Dot =G renct — (G, mesctyry, — G, resctyry, )

where Gt is given by (30). Thus
Doyrost = (3.5, (0) + 3.5,

+5800* —[3S." a4 (4/3) S v,

+ 35S, v+ (4/3) S, b,

+ 3805070, 1-+x[3Sou— So'v,]-}

+aw - (avpvpvn - a#o”"”ﬂ)y (35)

~ o Sq Jg( )
Gu=2g2xzf Dau2(X ) .
oo s?
'° Ja(xs)
+g2X3f [svSupsﬂ]— s dT. (36)
—w S

Equation (34) agrees with the corresponding
equation given by Bhabha and Corben provided
we take d=—2.

It must be noticed that the equation (34)
ensures the condition

(37)

S, S =constant.

B. The equation for the translational motion
of the dipole can also be taken over directly
from the corresponding equation given by
Frenkel

d
mv»+d_ {18, — 3820, SN G\t — g2.S,MGh,** M0}
T

ext

=TS, (38)

axH
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where

6GMreact 1 d
+ — (ngM S)\ vG)\areac t.)
axH 2dr

1
T, el = _Eg2SM

d
F+—(€52GromP).  (39)
dr

It is to be noted that 9G\,~*¢t/dx* cannot be
obtained from (30) by direct differentiation. It
is to be found out by evaluating the value of
3Gy.%/dx* for a=2 on the world line. For this
we first differentiate G\,* as given by (24) and

get
IGro* oxt f’ﬂ [2 ll d (s,‘SM)}
dx* ——2(“‘2)/21‘(01/2) drlk dr\ «

19 /\Sue—5:Sm
)
drlk Ot K

(19
+"l - —(gx#s"S,,,,

drlkd

2110 (10 (s ]
ar Kk dT\K OT K

X (x8) @2 q_gya(xs)dr.

_gvuSpSpX) }

(40)

Then by analytical continuation to a=2 we
evaluate 9dGy*~2/dx* on the world line. The
calculations are cumbersome and lengthy and we
simply give the final result

T“self = T“self. 0+ T“self' X, (41)

where

Tt 0=g2[0, [ (1/3) (8]
—(2/3) 82— (8/3)(S" 80) —2(S'S"")
~2(8'S9) +(2/3) (88 80)
—2(S'Svit) — (1/5) %t
— (4/15) S2(00') 4 S2i% — 4.5
—(1/3) 520} +0.{ (S.S%) —4(S'S")
—4(5'80) — (2/3) S (i) }
+o,i{(2/3)S2— 252 — § 52}
~(1/18)2,iv$*—(2/3) S,.11S"
—(4/3)S.'1870,— (2/3) S,iiS"°
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—(2/3)8,0S"" 7 —28,, ey,

—(8/15)S,,87¢0,iii — (2/3)8,,.5"7*

—(4/3) 8, 8°%0,ii — (2/15) S, S

—(6/5) S, Siiiorip, — (22/15).S,,.Stioey i

+ 28,05 02+ (5 — 1) Sua S0, 02
+3Su S (1) ], (42)

the invariants formed by any combination of
tensors and vectors having been written in the
usual matrix notations; as for example

(S 8v) = #5118,
and
Tl x = ggzxz{.u“(%s'z — 52—

— 305+ 35,0574 1.5, Soeie)

§0°57)

— 88X S — 3825 G

1d

- d >
+E (;(gTUMS)‘”GM) +(};<g25u)\G)\ﬂvp)7 (43)

where

T0
G)\a,;tz —gZX’;f {25)\03“‘*' (g,.XS”Spa“ng”Sp)\)

—o0

Ja(xs)
+(S)\Su,—S,S,.)\) } T
s
7o Ju(xs)
+g2x4f Su($28P S0 — $45°S,0) dr, (44)

—00

and G, is given by (36). The results agree with
those of Bhabha'?® if we put his constant d = — 2.
The disagreement in the coefficients of 9,(.5'S%)
may, however, be noted.
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