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The covariant quantum electrodynamics of Tomonaga, Schwinger, and Feynman is used as the
basis for a general treatment of scattering problems involving electrons, positrons, and photons.
Scattering processes, including the creation and annihilation of particles, are completely described
by the S matrix of Heisenberg. It is shown that the elements of this matrix can be calculated, by a
consistent use of perturbation theory, to any desired order in the fine-structure constant. Detailed
rules are given for carrying out such calculations, and it is shown that divergences arising from
higher order radiative corrections can be removed from the S matrix by a consistent use of the ideas

of mass and charge renormalization.

Not considered in this paper are the problems of extending the treatment to include bound-state
phenomena, and of proving the convergence of the theory as the order of perturbation itself tends to

infinity.

I. INTRODUCTION

N a previous paper! (to be referred to in what
follows as I) the radiation theory of Tomonaga?
and Schwinger?® was applied in detail to the problem
of the radiative corrections to the motion of a single
electron in a given external field. It was shown that
the rules of calculation for corrections of this kind
were identical with those which had been derived
by Feynman* from his own radiation theory. For
the one-electron problem the radiative corrections
were fully described by an operator Hr (Eq. (20)
of I) which appeared as the “‘effective potential”
acting upon the electron, after the interactions of
the electron with its own self-field had been elimi-
nated by a contact transformation. The difference
between the Schwinger and Feynman theories lay
only in the choice of a particular representation in
which the matrix elements of Hy were calculated
(Section V of I).

The present paper deals with the relation between
the Schwinger and Feynman theories when the
restriction to one-electron problems is removed. In
these more general circumstances the two theories
appear as complementary rather than identical. The
Feynman method is essentially a set of rules for the
calculation of the elements of the Heisenberg
S matrix corresponding to any physical process,
and can be applied with directness to all kinds of
scattering problems.® The Schwinger method evalu-
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ates radiative corrections by exhibiting them as
extra terms appearing in the Schrodinger equation
of a system of particles and is suited especially to
bound-state problems. In spite of the difference of
principle, the two methods in practice involve the
calculation of closely related expressions ; moreover,
the theory underlying them is in all cases the same.
The systematic technique of Feynman, the exposi-
tion of which occupied the second half of I and
occupies the major part of the present paper, is
therefore now available for the evaluation not only
of the S matrix but also of most of the operators
occurring in the Schwinger theory.

The prominent part which the S matrix plays
in this paper is due to its practical usefulness as the
connecting link between the Feynman technique of
calculation and the Hamiltonian formulation of
quantum electrodynamics. This practical usefulness
remains, whether or not one follows Heisenberg in
believing that the S matrix may eventually replace
the Hamiltonian altogether. It is still an unanswered
question, whether the finiteness of the .S matrix
automatically implies the finiteness of all observable
quantities, such as bound-state energy levels,
optical transition probabilities, etc., occurring in
electrodynamics. An affirmative answer to the
question is in no way essential to the arguments of
this paper. Even if a finite S matrix does not of
itself imply finiteness of other observable quan-
tities, it is probable that all such quantities will be
finite; to verify this, it will be necessary to repeat
the analysis of the present paper, keeping all the
time closer to the original Schwinger theory than
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has here been possible. There is no reason for
attributing a more fundamental significance to the
S matrix than to other observable quantities, nor
was it Heisenberg's intention to do so. In the last
section of this paper, tentative suggestions are
made for a synthesis of the Hamiltonian and
Heisenberg philosophies.

II. THE FEYNMAN THEORY AS AN S MATRIX
THEORY

The S matrix was originally defined by Heisen-
berg in terms of the stationary solutions of a scat-
tering problem. A typical stationary solution is
represented by a time-independent wave function
¥’ which has a part representing ingoing waves
which are asymptotically of the form ¥, and a
part representing outgoing waves which are asymp-
totically of the form ¥,’. The .S matrix is the trans-
formation operator S with the property that

‘1/2’=S‘I’1/ (1)

for every stationary state ¥’'.

In Section I1II of I an operator U(«) was defined
and stated to be identical with the .S matrix. Since
U(») was defined in terms of time-dependent wave
functions, a little care is needed in making the iden-
tification. In fact, the equation

¥y =U()¥, (2)

held, where ¥, and ¥, were the asymptotic forms
of the ingoing and outgoing parts of a wave function
¥ in the V-representation of I (the ‘‘interaction
representation’” of Schwinger?). Now the time-
independent wave function ¥’ corresponds to a
time-dependent wave function

exp[ (—1/h)Et]¥’

in the Schrodinger representation, where E is the
total energy of the state; and this corresponds to a
wave function in the interaction representation
¥ =exp[ (+2/h)i(Ho— E) ]¥’, 3)

where H, is the total free particle Hamiltonian.
However, the asymptotic parts of the wave function
¥’, both ingoing and outgoing, represent freely
traveling particles of total energy E, and are there-
fore eigenfunctions of H, with eigenvalue E. This
implies, in virtue of (3), that the asymptotic parts
¥, and ¥, of ¥ are actually time-independent and
equal, respectively, to ¥,’ and ¥,’. Thus (1) and
(2) are identical, and U(«) is indeed the .S matrix.
Incidentally, U() is also the “‘invariant collision
operator’’ defined by Schwinger.?

There is a series expansion of U(w) analogous
to (32) of I, namely,

® —1 "1 © o
U(oo)=z(——) — [ an [ an
n=0 \ hc n!J_q —w

XP(Hi(x1), -+, Hi(xa)). (4)
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Here the P notation is as defined in Section V of I,
and

Hy(x) = H'(x)+H(x) ®)

is the sum of the interaction energies of the electron
field with the photon field and with the external
potentials. The Feynman radiation theory provides
a set of rules for the calculation of matrix elements
of (4), between states composed of any number of
ingoing and outgoing free particles. Also, quantities
contained in (4) are the only ones with which the
Feynman rules can deal directly. The Feynman
theory is thus correctly characterized as an .S matrix
theory.

One particular way to analyze U(«) is to use (5)
to expand (4) in a series of terms of ascending order
in He. Substitution from (5) into (4) gives

o @ "—’L m+n 1 ©
v =L (=) [ e
m=0 n=0 \ fic min! J_,

X f Qi P(He (), - -, Ho(),

XHI(xm-}-l)y MY Hl(xm+"))' (6)

In this double series, the term of zero order in H¢
is S(=), given by (32) of I. The term of first order is

Uy = (—i/he) f " He)ds, )

where Hp is given by (31) of I. Clearly, S() is the
S matrix representing scattering of electrons and
photons by each other in the absence of an external
potential; U; is the S matrix representing the
additional scattering produced by an external
potential, when the external potential is treated in
the first Born approximation ; higher terms of the
series (6) would correspond to treating the external
potential in the second or higher Born approxima-
tion. The operator Hr played a prominent partin I,
where it was in no way connected with a Born ap-
proximation ; however, it was there introduced in a
somewhat unnatural manner, and its physical
meaning is made clearer by its appearance in (7).
In fact, Hr may be defined by the statement that

(—1/R)(6t) (6w) H r(x)

is the contribution to the .S matrix that would be
produced by an external potential of strength He,
acting for a small duration & and over a small
volume dw in the neighborhood of the space-time
point x.

The remainder of this section will be occupied
with a statement of the Feynman rules for evalu-
ating U(«). Proofs will not be given, because the
rules are only trivial generalizations of the rules
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which were given in I for the evaluation of matrix
elements of Hp corresponding to one-electron
transitions.

In evaluating U(«) we shall not make any dis-
tinction between the external and radiative parts
of the electromagnetic field; this is physically
reasonable since it is to some extent a matter of
convention how much of the field in a given situa-
tion is to be regarded as ‘‘external.”” The interaction
energy occurring in (4) is then

H\(x) = —ted () (x) v (x) — SmcP(x)Y(x), (8)

where A4, is the total electromagnetic field, and the
term in ém is included in order to allow for the fact
that the interaction representation is defined in
terms of the total mass of an electron including its
“‘electromagnetic mass’’ om (see Section IV of I).
The first step in the evaluation of U(x) is to sub-
stitute from (8) into (4), writing out in full the
suffixes of the operators ¥, ¥s which are concealed
in the matrix product notation of (8). After such a
substitution, (4) becomes

U(w)=§.f,,,

n=0

9)

where J, is an n-fold integral with an integrand
which is a polynomial in ¢, ¥ and A4, operators.

The most general matrix element of J, is obtained
by allowing some of the ¥, ¥5 and 4, operators to
annihilate particles in the initial state, some to
create particles in the final state, while others are
associated in pairs to perform a successive creation
and annihilation of intermediate particles. The
operators which are not associated in pairs, and
which are available for the real creation and anni-
hilation of particles, are called ‘‘free’’; a particular
type of matrix element of J, is specified by enu-
merating which of the operators in the integrand
are to be free and which are to be associated in pairs.
As described more fully in Section VII of I, each
type of matrix element of J, is uniquely represented
by a ‘“‘graph” G consisting of # points (bearing the
labels %y, - -+, x,) and various lines terminating at
these points.

The relation between a type of matrix element
of J, and its graph G is as follows. For every asso-
ciated pair of operators (¥(x),y¥(y)), there is a
directed line (electron line) joining x to vy in G. For
every associated pair of operators (4(x), 4(y)),
there is an undirected line (photon line) joining x
and y in G. For every free operator ¢(x), there is a
directed line in G leading from x to the edge of the
diagram. For every free operator ¥(x), there is a
directed line in G leading to x from the edge of the
diagram. For every free operator A(x), there is an
undirected line in G leading from x to the edge of
the diagram. Finally, for a particular type of
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matrix element of J, it is specified that at each
point x; either the part of H,(x;) containing 4,(x;)
or the part containing ém is operating; corre-
spondingly, at each vertex x; of G there are either
two electron lines (one ingoing and one outgoing)
and one photon line, or else two electron lines only.
Lines joining one point to itself are always for-
bidden.

In every graph G, the electron lines form a finite
number m of open polygonal arcs with ends at the
edge of the diagram, and perhaps in addition a
number I of closed polygonal loops. The corre-
sponding type of matrix element of J, has m free
operators ¥ and m free operators ¢; the two end
segments of any one open arc correspond to two free
operators, one ¥ and one ¥, which will be called a
“free pair.”” The matrix elements of J, are now to
be calculated by means of an operator J(G), which
is defined for each graph G of n vertices, and which
is obtained from J, by making the following five
alterations.

First, at each point x;, H1(x;) is to be replaced by
either the first or the second term on the right of
(8), as indicated by the presence or absence of a
photon line at the vertex x; of G. Second, for every
electron line joining a vertex x to a vertex y in G,
two operators ¥q(x) and ¥g(y) in J,, regardless of
their positions, are to be replaced by the function

2Srsa(¥—7), (10)

as defined by (44) and (45) of 1. Third, for every
photon line joining two vertices x and y of G, two
operators 4,(x) and A4,(y) in J,, regardless of their
positions, are to be replaced by the function

%ﬁcauvDF(x_y): (11)

defined by (42) of I. Fourth, all free operators in J,
are to be left umaltered, but the ordering by the
P notation is to be dropped, and the order of the
free ¢ and ¢ operators is to be arranged so that the
two members of each free pair stand consecutively
and in the order yy; the order of the free pairs
among themselves, and of all free 4, operators, is
left arbitrary. Fifth, the whole expression J, is to
be multiplied by

(—1)n—t=m, (12)

The Feynman rules for the evaluation of U()
are essentially contained in the above definition of
the operators J(G). To each value of # correspond
only a finite number of graphs G, and all possible
matrix elements of U(x) are obtained by substi-
tuting into (9) for each J, the sum of all the cor-
responding J(G). It is necessary only to specify how
the matrix element of a given J(G) corresponding to
a given scattering process may be written down.

The matrix element of J(G) for a given process
may be obtained, broadly speaking, by replacing
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each free operator in J(G) by the wave function of
the particle which it is supposed to create or anni-
hilate. More specifically, each free ¥ operator may
either create an electron in the final state or anni-
hilate a positron in the initial state, and the reverse
processes are performed by a free ¢ operator.
Therefore, for a transition from a state involving
A electrons and B positrons to a state involving
C electrons and D positrons, only operators J(G)
containing (44 D)= (B+C) free pairs contribute
matrix elements. For each such J(G), the (44 D)
free ¢ operators are to be replaced in all possible
combinations by the A initial electron wave func-
tions and the D final positron wave functions, and
the (B4 C) free ¥ operators are to be similarly re-
placed by the initial positron and final electron
wave functions, and the results of all such replace-
ments added together, taking account of the anti-
symmetry of the total wave functions of the system
in the individual particle wave functions. In the
case of the free A, operators, the situation is
rather different, since each such operator may either
create a photon in the final state, or annihilate a
photon in the initial state, or represent merely the
external potential. Therefore, for a transition from
a state with 4 photons to a state with B photons,
any J(G) with not less than (44 B) free 4,
operators may give a matrix element. If the number
of free A, operators in J(G) is (A4B~+C), these
operators are to be replaced in all possible com-
binations by the (4 + B) suitably normalized poten-
tials corresponding to the initial and final photon
states, and by the external potential taken C times,
and the results of all such replacements added
together, taking account now of the symmetry of
the total wave functions in the individual photon
states.

In practice cases are seldom likely to arise of
scattering problems in which more than two similar
particles are involved. The replacement of the free
operators in J(G) by wave functions can usually be
carried out by inspection, and the enumeration of
matrix-elements of U(®) is practically complete as
soon as the operators J(G) have been written down.

The above rules for the calculation of U(x)
describe the state of affairs before any attempt has
been made to identify and remove the various
divergent parts of the expressions. In particular,
contributions are included from all graphs G, even
those which yield nothing but self-energy effects.
For this reason, the rules here formulated are
superficially different from those given for the one-
electron problem in Section IX of I, which de-
scribed the state of affairs after many divergencies
had been removed. Needless to say, the rules are
not complete until instructions have been supplied
for the removal of all infinite quantities from the
theory; in Sections V-VII of this paper it will be
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shown how the formal structure of the .S matrix
makes such a complete removal of infinities appear
attainable.

Another essential limitation is introduced into
the S matrix theory by the use of the expansion (4).
All quantities discussed in this paper are expansions
of this kind, in which it is assumed that not only
the radiation interaction but also the external
potential is small enough to be treated as a per-
turbation. It is well known that an expansion in
powers of the external potential does not give a
satisfactory approximation, either in problems
involving bound states or in scattering problems at
low energies. In particular, whenever a scattering
problem allows the possibility of one of the incident
particles being captured into a bound state, the
capture process will not be represented in U(x),
since the initial and final states for processes de-
scribed by U(«) are always free-particle states. It
is the expansion in powers of the external potential
which breaks down when such a capture process is
possible. Therefore it must be emphasized that the
perturbation theory of this paper is applicable only
to a restricted class of problems, and that in other
situations the Schwinger theory will have to be used
in its original form.

II. THE S MATRIX IN MOMENTUM SPACE

Both for practical applications to specific prob-
lems, and for general theoretical discussion, it is
convenient to express the S matrix U(®) in terms
of momentum variables. For this purpose, it is
enough to consider an expression which will be
denoted by M, and which is a typical example of
the units out of which all matrix elements of U()
are built up. A particular integer # and a particular
graph G of 7 vertices being supposed fixed, the
operator J(G) is constructed as in the previous
section, and M is defined as the number obtained by
substituting for each of the free operators in J(G)
one particular free-particle wave function. More
specifically, for each free operator ¢(x) in J(G) there
is substituted

(13)

where £, is some constant 4 vector representing the
momentum and energy of an electron, or minus the
momentum and energy of a positron, and where
Y(k) is a constant spinor. For each free operator
¥(x) there is substituted

PR,

Y(R)ekuzs,

(14)

where ¢(k’) is again a constant spinor. For each free
operator 4,(x) there is substituted
Au(k")en"" =u, (15)

where A,(k"’) is a constant 4 vector which may



1740 F. J.

Fic. 1.

represent the polarization vector of a quantum
whose momentum-energy 4-vector is either plus or
minus &, ; alternatively, 4,(k’’) may represent the
Fourier component of the external potential with a
particular wave number and frequency specified by
the 4 vector k”’. There is no loss of generality in
splitting up the external potential into Fourier
components of the form (15). When the substitu-
tions (13), (14), (15) are made in J(G), the expres-
sion M which is obtained is still an z-fold integral
over the whole of space-time, and in addition
depends parametrically upon E constant 4 vectors
in momentum-space, where E is the number of free
operators in J(G).

The graph G will contain E external lines, i.e.,
lines with one end at a vertex and the other end at
the edge of the diagram. To each of these external
lines corresponds one constant 4 vector, which may
be denoted by k,% 2=1, ---, E, and one constant
spinor or polarization vector appearing in M, either
(k%) or §(k%) or A,(k%).

Suppose that G contains F internal lines, i.e.,
lines with both ends at vertices. To each of these
lines corresponds a Dp or an Sr function in M, as
specified by (11) or (10). These functions have been
expressed by Feynman as 4-dimensional Fourier
integrals of very simple form, namely

1
De(x) =— f e, ($)dp, (16)
448
1 s -
Sele)=—— f e-iman[ +ipyya—ki]
X o, (p*+x)dp, (1)

where ko is the electron reciprocal Compton wave-
length,

P*=pupu=p1*+ D2+ s —po, (18)
and the 4, function is defined by
1 1 e
8.(a)=%8(a)+—=— e~ dz.  (19)

2mia 2w Y,

Substituting from (16) and (17) into M will
introduce an F-fold integral over momentum space.
Corresponding to each internal line of G, there will
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appear in M a 4 vector variable of integration,
which may be denoted by p,f,2=1, - - -, F. However,
after this substitution is made, the space-time
variables x1, - -, x, occur in M only in the ex-
ponential factors, and the integration over these
variables can be performed. The result of the
integration over x; is to give

(2m)*5(24), (20)

where the 6§ represents a simple 4-dimensional
Dirac é-function, and ¢; is a 4 vector formed by
taking an algebraic sum of the k* and p* 4 vectors
corresponding to those lines of G which meet at x;.
The factor (20) in the integrand of M expresses the
conservation of energy and momentum in the
interaction occurring at the point x;.

The transformation of M into terms of momentum
variables is now complete. To summarize the
results, M now appears as an F-fold integral over
the variable 4 vectors p,‘ in momentum space. In
the integrand there appear, besides numerical
factors;

(i) a constant spinor or polarization-vector, (&%)
or (k¥ or A.(k?), corresponding to each external
line of G;

(ii) a factor
Dr(p%) =8:((p9)%) (21)

corresponding to each internal photon line of G;
(iii) a factor

Se(p?) =[+ipuivu—rxo]o+((69)+x’)  (22)

corresponding to each internal electron line of G;
(iv) a factor

8(g;) (23)

corresponding to each vertex of G;

(v) a v, operator, surviving from Eq. (8), cor-
responding to each vertex of G at which there is a
photon line.

The important feature of the above analysis is
that all the constituents of M are now localized and
associated with individual lines and vertices in the
graph G. It therefore becomes possible in an
unambiguous manner to speak of ‘‘adding” or
““subtracting’’ certain groups of factors in M, when
G is modified by the addition or subtraction of cer-
tain lines and vertices. As an example of this
method of analysis, we shall briefly discuss the
treatment in the S matrix formalism of the ‘“‘Lamb
shift”’ and associated phenomena.

Suppose that a graph G, of any degree of com-
plication, has a vertex x; at which two electron
lines and a photon line meet. These three lines may
be either internal or external, and the momentum
4 vectors associated with them in M may be either
Pt or k*; these 4 vectors are denoted by £, £, £3 as
indicated in Fig. 1. The factors in the integrand of
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M arising from the vertex x; are
—1iey,(2m) 6B — 2 —1t°), (24)

the two spinor indices of the v, being available for
matrix multiplication on both sides with the
factors in M arising from the two electron lines at x;.

Now suppose that G’ is a graph identical with G,
except that in the neighborhood of x; it is modified
by the addition of two new vertices and three new
lines, as indicated in Fig. 2. With the three new
lines, which are all internal, are associated three
4 vector variables p!, p?, p3, which occur as vari-
ables of integration in the expression M’ formed
from G’ as M is from G. It can be proved, in view of
Egs. (21), (22), (23), that M’ may be obtained from
M simply by replacing the factor (24) in M by the
expression

i€t
__Z,rsf fdld?ds
—(2m) f pldp'dp

(8= P+ 57) 662 — ' = )P — 7 — )
7)\(+i1‘)p27ﬁ - Ko)‘Y,‘(—f"qul’y., - KO)'Y)\
8+ ((p7)*+ xa®) 8:((P1)*+kd®) 6:.((6)%).

(The factorial coefficients appearing in (4) are just
compensated by the fact that the two new vertices
of G’ may be labelled x;, x; in (n+1)(n+2) ways,
where # is the number of vertices in G.) In (25), two
of the 4-dimensional §-functions can be eliminated
at once by integration over p! and p?, and the third
then reduces to the é-function occurring in (24).
Therefore M’ can be obtained from M by replacing
the operator v, in (24) by an operator

Lu = Lu (tly tz)

(25)

~2a f BT (Fi(BrF )0 — k0)7s

X (+7:(Pa+tv2)70 - KO)'Y)\]
X8 ((p+1)*+ ko?)
X8 ((p+8)*+ ko) 8. (p%)-

Here o is the fine-structure constant, (e?/4whc) in
Heaviside units. The operator L, can without great
difficulty be calculated explicitly as a function of
the 4 vectors ¢! and #, by methods developed by
Feynman.

In the special case when Fig. 1 represents the
graph G in its entirety, M is a matrix element for the
scattering of a single electron by an external poten-
tial. Figure 2 then represents G’ in its entirety, and
M’ is a second-order radiative correction to the
scattering of the electron. In this case then the
operator L, gives rise to what may be called ‘‘Lamb
shift and associated phenomena.” However, the

(26)
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above analysis applies equally to an expression M
which may occur anywhere among the matrix ele-
ments of U(x), and may represent any physical
process whatever involving electrons, positrons and
photons. There will always appear in U(w),
together with M, terms M’ representing second-
order radiative corrections to the same process;
one term M’ arises from each vertex of G at which
a photon line ends; and M’ is always to be obtained
from M by substituting for an operator v, the same
operator L,. Furthermore, some higher radiative
corrections to M will be obtained by substituting
L, for v, independently at two or more of the
vertices of G.

By a “vertex part” of any graph will be meant
a connected part of the graph, consisting of vertices
and internal lines only, which touches precisely two
electron lines and one photon line belonging to the
remainder of the graph. The central triangle of Fig.
2 is an example of such a part. In other words, a
vertex part of a graph is a part which can be sub-
stituted for the single vertex of Fig. 1 and give a
physically meaningful result. Now the argument,
by which the replacement of Fig. 1 by Fig. 2 was
shown to be equivalent to the replacement of v,
by L,, can be used also when a more complicated
vertex part is substituted for the vertex in Fig. 1.
If G is any graph with a vertex x; as shown in Fig. 1,
and G’ is obtained from G by substituting for x;
any vertex part V, and if M and M’ are elements
of U(x) formed analogously from G and G’, then
M’ can be obtained from M by replacing an operator
v. by an operator

A=AV, 8, 1), (27)

dependent only on V and the 4 vectors ¢, # and
independent of G.

To summarize the results of this section, it has
been shown that the .S matrix formalism allows a
wide variety of higher order radiative processes to
be calculated in the form of operators in momentum
space. Such operators appear as radiative correc-
tions to the fundamental interaction between the
photon and electron-positron fields, and need only
to be calculated once to be applicable to the
various special problems of electrodvnamics.
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IV. FURTHER REDUCTION OF THE S MATRIX

It was shown in Section VII of I that, for the
one-electron processes there considered, only con-
nected graphs needed to be taken into account. In
constructing the S matrix in general, this is no
longer the case; disconnected graphs give matrix
elements of U(%) representing two or more col-
lision processes occurring simultaneously among
separate groups of particles, and such processes
have physical reality. It is only permissable to
omit a disconnected graph when one of its con-
nected components is entirely lacking in external
lines; such a component without external lines will
give rise only to a constant multiplicative phase
factor in every matrix element of U(e) and is
therefore devoid of physical significance.

On the other hand, the treatment in Section VII
of I of graphs with ‘self-energy parts” applies
almost without change to the general S matrix
formalism. A ‘self-energy part” of a graph is a
connected part, consisting of vertices and internal
lines only, which can be inserted into the middle of
a single line of a graph G so as to give a meaningful
graph G’. In Fig. 3 is shown an example of such an
insertion made in one of the lines of Fig. 1. Let M
and M’ be expressions derived in the manner of the
previous section from the graphs G and G’ of which
parts are shown in Figs. 1 and 3. Suppose for
definiteness that the line labelled # is an internal
line of G; then according to (22) it will contribute
a factor Sr(#!) in M. By an argument similar to that
leading to (26), it can be shown that M’ may now
be obtained from M by replacing Sr(#!) by

Sr(1) N () Se(8)
— Se()2a f APl (7, o+ 1) — ko)1 ]
X0+ ((p+1)2+ ko) 64 (p?) Sk ().

In the same way, if G’ were obtained from G by
inserting in the # line any self-energy part W, then
M’ would be obtained from M by replacing Sr(f!) by

Sr(HZ(W, t1)Sr(tY), (29)

where Z is an operator dependent only on W and #
and not on G. Moreover, if the # line were an
external line of G, then M’ would be obtained from

(28)
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M by replacing a factor (#)by
YEHZ(W, 1) Se(t). (30)

As a special case, W may consist of a single point;
then at this point it is the term in ém of the inter-
action (8) which is operating, and = reduces to a
constant,

(W, t) = —2mi(dmc/h) = — 2wid«ko. 31)

The operator N(#) in (28) describes in a general
way the second-order contribution to the electron
self-energy and to the phenomenon called ‘‘vacuum
polarization of the second kind” in Section VIII of
I. The self-energy contribution is supposed to be
cancelled by (31); the constant 6« being a power
series in «, the linear term only is required to
cancel the self-energy part of (28), and the higher
terms are available for the cancellation of self-
energy effects from operators Z(W, ') of higher
order. The S matrix formalism makes clear the
important fact that, since the operators Z(W, #)
are universal operators independent of the graph G,
the electron self-energy effects will be formally
cancelled by a constant dk, independent of the
physical situation in which the effects occur.

When a self-energy part W’ is inserted into a
photon line of a graph G, for example the line
labelled #* in Fig. 1, then the modification produced
in M may be again described by a function II(W’, ¢3)
independent of G. Specifically, if the £ line in G
is internal, M’ is obtained from M by replacing a
factor Dr(t?) by

Dp(t3)II(W’, 13)Dr(t2). (32)

If the 3 line is external, the replacement is of a
factor 4,(t3) by

A () IL(W’, 3)Dp(t?). (33)

In addition to terms of the form (33), there will
appear terms such as

A, ()33 (W, £3)Dp(8) ; (34)

these however are zero in consequence of the gauge
condition satisfied by A4,. Similar terms in £,%,% will
also appear with the expression (32); in this case
the extra terms can be shown to vanish in con-
sequence of the equation of conservation of charge
satisfied by the electron-positron field. The functions
II(W’, t3) describe the phenomenon of photon self-
energy and the ‘‘vacuum polarization of the first
kind”" of Section VIII of I. Following Schwinger,
one does not explicitly subtract away the divergent
photon self-energy effects from the II(W’, ¢3), but
one asserts that these effects are zero as a conse-
quence of the gauge invariance of electrodynamics.

In Section VII of I, it was shown how self-energy
parts could be systematically eliminated from all
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graphs, and their effects described by suitably
modifying the functions Dr and Sp. The analysis
was carried out in configuration space, and was
confined to the one-electron problem. We are now
in a position to extend this method to the whole
S matrix formalism, working in momentum space,
and furthermore to eliminate not only self-energy
parts but also the ‘‘vertex parts’’ defined in the last
section.

Every graph G has a uniquely defined ‘‘skeleton”
Gy, which is the graph obtained by omitting all
self-energy parts and vertex parts from G. A graph
which is its own skeleton is called ‘“irreducible;”
all of its vertices will be of the kind depicted in
Fig. 1. From every irreducible G,, the G of which
it is the skeleton can be built by inserting pieces in
all possible ways at all vertices and lines of Gy; these
G form a well-defined class I'. The term ‘‘proper
vertex part” must here be introduced, denoting a
vertex part which is not divisible into two pieces
joined only by a single line ; thus a vertex part which
is not proper is essentially redundant, being a
proper vertex part plus one or more self-energy
parts. The graphs of I" are then accurately enu-
merated by inserting at some or all of the vertices
of Gg a proper vertex part, and in some or all of the
lines a self-energy part, these insertions being made
independently in all possible combinations.

Suppose that M is a constituent of a matrix
element of U(«x), obtained from G, as described
in Section III. Then every graph G in I' will yield
additional contributions to the same matrix element
of U(x); the sum of all such contributions, in-
cluding M, is denoted by Mg. As a result of the
analysis leading to (27), (29), and (32), and in
view of the statistical independence of the insertions
made at the different vertices and lines of Gy, the
sum M g will be obtained from M by the following
substitutions. For every internal electron line of Gy,
a factor Sr(p?) of M is replaced by

SF'(p?) =Sr(p?)+Sr(p)Z(p*)Sr(p),  (35)
where Z(p?) is the sum of the Z(W, p%) over all

electron self-energy parts W. For every internal
photon line, a factor Dg(p?) is replaced by

D#'(p?) =Dr(p?)+Dr(p)I(p)) Dr(p), (36)

where II(p?) is the sum of the II(W’, p?) over all
photon self-energy parts W’. For every external
line, a factor ¥(k%) or ¥(k*) or A,(k?) is replaced by
Y/ (k) = Sp(R)Z(R)Y(kY) +y¥ (k),
¥/ () =GRS (k) Se (k) +0(k),
Ay (k%) = A, () TL(k*) Dr(k*)+Au(k?),
respectively. For every vertex of G, where the

incident lines carry momentum variables as shown
in Fig. 1, an operator v, is replaced by

L., ) =7u+AH(tl, ),

(37

(38)
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where A,(#, %) is the sum of the A.(V, &, #2) over
all proper vertex parts V. The matrix elements of
U(») will be correctly calculated, if one includes
contributions only from irreducible graphs, after
making in each contribution the replacements (35),
(36), (37), (38).

To calculate the operators A,, 2 and II, it is
necessary to write down explicitly the integrals in
momentum space, examples being (26) and (28),
corresponding to every self-energy part W or
proper vertex part V. When considering effects of
higher order than the second, the parts W and V
will themselves often be reducible, containing in
their interior self-energy and vertex parts. It will
again be convenient to omit such reducible 7 and
W, and to include their effects by making the sub-
stitutions (35)—(38) in the integrals corresponding
to irreducible ¥ and W. In this way one obtains in
general not explicit formulas, but integral equa-
tions, for A,, £ and II. For example,

Ap=al, (A, Z, ) (39)

where I, is an integral in which A,, £ and II occur
explicitly. Fortunately, the appearance of « on the
right side of (39) makes it easy to solve such equa-
tions by a process of successive substitution, the
forms of A,, Z, and II being obtained correct to
order a™ when values correct to order a”! are sub-
stituted into the integrals.

The functions Dy’ and S¢’ of (35) and (36) are
the Fourier transforms of the corresponding func-
tions in I. The interpretation of these functions in
Section VIII of I can be extended in an obvious
way to include the operator I',. Since y¥y¢ is the
charge-current 4 vector of an electron without
radiative corrections, yI',y may be interpreted as
an “‘effective current’’ carried by an electron, in-
cluding the effects of exchange interactions between
the electron and the electron-positron field around it.

An additional reduction in the number of graphs
effectively contributing to U(«) is obtained from
a theorem of Furry.® The theorem was shown by
Feynman to be an elegant consequence of his
theory. In any graph G, a “closed loop” is a closed
electron polygon, at the vertices of which a number
p of photon lines originate ; the loop is called odd or
even according to the parity of p. If G contains a
closed loop, then there will be another graph G also
contributing to U(« ), obtained from G by reversing
the sense of the electron lines in the loop. Now if 2/
and M are contributions from G and G, M is
derived from M by interchanging the roles of elec-
tron and positron states in each of the interactions
at the vertices of the loop; such an interchange is
called ‘‘charge conjugation.” It was shown by
Schwinger that his theory is invariant under charge

8 Wendell H. Furry, Phys. Rev. 51, 125 (1937).
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conjugation, provided that the sign of e is at the
same time reversed (this is the well-known charge
symmetry of the Dirac hole theory). It is clear
from (8) that the constant e appears once in M for
each of the p loop vertices at which there is a
photon line; at the remaining vertices only the
constant ém is involved, and & is an even function
of e. Therefore the principle of charge-symmetry
implies

M=(—1)"M. (40)

Taking p odd in (40) gives Furry’s theorem; all
contributions to U(«) from graphs with one or
more odd closed loops vanish identically.

By an “odd part” of a graph is meant any part,
consisting only of vertices and internal lines, which
touches no electron lines, and only an odd number
of photon lines, belonging to the rest of the graph.
The simplest type of odd part which can occur is a
single odd closed loop. Conversely, it is easy to see
that every odd part must include within itself at
least one odd closed loop. Therefore, Furry’s
theorem allows all graphs with odd parts to be
omitted from consideration in calculating U(«).

V. INVESTIGATION OF DIVERGENCES IN THE
S MATRIX

The §, function defined by (19) has the property
that, if b is real and f(a) is any function analytic
in the neighborhood of b, then

f (@)8,(a—b)da=(1/2xi) f £@)(1/(@—b))da, (41)

where the first integral is along a stretch of the real
axis including b, and the second integral is along
the same stretch of the real axis but with a small
detour into the complex plane passing underneath
b. In the matrix elements of U(w) there appear
integrals of the form

f ApF (D)o, (pri+pi+pi—pi+e),  (42)

integrated over all real values of pi, p2, p3, po. By
(41), one may write (42) in the form

1 F(p)
e dp ’
(pL2+p2+p2—po*+c2)

2
in which it is understood that the integration is
along the real axis for the variables p,, p», p3, and for
bois along the real axis with two small detours, one
passing above the point + (pi2+ p22+ ps®+c2)?, and
one passing below the point — (p:12+ pa2+ ps2+c2)h
To equate (42) with (43) is certainly correct, when
F(p) is analytic at the critical values of p,. In
practice one has to deal with integrals (42) in
which F(p) itself involves &, functions (see for

(43)
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example (26) and (28)) ; in these cases it is legitimate
to replace each &, function by a reciprocal, making
a separate detour in the p, integration for each pole
in the integrand, provided that no two poles coin-
cide. Thus every constituent part M of U(x) can
be written as an integral of a rational algebraic
function of momentum variables, by using instead
of (21) and (22)

Dr(p) =———, (44)
P dritoy
('ipui'Yu—KO)
Sr(pH) =———. 45
P i ) )

This representation of Dr and Sr as rational func-
tions in momentum-space has been developed and
extensively used by Feynman (unpublished).

There may appear in M infinities of three distinct
kinds. These are (i) singularities caused by the
coincidence of two or more poles of the integrand,
(i1) divergences at small momenta caused by a
factor (44) in the integrand, (iii) divergences at
large momenta due to insufficiently rapid decrease
of the whole integrand at infinity.

In this paper no attempt will be made to explore
the singularities of type (i). Such singularities occut,
for example, when a many-particle scattering
process may for special values of the particle
momenta be divided into independent processes
involving separate groups of particles. It is probable
that all singularities of type (i) have a similarly
clear physical meaning ; these singularities have long
been known in the form of vanishing energy de-
nominators in ordinary perturbation theory, and
have never caused any serious trouble.

A divergence of type (ii) is the so-called “infra-
red catastrophe,” and is well known to be caused
by the failure of an expansion in powers of a to
describe correctly the radiation of low momentum
quanta. It would presumably be possible to elimi-
nate this divergence from the theory by a suitable
adaptation of the standard Bloch-Nordsieck? treat-
ment; we shall not do this here. From a practical
point of view, one may avoid the difficulty by
arbitrarily writing instead of (44)

Dr(p) = (46)

2mi (P24
where A is some non-zero momentum, smaller than

any of the quantum momenta which are significant
in the particular process under discussion.?

7 F. Bloch and A. Nordsieck, Phys. Rev. 52, 54 (1937).

8 The device of introducing A in order to avoid infra-red
divergences must be used with circumspection. Schwinger
(unpublished) has shown that a long standing discrepancy
between two alternative calculations of the Lamb shift was
due to careless use of X in one of them.
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It is the divergences of type (iii) which have
always been the main obstacle to the construction
of a consistent quantum electrodynamics, and
which it is the purpose of the present theory to
eliminate. In the following pages, attention will be
confined to type (iii) divergences; when the word
‘“‘convergent’’ is used, the proviso ‘“‘except for pos-
sible singularities of types (i) and (ii)”’ should
always be understood.

A divergent M is called “primitive’ if, whenever
one of the momentum 4 vectors in its integrand is
held fixed, the integration over the remaining
variables is convergent. Correspondingly, a primi-
tive divergent graph is a connected graph G giving
rise to divergent M, but such that, if any internal
line is removed and replaced by two external lines,
the modified G gives convergent M. To analyze the
divergences of the theory, it is sufficient to enu-
merate the primitive divergent M and G and to
examine their properties.

Let G be a primitive divergent graph, with =
vertices, E external and F internal lines. A cor-
responding M will be an integral over F variable p*
of a product of F factors (44) and (45) and =
factors (23). Since G is connected, the §-functions
(23) in the integrand enable (n—1) of the variables
pt to be expressed in terms of the remaining
(F—n+1) p? and the constants k% leaving one
d-function involving the k* only and expressing
conservation of momentum and energy for the
whole system. An example of such integration over
the é-functions was the derivation of (26) from
(25). After this, the integrations in M may be
arranged as follows; the fourth components of the
(F—n+1) independent p? are written

(47)

and the integration over « is performed first; sub-
sequently, integration is carried out over the
3(F—n+1) independent pié, p.o?, ps¢, and over the
(F—mn) ratios of the m¢®. M then has the form

P.;i = ’l:Po" =tam’,

M= f dpridpaidpsidme f Raf-rda,  (48)

where R is a rational function of «, the denominator
of which is a product of F factors

(B1)* 4 (0294 (p3')*+ % — (amoi+¢?)°.

Here the constants 7o’ ¢’ are defined by the con-
dition that

pi=1pe=1(ari+c’), j=1,2, -+, F. (50)

Thus the ¢? corresponding to the (F—n+1) inde-
pendent p* are zero by (47), and the remainder are
linear combinations of the k%; also (n—1) of the no*
are linear combinations of the independent m¢®

(49)
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defined in (47). In view of (43), we take the inte-
gration variables in (48) to be real variables, with
the exception of a which is to be integrated along
a contour C deviating from the real axis at each of
the 2F poles of R. As a general rule, C will detour
above the real axis for >0, and below it for «<0;
the reverse will only occur at certain of the poles
corresponding to denominators (49) for which
(2192 (p27)*+ (pa¥)*+ 1 S (¢9)™ (51)
Such poles will be called ‘“displaced.” The inte-
gration over « alone will always be absolutely con-
vergent. Therefore the contour C may be rotated
in a counter-clockwise direction until it lies along
the imaginary axis, and the value of M will be
unchanged except for residues at the displaced poles.

Regarded as a function of the parameters k*
describing the incoming and outgoing particles, M
will have a complicated behavior; the behavior
will change abruptly whenever one of the c¢* has
a critical value for which (51) begins to be soluble
for pi?, pat, P3¢, and a new displaced pole comes into
existence. This behavior is explained by observing
that displaced poles appear whenever there is suf-
ficient energy available for one of the virtual par-
ticles involved in M to be actually emitted as a
real particle. It is to be expected that the behavior
of M should change when the process described by
M begins to be in competition with other real
processes. It is a feature of standard perturbation
theory, that when a process 4 involves an inter-
mediate state I which is variable over a continuous
range, and in this range occurs a state I which is
the final state of a competing process, then the
matrix element for A involves an integral over I
which has a singularity at the position II. In
standard perturbation theory, this improper inte-
gral is always to be evaluated as a Cauchy prin-
cipal value, and does not introduce any real diver-
gence into the matrix element. In the theory of the
present paper, the displaced poles give rise to
similar improper integrals; these come under the
heading of singularities of type (i) and will not be
discussed further.

If p.i, pat, pst satisfying (S1) are held fixed, then
the value of p4¢ at the corresponding displaced pole
is fixed by (50). The contribution to M from the
displaced pole is just the expression obtained by
holding the 4-vector p' fixed in the original integral
M, apart from bounded factors; since M is primitive
divergent, this expression is convergent. The total
contribution to M from the <'th displaced pole is
the integral of this expression over the finite sphere
(51) and is therefore finite. Strictly speaking, this
argument requires not only the convergence of the
expression, but uniform convergence in a finite
region ; however, it will be seen that the convergent
integrals in this theory are convergent for large
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momenta by virtue of a sufficient preponderance of
large denominators, and convergence produced in
this way will always be uniform in a finite region.

M is thus, apart from finite parts, equal to the
integral M’ obtained by replacing a by tain (48) and
(49). Alternatively, M’ is obtained from the original
integral M by substituting for each po’

ipai+(1—14)ci, (52)

and then treating the 4(F—n+1) independent p,7,
w=1, 2, 3, 4, as ordinary real variables. In M’ the
denominators of the integrand take the form

(01)+ (2 + (bs))*+ 1+ (pai — (140)c), (53)

and are uniformly large for large values of p,%
The convergence of M’ can now be estimated simply
by counting powers of p,* in numerator and de-
nominator of the integrand. Since M’ is known to
converge whenever one of the p* is held fixed and
integration is carried out over the others, the con-
vergence of the whole expression is assured pro-
vided that

K=2F—F,—4[F—n+1]>1. (54)

Here 2F is the degree of the denominator, and F,
that of the numerator, which is by (44) and (45)
equal to the number of internal electron lines in G.
Let E, and E, be the numbers of external electron
and photon lines in G, and let #, be the number of
vertices without photon lines incident. It follows
from the structure of G that

2F=3n—n,—E,—E,,
F,=n—3}E,,

and so the convergence condition (52) is

K=3EA+E,+n,—4>1. (55)

This gives the vital information that the only
possible primitive divergent graphs are those with
E,=2, E,=0,1, and with E,=0, E,=1,2,3,4.
Further, the cases E,=0, E,=1, 3, do not arise,
since these give graphs with odd parts which were
shown to be harmless in Section IV. It should be
observed that the course of the argument has been
“if E, and E, do not have certain small values, then
the integral M is convergent at infinity;"’ there is
no objection to changing the order of integrations
in M as was done in (48), since the argument
requires that this be done only in cases when M is,
in fact, absolutely convergent.

The possible primitive divergent graphs that
have been found are all of a kind familiar to
physicists. The case E,=2, E,=0 describes self-
energy effects of a single electron; E,=0, E,=2
self-energy effects of a single photon; E,=2, E,=1
the scattering of a single electron in an electromag-
netic field; and E.=0, E,=4 the ‘‘scattering of
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light by light” or the mutual scattering of two
photons. Further, (55) shows that the divergence
will never be more than logarithmic in the third
and fourth cases, more than linear in the first, or
more than quadratic in the second. Thus it appears
that, however far quantum electrodynamics is
developed in the discussion of many-particle inter-
actions and higher order phenomena, no essentially
new kinds of divergence will be encountered. This
gives strong support to the view that “‘subtraction
physics,” of the kind used by Schwinger and Feyn-
man, will be enough to make quantum electro-
dynamics into a consistent theory.

VI. SEPARATION OF DIVERGENCES IN THE
S MATRIX

First it will be shown that the ‘‘scattering of light
by light”” does not in fact introduce any divergence
into the theory. The possible primitive divergent
M in the case E,=0, E,=4 will be of the form

S(k B+ B+ k) AN (R) A (k?) A, (R%) A (k%) Iy, (56)

where I,,,, is an integral of the type

fR;\,,,,,(kl, k2, k3, B, pi)dpl, (57)
at most logarithmically divergent, and R is a certain
rational function of the constant k% and the variable
p* In any physical situation where, for example, the
A (k) are the potentials corresponding to particular
incident and outgoing photons, there will appear
in U() a matrix element which is the sum of (56)
and the 23 similar expressions obtained by per-
muting the suffixes of I,,, in all possible ways. It
may therefore be supposed that at the start Ry,
has been symmetrized by summation over all per-
mutations of suffixes; (56) is then a sum of con-
tributions from 24 or fewer (according to the
degree of symmetry existing) graphs G.

If, under the sign of integration in (57), the value
R(0) of R for k'=Fk?2=Fk3=k*=0 is subtracted from
R, the integrand acquires one extra power of |p,|~!
for large | p,¢|, and the integral becomes absolutely
convergent at infinity. Therefore

I)\;utp ‘_‘I)\yvp(o)"*'-r)\yvpy (58)

where I(0) is a possibly divergent integral inde-
pendent of the k% and J is a convergent integral
vanishing when all k%s are zero. To interpret this
result physically, it is convenient to write (56)
again in terms of space-time variables; this gives

M= f Trnp (00 Ar (1) A, () A, ()4, ()dx+ N, (59)

where IV is a convergent expression involving de-
rivatives of the A4(x) with respect to space and
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time. Now the first term in (59) is physically
inadmissable; it is not gauge-invariant, and implies
for example a scattering of light by an electric field
depending on the absolute magnitude of the scalar
potential, which has no physical meaning. Therefore
I(0) must vanish identically, and the whole ex-
pression (56) is convergent.

The fact that the scattering of light by light is
finite in the lowest order in which it occurs has long
been known.? It has also been verified by Feynman
by direct calculation, using his own theory as
described in this paper. The graphs which give rise
to the lowest order scattering are shown in Fig. 4.
It is found that the divergent parts of the corre-
sponding M exactly cancel when the three con-
tributions are added, or, what comes to the same
thing, when the function Ry, is symmetrized. It is
probable that the absence of divergence in the
scattering of light by light is in all cases due to a
similar cancellation, and it should not be difficult
to prove this by calculation and thus avoid making
an appeal to gauge-invariance.

The three remaining types of primitive divergent
M are, in fact, divergent. However, these are just
the expressions which have been studied in Sections
IIT and IV and shown to be completely described
by the operators A,, Z, and II. More specifically,
when E.=2, E,=0, M will be of the form

Y(RZ(W, B)Y(kY), (60)

where W is some electron self-energy part of a
graph. When E,=0, E,=2, M will be

Au(R)II(W', k1) A(R), (61)

with W’ some photon self-energy part. When E.=2,
E,=1, M will be

VEDAY, kY )Y (k) Au(k —22), (62)

with V some vertex part. Therefore, if some means
can be found for isolating and removing the diver-
gent parts from A,, 2, and II, the ‘‘irreducible”
graphs defined in Section 1V will not introduce any
fresh divergences into the theory, and the rules of
Section IV will lead to a divergence-free S matrix.

In considering A,, Z, and II in Section IV it was
found convenient to divide vertex and self-energy
parts themselves into the categories reducible and
irreducible. An irreducible self-energy part W is
required not only to have no vertex and self-energy
parts inside itself; it is also required to be ‘“‘proper,”’
that is to say, it is not to be divisible into two

9H. Euler and B. Kockel, Naturwiss. 23, 246 (1935);
H. Euler, Ann. d. Phys. 26, 398 (1936). In these early calcula-
tions of the scattering of light by light, the theory used is the
Heisenberg electrodynamics, in which certain singularities are
eliminated at the start by a procedure involving non-diagonal
elements of the Dirac density matrix. In Feynman's calcula-
tion, on the other hand, a finite result is obtained without
subtractions of any kind.
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pieces joined by a single line. In Section 1V it was
shown that to avoid redundancy the operator A,
should be defined as a sum over proper vertex
parts V only. By the same argument, in order to
make (35), (36), (37) correct, it is essential to
define £ and II as sums over both proper and
improper self-energy parts. However, it is possible
to define S¥’ and Dy’ in terms of proper self-energy
parts only, at the cost of replacing the explicit
definitions (35), (36) by implicit definitions. Let
Z*(p?) be defined as the sum of the Z(W, p?) over
proper electron self-energy parts W, and let IT*(p?)
be defined similarly. Every W is either proper, or
else it is a proper W joined by a single electron line
to another self-energy part which may be proper or
improper. Therefore, using (35), S¢’ may be ex-
pressed in the two equivalent forms

Se'(p%) = Se(p)+Sr(p)Z*(p9)SF (p?)

=Sp(p)+SF' (p)Z*(p?)Sk(p?). (63)

Similarly,

Dy'(p?) =Dr(p*)+Dr(p") II*(p") DF' ()
=Dr(p?)+D¢ (p")I*(p")Dr(p?). (64)

It is sometimes convenient to work with the £ and
II in the starred form, and sometimes in the un-
starred form.

Consider the contribution 2(W, ') to the operator
T*, arising from an electron self-energy part W. It
is supposed that W is irreducible, and the effects of
possible insertions of self-energy and vertex parts
inside W are for the time being neglected. Also it
is supposed that W is not a single point, of which
the contribution is given by (31). Then W has an
even number 2/ of vertices, at each of which a
photon line is incident; and Z(W, #!) will be of the
form

f R(#, p)dp, (65)

where R is a certain rational function of the # and
p%, and the integral is at most linearly divergent.
The integrand in (65) is now written in the form

R(#, p) =R(0, p?)

R
#12(—0,09) +R0, 2, (60
at,!
Y ’
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and for large values of the |p,¢| the remainder term
R, will tend to zero more rapidly by two powers
of |p.| than R. Therefore, in complete analogy
with (58),

(W, ) =e'[A+But'+Z(W, )],  (67)

where A and B, are constant divergent operators,
and Z,(W,¢t') is defined by a covariant and ab-
solutely convergent integral. Z.,(W, ) must, on
grounds of covariance, be of the form

Ri((#)%) +Rao((#)")tu v (68)

with R; and R, particular functions of (¢!)?; for the
same reason, B, must be of the form By, with B
a certain divergent integral. Now if ¢! happens to be
the momentum-energy 4 vector of a free electron,

(t1)2= '—K02, t,,l‘y,‘:iKo. (69)
It is convenient to write
(W, tY)=A"+B'(t,"yu—1x0)
+ (v —1x0)S(W, 1), (70)

where S(W, #) is zero for ¢ satisfying (69), and to
include the first two terms in the constants 4 and
B of (67); since all terms in (70) are finite, the
separation of S(W, ') is without ambiguity. Thus
an equation of the form (67) is obtained, with

(W, 1) = (tlyu—1ix0) S(W, 8). (71)

Summing (67) over all irreducible W and including
(31), gives for the operator =*,

S*() =A — 2widko+ Bty — ko)
+ (Gt vu— ko) Se(th).  (72)
Hence by (63) and (45)

SF' (1Y) = (A —2m1dk0) SF (1) SF’ ()
1 1
+—BSF () +Sr() +—S.() SF' ().  (73)
27 27

In (72) and (73), 4 and B are infinite constants,
and S. a divergence-free operator which is zero
when (69) holds; 4, B, and S, are power series in e
starting with a term in 2 In (72) and (73), how-
ever, effects of higher order corrections to the
Z(W, 1) themselves are not yet included.

A similar separation of divergent parts may be
made for the II(W’, #!), when W’ is an irreducible
photon self-energy part. The integral (65) may now
be quadratically divergent, and so it is necessary to
use instead of (66)

dOR
R(®, $9 =R(0, p")+t,.l(;t-1(0, pi))

d’R

+-;-m,1( o, p*)) R, 7),

98,191,
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and derive instead of (67)
TH(W", 1) = 1[4 + B+ Cobylty -+ LW, 1)1, (74)

The A, B,, C,, are absolute constant numbers (not
Dirac operators) and therefore covariance requires
that B,=0, C,=Cd,. I (W', t) is defined by an
absolutely convergent integral, and will be an
invariant function of (¢)? of a form

I(W', &)= (¢")2D(W', ), (75)
where D(W’, #!) is zero for #! satisfying
H2=0 (76)

instead of (69). Summing (74) over all irreducible
W”s will give

I*(#") = A"+ C(£)*+ (¢)2D(#),
and hence by (64) and (44)

(a7

1
Dy (1) = A'De(1) D5’ (1)) +—2——_CDF’(t1)
™

1
+Dg(2Y) +2——_Dc(t1)Dp’(t1) . (78)
L)

In (77) and (78), D, is zero for # satisfying (76), and
is divergence free.

The constant 4’ in (77) is the quadratically
divergent photon self-energy. It will give rise to
matrix elements in U( ) of the form

]ll=A’fA,,(x)A“(x)dx, (79)

which are non-gauge invariant and inadmissable.
Such matrix elements must be eliminated from the
theory, as the first term of (59) was eliminated, by
the statement that A’ is zero. The verification of
this statement, by direct calculation of the lowest
order contribution to A’, has been given by
Schwinger. 31

The separation of the divergent part of A, again
follows the lines laid down for Z*. Since the integral
analogous to (65) is now only logarithmically
divergent, no derivative term is required in (66),
and the analog of (67) is

AV, 8 8)=e [ LA (V, 8,827,  (80)

where L, is a constant divergent operator, and A,
is convergent and zero for ##=#=0. In (80), L, can
only be of the form Lv,. Also, if {1=¢* and #! satisfies
(69), Ay, will reduce to a finite multiple of v, which
can be included in the term Lv,. Therefore it may
be supposed that A,. in (80) is zero not for !=#2=0
but for #'=#* satisfying (69). The meaning of this

10 Gregor Wentzel, Phys. Rev. 74, 1070 (1948), presents the
case against Schwinger’s treatment of the photon self-energy.
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physically is that A,, now gives zero contribution
to the energy of a single electron in a constant elec-
tromagnetic potential, so that the whole measured
static charge on an electron is included in the term
Ly,. Summing (80) over all irreducible vertex
parts V, and using (38),

Au(th, £2) = Ly, + A (8, £2),

L@, 2) = (14 L)y, + Auc(2, £2).
In (81) and (82), effects of higher order corrections
to the AL(V, ¢, %) are again not yet included.
Formally, (82) differs from (73) and (78) in not

containing the unknown operator I'y on both sides
of the equation.

(81)
(82)

VII. REMOVAL OF DIVERGENCES FROM THE
S MATRIX

The task remaining is to complete the formulas
(73), (78), and (82), which show how the infinite
parts can be separated from the operators I',, SF/,
and Dy’, and to include the corrections introduced
into these operators by the radiative reactions
which they themselves describe. In other words, we
have to include radiative corrections to radiative
corrections, and renormalizations of renormaliza-
tions, and so on ad tnfinitum. This task is not so
formidable as it appears.

First, we observe that A,, £*, and IT* are defined
by integral equations of the form (39), which will
be referred to in the following pages as ‘‘the integral
equations.” More specifically, consider the con-
tribution A,(V, #, ##) to A, represented by (80),
arising from a vertex part V with (2/41) vertices,
[ photon lines, and 2! electron lines. This contribu-
tion is defined by an integral analogous to (65),
with an integrand which is a product of (2/+1)
operators v,, / functions Dr, and 2!/ operators Sr.
The exact A,(V, £, £2) is to be obtained by replacing
these factors, respectively, by TI',, D§’, S¥', as
described in Section IV. Now suppose that Sf’ in
the integrand is represented, to order e?" say, by
the sum of Sy and of a finite number of finite
products of Sr with absolutely convergent operators
S(W, #') such as appear in (71); similarly, let Dz’
be represented by Dp plus a finite sum of finite
products of Dy with functions D(W’, t!) appearing
in (75); and let I', be represented by the sum of v,
and of a finite set of A..(V, #, #2) from (80). Then
the integral A,(V, £, £*) will be determined to order
e2"+2!; and since the operators S(W,t!), D(W’, ),
Aue(V, 8, 22) always have a sufficiency of de-
nominators for convergence, the theory of Section V
can be applied to prove that this A,(V, £, #?) will
not be more than logarithmically divergent. There-
fore the new A,(V,#, ) can be again separated
into the form (80). The sum of these A.(V, ¢, #?)
will then be a A,(¢, £?) of the form (81), with con-
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stant L and convergent operator A,. determined to
order "2, Thus (82) provides a new expression for
T, determined to order e2»*2,

The above procedure describes the general
method for separating out the finite part from the
contribution to I', arising from a reducible vertex
part Vg. First, Vg is broken down into an irre-
ducible vertex part V plus various inserted parts W,
W', V; the contribution to I', from Vg is an integral
M(Vg) which is not only divergent as a whole, but
also diverges when integrated over the variables
belonging to one of the insertions W, W', V, the
remaining variables being held fixed. The diver-
gences are to be removed from M (V) in succession,
beginning with those arising from the inserted
parts, and ending with those arising from 1 itself.
This successive removal of divergences is a well-
defined procedure, because any two of the insertions
made in V are either completely non-overlapping or
else arranged so that one is completely contained
in the other.

In calculating the contribution to Z* or II*
from reducible self-energy parts, additional com-
plications arise. There is in fact only one irreducible
photon self-energy part, the one denoted by W’ in
Fig. 5; and there is, besides the self-energy part
consisting of a single point, just one irreducible
electron self-energy part, denoted by W in Fig. S.
All other self-energy parts may be obtained by
making various insertions in W or W’. However,
reducible self-energy parts are to be enumerated by
inserting vertex parts at only one, and not both,
of the vertices of W or W’; otherwise the same
self-energy part would appear more than once in
the enumeration. And the contribution M(Wpg) to
I* arising from a reducible part Wg will be, in
general, an integral which involves simultaneously
divergences corresponding to each of the ways in
which W might have been built up by insertions
of vertex parts at either or both vertices of W. This
complication arises because, in the special case
when two vertex parts are both contained in a
self-energy part and each contains one end-vertex
of the self-energy part (and in no other case), it is
possible for the two vertex parts to overlap without
either being completely contained in the other.

The finite part of M(Wg) is to be separated out
as follows. In a unique way, Wk is obtained from
W by inserting a vertex part V, at a, and self-energy
parts W, and W,’ in the two lines of W. From
M(Wpg) there are subtracted all divergences arising
from V., Wa, W.'; let the remainder after this sub-
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traction be M’'(Wpg). Next, Wg is considered as
built up from W by inserting some vertex part V,
at b, and self-energy parts W, and W,’ in the two
lines of W. The integral M'(Wpg) will still contain
divergences arising from V% (but none from W3 and
W4'), and these divergences are to be subtracted,
leaving a remainder M”(Wp). The finite part of
M (Wg) can finally be separated by applying to the
whole integral the method of Section VI, which
gives for M''(Wpg) an expression of the form (67),
with 2, given by (71). Therefore the finite part of
M(Wg) is a well-determined quantity, and is an
operator of the form (71).

The behavior of the higher order contributions to
=* and II* having now been qualitatively explained,
we may describe the precise rules for the calculation
of 2* and II* by the same kind of inductive scheme
as was given for A, in the second paragraph of this
Section. Apart from the constant term (—2#dko),
I* is just the contribution (W, ¢') from the W of
Fig. 5; and Z(W, #) is represented by an integral
of the form (65) with /=1. The integrand in (65)
was a product of two operators v,, one operator Dp,
and one operator Sr. The exact Z(W, #) is to be
obtained by replacing Dr by D§’, Sr by S¢’, and
one only of the factors v, by I, say the v, cor-
responding to the vertex a of W. Suppose that Sy’
in the integrand is represented, to order ¢**, by the
sum of Sr and of a finite number of finite products
of S with operators S(W,#) such as appear in
(71); and suppose that Dp’ and T, are similarly
represented. Then Z(W, ') will be determined to
order e***2, The new Z(W,#) will be a sum of
integrals like the M’(Wg) of the previous para-
graph, still containing divergences arising from
vertex parts at the vertex b of W, in addition to
divergences arising from the graph W as a whole.
When all these divergences are dropped, we have a
(W, ') which is finite; substituting this Z.(W, #)
for Z* in (63) gives an S’ which is also finite and
determined to the order e?"+2.

The above procedures start from given S¢’, D¢’
and T, represented to order 2" by, respectively, Sr
plus Sp multiplied by a finite sum of products of
S(W, t), Dp plus Dr multiplied by a finite sum of
products of D(W’, #!), and v, plus a finite sum of
Aue(V, 84, £2). From these there are obtained new
expressions for Sy’, Df’, T',. In the new expressions
there appear new convergent operators S(W,#),
D(W', 1Y), Au(V, 8, £2), determined to order e*"+%;
in the divergent terms which are separated out and
dropped from the new expressions, there appear
divergent coefficients 4, B, C, L, such as occur in
(73), (78), (82), also now determined to order e?"*2.
After the dropping of the divergent terms, the
new I', by (82) is a sum of v, and a finite set of
Aue(V, 81, 82); the new S§¢’ by (73) is Sr plus Sp
multiplied by a finite sum of products of S(W,¢');
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and the new Dy’ by (78) is Dp plus Dy multiplied
by a finite sum of products of D(W’, #). That is to
say, the new T',, S¥’, Df’ can be substituted back
into the integrals of the form (65), and so a third
set of operators I',, Sp’, Dp’ is obtained, determined
to order e?"*4, and again with finite and divergent
parts separated. In this way, always dropping the
divergent terms before substituting back into the
integral equations, the finite parts of Iy, S¥’, Dy,
may be calculated by a process of successive ap-
proximation, starting with the zero-order values v,,
Sr, Dp. After n substitutions, the finite parts of
T, S¥’, D¢’ will be determined to order €.

It is necessary finally to justify the dropping of
the divergent terms. This will be done by showing
that the ““true’” T',, S¢’, Dy’, which are obtained if
the divergent terms are not dropped, are only
numerical multiples of those obtained by dropping
divergences, and that the numerical multiples can
themselves be eliminated from the theory by a
consistent use of the ideas of mass and charge
renormalization. Let T',i(e), Sri’(e), Dri’(e) be the
operators obtained by the process of substitution
dropping divergent terms; these operators are
power series in e with finite operator coefficients (to
avoid raising the question of the convergence of
these power-series, all quantities are supposed
defined only up to some finite order e*¥). Then we
shall show that the true operators I'y, S¢’, D¢’ are
of the form

T,=2Z,"Tu(e), (83)
SF'=Z2SF1'(€1), (84)
DFI=Z;3D1«'1’(€1), (85)

where Z,, Z,, Z; are constants to be determined, and
e, is given by

e1= Z]_—IZ‘)Z;;%C. (86)

This e; will turn out to be the “true” electronic
charge. It has to be proved that the result of sub-
stituting (83), (84), (85) into the integral equations
defining T, S¢’, D§’, is to reproduce these ex-
pressions exactly, when Z), Z,, Z; and &ko are
suitably chosen.

Concerning the I',1(e), Sri’(e), Dri'(e), it is known
that, when these operators are substituted into
the integral equations, they reproduce themselves
with the addition of certain divergent terms. The
additional divergent terms consist partly of the
terms involving 4, B, C, L, which are displayed in
(73), (78), (82), and partly of terms arising (in the
case of Sy’ and Dy’ only) from the peculiar behavior
of the vertices b, b’ in Fig. 5. The terms arising from
b and b’ have been discussed earlier; they may be
called for brevity b-divergences. Originally, of
course, there is no asymmetry between the diver-
gences arising in Z* from vertex parts inserted at
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the two ends @ and b of W; we have manufactured
an asymmetry by including the divergences arising
at a in the coefficient Z;~! of (83), while at b the
operator v, has not been replaced by I', and so the
b divergences have not been so absorbed. It is thus
to be expected that the effect of the & divergences,
like that of the e divergences, will be merely to
multiply all contributions to Z* by the constant
Z;1. Similarly, we expect that divergences at b’
will multiply IT* by the constant Z;~.. It can be
shown, by a detailed argument too long to be
given here, that these expectations are justified.
(The interested reader is recommended to see for
himself, by considering contributions to Z* arising
from various self-energy parts, how it is that the
finite terms of a given order are always reappearing
in higher order multiplied by the same divergent
coefficients.) Therefore, the complete expressions
obtained by substituting T.i(e), Sri’(e), Dri'(e),
into the integral equations defining A,, Z*, IT*, are

Aur(e) = Aue(e) +L(€)va, (87)
szl*(e) = - 21ri5KoSp

1 1
+zl—1(A(e)sp+2—B(e>+2—Sc<e))r (88)

1 1
Dpll *(e) =Zl‘1(———_C(e) -|-—_Dc(e)). (89)
2m 2w

Here A(e), B(e), C(e), L(e) are well-defined power
series in e, with coefficients which diverge never
more strongly than as a power of a logarithm. The
finite operators A,.(e), S.(e), D.(e), will, when all
divergent terms are dropped, lead back to the
T'ui(e), Sri'(e), Dri'(e), from which the substitution
started ; thus, according to (38), (63), (64),

T,i(e) ='Yu+Auc(e): (87"
1
Sri'(e) =Sk +E—Sc(8)5m'(e)y (88")
1
Dm’(e) =DF+2———.DC(8)DFII(C). (89')
m

Equations (87)—(89), (87")-(89’), describe precisely
the way in which the T',i(e), Sri’(e), Dri(e), when
substituted into the integral equations, reproduce
themselves with the addition of divergent terms.
And from these results it is easy to deduce the
self-reproducing property of the operators (83)—(85),
when substituted into the same equations.
Consider for example the effect of substituting
from (83)—(85) into the term Z(W, '), given by
(65) with /=1. The integrand of (65) is a product
of one factor T',, one +v,, one S¢’, and one Dy'.
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Therefore the substitution gives
ZZyZisZo(W), (90)

where Z¢(W) is the expression (65) obtained by
substituting Tyi(e1), Sri’(e1), Dri’(e1), without the
Z factors. Now the Z factors in (90) combine with
the €2 of (65) to give

Z1\Zyer?,

and the remaining factor of Zo(W) is explicitly a
function of e; and not of e. Therefore (90) is

2122_121(W, 61),

where (W, e) is the expression obtained by sub-
stituting the operators IT'4i(e), Sri’(e), Dri'(e) into
Z(W, ). Thus the Z*(#'), obtained by substituting
from (83)—(85) into (65), is identical with the result
of substituting the operators I'u1(e), Sri’(e), Dri'(€),
and afterwards changing e to e; and multiplying
the whole expression (except for the constant term
in dko) by Z1Z571. More exactly, using (88), one can
say that the Z* obtained by substituting from
(83)—(85) is given by

sz* = —21r1:5KoSp
1 1
+Zz_1<A (61)SF+—'B(81) +—'Sc(61)). (91)
27 27

Further, the S¢’ obtained by substituting from
(83)—(85) into the integral equations is given by (91)
and

Se' =Sp+SrZ*Sy'. (92)

It is now easy to verify, using (88’), that S¢’ given
by (91) and (92) will be identical with (84), pro-
vided that

1
Zz=1+—‘B(61), (93)
27
1
5K0=‘——.Zz_1A (81). (94)
m

In a similar way, the Dy’ obtained by substi-
tuting from (83)—(85) into the integral equations
can be related with the II;*(e) of (89). This Dy’
will be identical with (85) provided that

1
2w

Finally, the I, obtained by substituting from
(83)—(85) can be shown to be

.= 7“+21‘1A,.1(81),
with A,i(e) given by (87). Using (87’), this T, will
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be identical with (83) provided that
Z]-‘—-‘].—L(el). (96)

Therefore, if Z1, Zs, Z3, 8k are defined by (96),
(93), (95), (94), it is established that (83)—(85) give
the correct forms of the operators T',, S¢’, Dy,
including all the effects of the radiative corrections
which these operators introduce into themselves and
into each other. The exact Egs. (83)—(85) give a
much simpler separation of the infinite from the
finite parts of these operators than the approximate
equations (73), (78), (82).

Consider now the result of using the exact
operators (83)—(85) in calculating a constituent M
of U(x), where M is constructed from a certain
irreducible graph G, according to the rules of
Section IV. G, will have, say, F, internal and E,
external electron lines, F, internal and E, external
photon lines, and

n=F,+3E,=2F,+E, (97)

vertices. In M there will be E, factors ¢/(k%), L1E,
factors ¢'(k%) and E, factors 4,/(k) given by (37).
In ¢/(k?), k* is the momentum-energy 4 vector of
an electron, which satisfies (69), and the S.(¢%) in
(73) are zero at every stage of the inductive de-
finition of Sri’(e). Therefore (84), (35), (37) give in
turn

S¥' (k') =ZsSe(k),
2(k?) =2m(Zo— 1) (By*yu—iko), (98)
¥ (k) =Y (k) +2m(Z>— 1) Sp(k?) (ku'yu— ko) (k7).

The expression (98) is indeterminate, since
(Ru'yu—1xko) operating on (k) gives zero, while
operating on Sp(k?) it gives the constant (1/2x).
Thus, according to the order in which the factors
are evaluated, (98) will give for ¢/(k?) either the
value ¢(k?) or the value Zy(k?). Similarly, ¢'(k%) is
indeterminate between ¥(%%) and Z(k?), and, ex-
cluding for the moment A4,(k* which are Fourier
components of the external potential, 4,'(k?) is
indeterminate between A4,(k%) and Z3;4,(k%). In any
case, considerations of covariance show that the
¥'(k%), ¥ (k), A,/ (k%) are numerical multiples of the
v(k9), ¥(k*), Au(k?) ; thus the indeterminacy lies only
in a constant factor multiplying the whole expres-
sion M.

There cannot be any indeterminacy in the
magnitude of the matrix elements of U(), so long
as this operator is restricted to be unitary. The
indeterminacy in fact lies only in the normalization
of the electron and photon wave functions ¢(&%),
J(k%), Au(k?), which may or may not be regarded as
altered by the continual interactions of these par-
ticles with the vacuum-fields around them. It can be
shown that, if the wave functions are everywhere
normalized in the usual way, the apparent inde-
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terminacy is removed, and one must take
V' (kY) =ZM(kY),

V' (k%) =Z . (kY),
Ay (R =Z A, (k7).

(99)

It will be seen that (99) gives just the geometric
mean of the two alternative values of ¢’(k%) ob-
tained from (98).

When A4,(k%) is a Fourier component of the ex-
ternal potential, then in general (k%)25<0, and 4,/ (&%)
is not indeterminate but is given by (37) and (85)
in the form

A, (k) =2miZ3D i (e1) (k)24 (k).  (100)

However, the unit in which external potentials are
measured is defined by the dynamical effects which
the potentials produce on known charges; and these
dynamical effects are just the matrix elements of
U() in which (100) appears. Therefore the factor
Z3 in (100) has no physical significance, and will be
changed when 4, is measured in practical units. The
correct constant which appears when practical
units are used is Zj}; this is because the photon
potentials A, in (99) were normalized in terms of
practical units; and (100) should reduce to (99)
when (k%)?—0, if the external 4, and the photon 4,
are measured in the same units. Therefore the
correct formula for 4,’, covering the cases both of
photon and of external potentials, is

A (k) =2miZ}Dry (e1) (k)2 A, (),
A (k) =Z2A,(k), (k)*=0.

In M there will appear F, factors S¢’, F, factors
Dy, and n factors I',, in addition to the factors of

the type (99), (101). Hence by (97) the Z factors
will occur in M only as the constant multiplier

Zl—"ZznZ:;§n./

(ki)g;éO,}(lOl)

By (86), this multiplier is exactly sufficient to
convert the factor e®, remaining in M from the
original interaction (8), into a factor e;*. Thereby,
both e and Z factors disappear from M, leaving only
their combination e; in the operators T,;(e;),
Sri’(e1), Dri’(e1), and in the factor e;”. If now e, is
identified with the finite observed electronic charge,
there no longer appear any divergent expressions
in M. And since M is a completely general con-
stituent of U(«), the elimination of divergences
from the S matrix is accomplished.

It hardly needs to be pointed out that the argu-
ments of this section have involved extensive
manipulations of infinite quantities. These manipu-
lations have only a formal validity, and must be
justified a posteriori by the fact that they ultimately
lead to a clear separation of finite from infinite
expressions. Such an a posteriori justification of
dubious manipulations is an inevitable feature of
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any theory which aims to extract meaningful
results from not completely consistent premises.
We conclude with two disconnected remarks.
First, it is probable that Z,=Z, identically, though
this has been proved so far only up to the order e2.
If this conjecture is correct, then all charge-renor-
malization effects arise according to (86) from the
coefficient Z; alone, and the arguments of this
paper can be somewhat simplified. Second, Egs.
(88), (89’), which define the fundamental operators
Sri’, Dri/, may be solved for these operators. Thus

1 -1
Sm’(e)=[1—5—Sc(e)] S, (88")
1 —1
Dm’(e)=[1—-~——_Dc(e)] Dr. (89"

™

In electrodynamics, the S, and D, are small radi-
ative corrections, and it will always be legitimate
and convenient to expand (88"’) and (89"") by the
binomial theorem. If, however, the methods of the
present paper are to be applied to meson fields,
with coupling constants which are not small, then
it will be desirable not to expand these expressions;
in this way one may hope to escape partially from
the limitations which the use of weak-coupling
approximations imposes on the theory.

VIII. SUMMARY OF RESULTS

The results of the preceding sections divide
themselves into two groups. On the one hand, there
is a set of rules by which the element of the .S matrix
corresponding to any given scattering process may
be calculated, without mentioning the divergent
expressions occurring in the theory. On the other
hand, there is the specification of the divergent
expressions, and the interpretation of these ex-
pressions as mass and charge renormalization
factors.

The first group of results may be summarized as
follows. Given a particular scattering problem, with
specified initial and final states, the corresponding
matrix element of U(«) is a sum of contributions
from various graphs G as described in Section II.
A particular contribution M from a particular G is
to be written down as an integral over momentum
variables according to the rules of Section III; the
integrand is a product of factors (&%), ¢ (k%), 4,.(k?),
Sr(p?), Dr(p?), 8(¢i), vu, the factors corresponding
in a prescribed way to the lines and vertices of G.
According to Section 1V, contributions M are only
to be admitted from irreducible G; the effects of
reducible graphs are included by replacing in M
the factors ¢, ¥, A,, Sr, Dr, v by the corre-
sponding expressions (37), (35), (36), (38). These
replacements are then shown in Section VII to be

1753

equivalent to the following: each factor Sr in M is
replaced by Sri’(e), each factor Dr by Dr,’(e), each
factor v, by I',1(e), each factor 4, when it represents
an external potential is replaced by

A (k%) =2miDr (e) (k)24 4 (k7), (102)
factors ¢, ¥, A, representing particle wave-functions
are left unchanged, and finally e wherever it occurs
in M is replaced by e;. The definition of M is com-
pleted by the specification of Sri'(e), Dri(e),
T'u1(e) ; it is in the calculation of these operators that
the main difficulty of the theory lies. The method of
obtaining these operators is the process of successive
substitution and integration explained in the first
part of Section VII; the operators so calculated are
divergence-free, the divergent parts at every stage
of the calculation being explicitly dropped after
being separated from the finite parts by the
method of Section VI.

The above rules determine each contribution M
to U(«) as a divergence-free expression, which is a
function of the observed mass m and the observed
charge e; of the electron, both of which quantities
are taken to have their empirical values. The diver-
gent parts of the theory are irrelevant to the cal-
culation of U(w), being absorbed into the unob-
servable constants ém and e occurring in (8). A
place where some ambiguity might appear in M is
in the calculation of the operators Sri'(e), Dri'(e),
T'ui(e), when the method of Section VI is used to
separate out the finite parts S(W, ), D(W’, 1Y),
Ae(V, 8, ), from the expressions (67), (74), (80).
Even in this place the rules of Section VI give unam-
biguous directions for making the separation; only
there is a question whether some alternative direc-
tions might be equally reasonable. For example, it is
possible to separate out a finite part from Z(W, #)
according to (67), and not to make the further step
of using (70) to separate out a finite part S(W, t\)
which vanishes when (69) holds. Actually it is easy
to verify that such an alternative procedure will
not change the value of M, but will only make its
evaluation more complicated; it will lead to an
expression for M in which one (infinite) part of the
mass and charge renormalizations is absorbed into
the constants ém and e, while other finite mass and
charge renormalizations are left explicitly in the
formulas. It is just these finite renormalization
effects which the second step in the separation of
S(W, ) and A, (V, 8, 1) is designed to avoid.
Therefore it may be concluded that the rules of cal-
culation of U(x) are not only divergence-free but
unambiguous.

As anyone acquainted with the history of the
Lamb shift! knows, the utmost care is required

1 H. A. Bethe, Electromagnetic Shift of Energy Levels,
Report to Solvay Conference, Brussels (1948).
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before it can be said that any particular rule of
calculation is unambiguous. The rules given in this
paper are unambiguous, in the sense that each
quantity to be calculated is an integral in mo-
mentum-space which is absolutely convergent at
infinity; such an integral has always a well-defined
value. However, the rules would not be unam-
biguous if it were allowed to split the integrand into
several parts and to evaluate the integral by inte-
grating the parts separately and then adding the
results; ambiguities would arise if ever the partial
integrals were not absolutely convergent. A splitting
of the integrals into conditionally convergent parts
may seem unnatural in the context of the present
paper, but occurs in a natural way when calcula-
tions are based upon a perturbation theory in which
electron and positron states are considered sepa-
rately from each other. The absolute convergence
of the integrals in the present theory is essentially
connected with the fact that the electron and
positron parts of the electron-positron field are
never separated; this finds its algebraic expression
in the statement that the quadratic denominator in
(45) is never to be separated into partial fractions.
Therefore the absence of ambiguity in the rules of
calculation of U(«) is achieved by introducing
into the theory what is really a new physical
hypothesis, namely that the electron-positron field
always acts as a unit and not as a combination of
two separate fields. A similar hypothesis is made for
the electromagnetic field, namely that this field also
acts as a unit and not as a sum of one part repre-
senting photon emission and another part repre-
senting photon absorption.

Finally, it must be said that the proof of the
finiteness and unambiguity of U(e) given in this
paper makes no pretence of being complete and
rigorous. It is most desirable that these general
arguments should as soon as possible be supple-
mented by an explicit calculation of at least one
fourth-order radiative effect, to make sure that no
unforeseen difficulties arise in that order.

The second group of results of the theory is the
identification of ém and e by (94) and (86).
Although these two equations are strictly meaning-
less, both sides being infinite, yet it is a satisfactory
feature of the theory that it determines the unob-
servable constants ém and e formally as power
series in the observable e;, and not vice versa. There
is thus no objection in principle to identifying e,
with the observed electronic charge and writing

(e:2/4mhc) = a=1/137. (103)

The constants appearing in (8) are then, by (94)
and (86),

om=m(Aa+ A+ ---),
e=e,(1+Bja+ Ba?+ - - .)’

(104)
(105)
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where the 4; and B; are logarithmically divergent
numerical coefficients, independent of m and e,.

IX. DISCUSSION OF FURTHER OUTLOOK

The surprising feature of the .S matrix theory,
as outlined in this paper, is its success in avoiding
difficulties. Starting from the methods of Tomonaga,
Schwinger and Feynman, and using no new ideas
or techniques, one arrives at an .S matrix from which
the well-known divergences seem to have conspired
to eliminate themselves. This automatic disap-
pearance of divergences is an empirical fact, which
must be given due weight in considering the future
prospects of electrodynamics. Paradoxically op-
posed to the finiteness of the .S matrix is the second
fact, that the whole theory is built upon a Hamil-
tonian formalism with an interaction-function (8)
which is infinite and therefore physically meaning-
less.

The arguments of this paper have been essen-
tially mathematical in character, being concerned
with the consequences of a particular mathematical
formalism. In attempting to assess their significance
for the future, one must pass from the language of
mathematics to the language of physics. One must
assume provisionally that the mathematical for-
malism corresponds to something existing in
nature, and then enquire to what extent the para-
doxical results of the formalism can be reconciled
with such an assumption. In accordance with this
program, we interpret the contrast between the
divergent Hamiltonian formalism and the finite
S matrix as a contrast between two pictures of the
world, seen by two observers having a different
choice of measuring equipment at their disposal.
The first picture is of a collection of quantized
fields with localizable interactions, and is seen by
a fictitious observer whose apparatus has no atomic
structure and whose measurements are limited in
accuracy only by the existence of the fundamental
constants ¢ and k. This observer is able to make
with complete freedom on a sub-microscopic scale
the kind of observations which Bohr and Rosenfeld!
employ in a more restricted domain in their classic
discussion of the measurability of field-quantities;
and he will be referred to in what follows as the
“ideal” observer. The second picture is of a col-
lection of observable quantities (in the terminology
of Heisenberg), and is the picture seen by a real
observer, whose apparatus consists of atoms and
elementary particles and whose measurements are
limited in accuracy not only by ¢ and % but also by
other constants such as « and m. The real observer

12N. Bohr and L. Rosenfeld, Kgl. Dansk. Vid. Sels. Math.-
Phys. Medd. 12, No. 8 (1933). A second paper by Bohr and
Rosenfeld is to be published later, and is abstracted in a
booklet by A. Pais, Developments in the Theory of the Electron
(Princeton University Press, Princeton, 1948).
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makes spectroscopic observations, and performs
experiments involving bombardments of atomic
systems with various types of mutually interacting
subatomic projectiles, but to the best of our knowl-
edge he cannot measure the strength of a single
field undisturbed by the interaction of that field
with others. The ideal observer, utilizing his ap-
paratus in the manner described in the analysis of
the Hamiltonian formalism by Bohr and Rosen-
feld,” makes measurements of precisely this last
kind, and it is in terms of such measurements that
the commutation-relations of the fields are inter-
preted. The interaction-function (8) will presum-
ably always remain unobservable to the real ob-
server, who is able to determine positions of particles
only with limited accuracy, and who must always
obtain finite results from his measurements. The
ideal observer, however, using non-atomic appa-
ratus whose location in space and time is known
with infinite precision, is imagined to be able to
disentangle a single field from its interactions with
others, and to measure the interaction (8). In con-
formity with the Heisenberg uncertainty principle,
it can perhaps be considered a physical consequence
of the infinitely precise knowledge of location
allowed to the ideal observer, that the value ob-
tained by him when he measures (8) is infinite.

If the above analysis is correct, the divergences of
electrodynamics are directly attributable to the
fact that the Hamiltonian formalism is based upon
an idealized conception of measurability. The
paradoxical feature of the present situation does
not then lie in the mere coexistence of a finite S
matrix with an infinite interaction-function. The
empirically found correlation, between expressions
which are unobservable to a real observer and
expressions which are infinite, is a physically intel-
ligible and acceptable feature of the theory. The
paradox is the fact that it is necessary in the
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present paper to start from the infinite expressions
in order to deduce the finite ones. Accordingly,
what is to be looked for in a future theory is not so
much a modification of the present theory which
will make all infinite quantities finite, but rather a
turning-round of the theory so that the finite
quantities shall become primary and the infinite
quantities secondary.

One may expect that in the future a consistent
formulation of electrodynamics will be possible,
itself free from infinities and involving only the
physical constants m and e;, and such that a
Hamiltonian formalism with interaction (8), with
divergent coefficients ém and e, may in suitably
idealized circumstances be deduced from it. The
Hamiltonian formalism should appear as a limiting
form of a description of the world as seen by a
certain type of observer, the limit being approached
more and more closely as the precision of measure-
ment allowed to the observer tends to infinity.

The nature of a future theory is not a profitable
subject for theoretical speculation. The future
theory will be built, first of all upon the results of
future experiments, and secondly upon an under-
standing of the interrelations between electro-
dynamics and mesonic and nucleonic phenomena.
The purpose of the foregoing remarks is merely to
point out that there is now no longer, as there has
seemed to be in the past, a compelling necessity for
a future theory to abandon some essential features
of the present electrodynamics. The present elec-
trodynamics is certainly incomplete, but is no longer
certainly incorrect.

In conclusion, the author would like to express
his profound indebtedness to Professor Feynman
for many of the ideas upon which this paper is
built, to Professor Oppenheimer for valuable dis-
cussions, and to the Commonwealth Fund of New
York for financial support.



