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Measurements of Ambiyolar Di6'usion in Helium*
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Microwave techniques are applied to the study of the difFusion of electrons and positive ions in
helium. For the electron and ion densities realized experimentally, the difFusion takes place ambi-
polarly; that is, the flow of charged particles of both signs is equalized by the space charge Field which
they set up. At 1 mm Hg pressure and 0.039-ev average energy, the measured value of the ambipolar
difFusion coefficient, D„ is 540 cm jsec. The measured variation of D, with gas density, energy of the
particles, and difFusion container size and shape agrees closely with theory.

A M BIPOLAR diAusion is the simultaneous
diAusion of electrons and positive ions in the

presence of their own space charge helds. Although
the theory of ambipolar diA'usion has been investi-
gated extensively, experimental measurements in
the past have been difficult to interpret because of
the presence of undesired secondary processes. The
recent advancement of microwave technique has led
to an experiment capable of giving quantitative
results which may be compared with theory.
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FIG. 1.Block diagram of the apparatus. The oscilloscope sweep
is synchronized to start as the magnetron is turned ofF.
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1

THEORY

The motion of positive ions and electrons in a ghs
under the action of concentration gradients and an
electric field may be expressed as:

F =n8 = —DVn —pEn,
1'+= n+v~ = D~Vn++tI,—+En+, (2)

where I' represents particle current density; n is
particle density; 8 is the average drift velocity; D,
the diAusion coefficient; p. , the mobility; and E, the
electric field. The subscripts refer to the positive
ions and the electrons. If the only field present is
that due to the space charge of the particles and if
the particle densities are sufficiently large, then

(n+ —n )«n, and the currents 1'+ and I' will be
equal. Equations (1) and (2) simplify to

(3)

where I" and n refer to either positive ions or elec-
trons. The ambipolar diffusion coefficient, D, is
defined by:

D.= (D+t +D t+)-/(t ++-t ). -(4)

The particle continuity equation may be written

I'= (Bn/Bt)+V I',

where P = vn is the rate of production of positive
ions or electrons, and v is the production rate per
electron.

When Eq. (3) is substituted into Eq. (5), we
obtain

D.V'n+ vn = i7n/r7t

Assuming an exponential decrease of n with a mean
decay time, r, one has

V'n+ ((v/D. ) + (1/D.r) )n =0. (7)

The boundary condition which is applied to Eq.
(7) is that n goes to zero at the walls. This condition
leads to a series of characteristic values and charac-
teristic functions for Eq. (7).

V'n +n /A '=0,

where the A 's are lengths which describe the size of
the container with regard to diR'usion loss and are
called the characteristic diAusion lengths. The
boundary condition is satisfactory as long as the
mean free paths of the particles are small compared
to the dimensions of the container.

The solution of the diffusion Eq. (7) is in general a
sum of the characteristic functions of Eq. (8). To
measure the diffusion, however, it is necessary to
have a single function, corresponding to the lowest
characteristic value, as the solution of Eq. (7). ln
the experiment, two intervals are used, one during
which the gas is broken down and a steady state is
set up (v/0, r = ~), followed by a second in which
there is no applied held and therefore no production
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D = (lv/3)A„ (10)

where the average is over the distribution in velocity
of the particles

Equations (4), (9), and (10) suggest the proper
experimental variations to study. The effect of con-
tainer size and shape, of gas density, and of the
electron and ion energy upon measured values of D,
will be compared with theoretical predictions.

EXPEMMENTAL METHOD

The experimental method consists of measuring
the mean decay time of charge density in a con-
tainer of known dimensions by observing the change
of the resonant wave-length of a microwave cavity
enclosing the container. Provided that o,((eo(2s c/l)b o

and 0.„«0;, the change in resonant wave-length of a
cavity due to a complex conductivity within the
cavity is given by'

AX/X = (Xo—) ) /X

X represents the resonant wave-length of the cavity
with electrons inside; Xo is the resonant wave-length
of the cavity in the absence of electrons; 0, and 0„
are the imaginary and real parts of the conductivity
due to the electrons; E is the electric field in the
cavity; c is the velocity of light, and eo is the
permittivity of free space. The relation between 0.;

' J. Jeans, Tke Dynamical Theory of Gases {The Cambridge
University Press, New York, 1921), p. 201.

~ J. C. Slater, Rev. Mod. Phys. 18, 481 (1946).

of ions or electrons (v=0, r (oo), and the electron
density decays. Measurements of n as a function of
time are made during the second period. By making
the ionization rate per electron, v, constant through-
out the diffusion container, the lowest mode density
distribution is generated during the first period, and
maintained during the second period when v is zero.
No data are taken until two milliseconds after the
ionization ceases. This allows the electrons to come
to thermal equilibrium with the gas and also insures
that no higher modes are present during the meas-
urements. Under these conditions, Eqs. (7) and (8)
lead to

D.= A, '/r„

where A~ represents the lowest characteristic diffu-
sion length. Thus the ambipolar diffusion coefficient
may be determined by measuring the rate of decay
of charge density in a container of known dimensions.

From kinetic theory, the definition of the diAu-
sion coefFicient of a particle in terms of its mean free
path, /, and velocity, v, is

and electron density is given by

o; = net, /2—m rnc, (12)

where I is the electron density, and e and m are the
charge and mass of the electron, respectively. For
ambipolar diffusion, where the electron and the
positive ion densities are nearly equal, the contribu-
tion to 0.;, and hence to AX, of the positive ions is
negligible because of their large mass. Substituting
Eq. (12) into Eq. (11) and integrating, one finds
that

(13)

C is a geometrical coefficient which takes into ac-
count the distribution of electron density and
electric field in the cavity; n is the average electron
density within the quartz bottle. Thus the electron
density within the cavity is related to the change of
resonant wave-length of the cavity.

The experimental arrangement is shown in Fig. 1.
Helium of a high degree of purity is introduced in
the quartz bottle in the cavity. The vacuum system
used in the experiment is thoroughly outgassed be-
fore each run. The quartz bottle in which the di6'u-
sion measurements are made is baked at 500'C, and
a charcoal trap in the system is baked at 200 C for
several days. For each run, a one liter Hask of Air
Reduction Sales Company spectroscopically pure'
helium is used. When the system is isolated from the
pumps by a mercury cut-oA', a vacuum of between
10—' mm and 10—' mm is maintained for at least five
hours (the maximum duration of a run). The helium
in the quartz bottle is ionized by a 250-microsecond
pulse from the 10-cm wave-length magnetron. A
stationary charge distribution is reached during the
pulse, and densities of the order of 10" to 10"
electrons or ions/cc are produced. By placing the
quartz bottle in the near-uniform field region of the

3 Mass spectrographic analysis indicates none of the follow-
ing impurities present within the resolution of the instrument
(1 part in 104): H2, N2, 02, CO2, A, and Ne. However, the
manufacturer believes that the contamination may be of the
order of 1 part in 10~.

WAVE-LENGTH

FIG. 2. Position in the coaxial line of a particular minimum of
the standing wave pattern as a function of wave-length.
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cavity, a density distribution is generated corre-
sponding closely to the lowest mode of Eq. (8). The
magnetron is then turned off for 11 milliseconds.
The free electrons and ions lose energy by collision
with gas atoms and come to equilibrium with the
gas in less than 50 microseconds. Thus their energies
during the measuring interval are thermal.

A small continuous signal is fed from the signal
generator to the cavity. The field produced in the
cavity by this signal does not appreciably alter the
energy distribution of the electrons and ions. A
standing wave pattern is set up in the coaxial line
connecting the generator and the cavity. At the
fixed frequency of the signal, the cavity impedance
changes with time because of the decreasing electron
density within the cavity. As a result, the minima of
the standing wave pattern move along the coaxial
line. At the time at which the resonant frequency of
the cavity with residual electrons is equal to the
signal frequency, the minima occur at so-called
resonant minimum positions in the line. A probe
inserted in the line at one of these points will receive
a minimum signal at the time of resonance and a dip
will occur on the oscilloscope trace. The method of
determining the location of these resonant minimum
positions will be discussed shortly.

Hy measuring the time at which resonance occurs
(as indicated by the dip on the oscilloscope trace)
for a number of different signal generator fre-
quencies, the change of resonant wave-length of the
cavity as a function of time is determined. Equation
(13) then permits the determination of electron
density as a function of time from which D, may be
found.

The positions of the minima of the standing wave
pattern as a function of the resonant wave-length of
the cavity and electrons are determined in the
following manner: For the coupling between coaxial
line and cavity used in this experiment, the position
of a particular minimum of the standing wave
pattern as a function of wave-length is given by the
solid curves of Fig. 2. (For a discussion of this sub-
ject see reference 2.) Curve A represents the mini-

mum position when the cavity contains an electron
density, n &, giving a resonant wave-length, X».
Curve 8 represents the minimum position when a
smaller density, n2, is present, giving a resonant
wave-length, ) 2. The wings of the curve approach
the dotted lines when ) is very different from the
resonant wave-length. As indicated in the figure, the
position of the minimum at resonance falls on the
dashed curve which is called the resonant minimum
curve.

One determines the resonant minimum curve by
placing a shorting post at the center of the cavity„
causing the resonant wave-length to be very greatly
changed. As a result, the point at which the mini-
mum curve crosses the dashed line is moved com-
pletely off the graph. The wings of the curve now
coincide with the dotted lines over the wave-length
range in which we are interested. The position of the
minimum is measured as a function of wave-length
using a slotted section and probe. By adding (or
subtracting) a distance equal to X/4 to the ordinate
of this curve, the resonant minimum curve for a
particular minimum is determined.

CORRECTION FOR RECOMBINATION

The experimental measurement of the ambipolar
diffusion coefficient is complicated by the presence
of electron-positive ion recombination. Loss of
particles to recombination may be expressed by

Bn~/itt = Bn /Bt = un+n = —nn', — (14)

where a is the recombination coefficient. Studies of
this recombination in neon and argon (where
ambipolar diffusion loss is secondary to recombina-
tion loss over the range of experimental variables
used) indicate that a is independent of pressure and
energy at low energies.

At pressures above 20 mm in helium, the diffusion
loss, which decreases with increasing pressure, be-
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FrG. 4. Loss of electrons in helium by recombination and
ambipolar difITusion.
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comes less important than the recombination loss,
and Eq. (14) represents the principal loss of particles.
The solution of Eq. (14) is

1g'n = 1/n2+ at,

wheie sp represents the electron density at time
E=O.

The recombination coeff1cient may be determined
by measuring the slope of a reciprocal density versus
time plot. The density is found by measuring bA/IL2

as a function of time and substituting in Eq. (13).
Experimental data are shown in Fig. 3. The value of
a for helium is 1.7)&10 ' (cc/ion-sec. ).

At low pressures and low electron densities where
diffusion loss outweighs recombination, the rate of
decay of electron density is given approximately by:

an/Bt = —(n/r) an'— (16)

where 7 is the mean decay time due to diffusion. The
solution of this equation is

/n(I + a)rn= [nR/(1+arn2)] exp( t/r), (17)—
where n,p represents the density at t=0. Equation
(17) permits the correction of the data to find r and
hence D, . Figure 4 is a typical experimental curve.
The upper curve shows the original data while the
lower curve results when the recombination loss is
subtracted. The time 1=0 was taken 3 milliseconds
after the ionization ceased.

EXPERIMENTAL RESULTS

Data of the type shown in Fig. 4 are taken as a
function of pressure, temperature, and the size and
shape of the container to complete the study of
ambipolar diffusion. According to Eq. (10), at con-
stant energy, the diAusion coefficient is proportional
to the mean free path; that is, D,p should be con-
stant. Since the ions and electrons are in equilibrium
with the gas, we control their energy by keeping the
gas temperature constant. Figure 5 represents meas-
urements on two diferent fIasks of Air Reduction

Sales Company spectroscopically pure helium. Ex-
perimentally, D,p is found to be independent of
pressure within an error of less than 5 percent. The
absolute magnitude of D,p differs for the two
samples by 3 percent.

The measured value of D, should not depend on
the size or the shape of the container in which the
diA'usion is taking place. Measurements of D were
made in three containers whose dimensions are
given in Fig. 6. Since different samples of helium
give slightly different values of D, (due to the
presence of very small amounts of impurity), one
cylinder was used as a reference, and measurements
were made using one sample of helium for the large
and the small cylinder and another sample for the
large cylinder and the sphere. The results are
plotted in Fig. 6. At constant energy, the value of
D,p is found to be independent of pA. within 3 per-
cent, and since D,p has been shown to be inde-
pendent of pressure, we conclude that the measured
value of D, does not depend on our choice of A.

Finally, the energy dependence of the ambipolar
diffusion coefFicient has been studied. Under the
conditions of the experiment, the electrons and ions
are in equilibrium with the gas and possess a
Maxwellian energy distribution so that

D+/IL~=D /t2 =kT/e, (18)

I I I 1 1 I I I
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FrG. 7. Variation of the ambipolar diA'usion coefFicient
with energy.
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Fr('. 6. Effect of the variation of the diffusion container size
and shape upon the measured values of D .
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DISCUSSION

The measured value of D P at 0.039-ev average
energy is 540 (cm'/sec. )/(mm Hg). There is good
agreement between experiment and theory with
regard to the dependence of D, on pressure, energy,
and the size and shape of the diffusion container.

In the early part of the experimental work larger
values of D, were found, but the measured values of
D became smaller as vacuum technique improved.
We attribute this effect to the reduction of the
amount of impurity with which the gas samples
were contaminated by the vacuum system. If the

' J. Jeans, The DynamicaL Theory of Gases (The Cambridge
University Press, New York, 1921), p. 247.

'C. Ramsauer and O. Beeck, Ann. d. Physik 87, 1 (1928).

where T is the gas temperature. Under these condi-
tions, Eq. (4) becomes

D.= (2D+~ )I(I +-I +) =-2D+, (19)

because p+ is very much smaller than p . Positive
ions in helium interact with the helium atoms ac-
cording to an inverse fifth power law of force because
of the induced dipole of the atom. Jeans' has shown
that the diffusion coefficient for particles obeying
this law of force is given by

D+ ~ u+/n„,

where u+ is the average energy of the ion and n, is
the gas density. This means that the collision cross
section for positive ions in helium varies as the
reciprocal of the positive ion velocity. Experimental
measurements of the collision cross section of posi-
tive ions in noble gases agree with the theoretical
prediction.

At constant pressure, the gas density varies in-
versely with the gas temperature so that under these
conditions

D ~ T"-.

Experimental data are shown in Fig. 7. The energy
range is small because of experimental limitations;
however, the extrapolated curve passes through the
origin in agreement with theoretical predictions.

impurities exhibit electron attachment, they cau e
an additional loss of electrons which will lead to a
spurious, high value of D . With present vacuum
and gas preparation techniques, the impurity in the
gas samples is not believed to be greater than 1 part
in 10'. If this impurity has an attachment proba-
bility of 10 ' attachments/collision, the effect on
the measured value of D, is only a few percent.
Thus, the experiment has been done with what may
be considered as a pure sample of helium.

The results of this experiment may help to resolve
the discrepancy between the theoretical value of
positive ion mobility in helium calculated by
Massey and Mohr' and the experimentally de-
termined value of Tyndall and Powell. ' Equations
(18) and (19) permit the conversion of the measured
value of D to positive ion mobility. When our value
of D is extrapolated to 760-mm pressure, a value of
p+ ——13.7 (cm/sec. ) per (volt/cm) is obtained. This
value is represented by the triangular symbol in
Fig. 8. Massey and Mohr calculate the mobility
quantum mechanically, including the effect of
charge transfer between the positive ion and atom
on close approach, to be 12 (cm/sec. ) per (volt/cm).
Tynd all and Powell's measured value is 21.4
(cm/sec. ) per (volt/cm). The quantum mechanical
calculation of Massey and Mohr, omitting the effect
of charge transfer, leads to a value of 25 (cm/sec. )
per (volt/cm). Later work by Pearce' and Hoselitz'
measured the mobility of various ions in helium.
The results of their measurements are shown in
Fig. 8. The theoretical value of Massey and Mohr,
for the case in which charge transfer is neglected,
lies quite close to the extrapolated mobility versus
mass curve, as it should, since other ions cannot
exhibit the charge transfer effect in helium. The
theoretical value, including the charge transfer
effect, lies close to both the value determined in the
present experiment on D„and to the value of
mobility which Tyndall and Powell measured in an
earlier experiment published in 1930."

The explanation of the difference between the
values obtained in the two experiments of Tyndall
and Powell is not clear. Their first experiment, in
which the mobility was measured as 13 (cm/sec. )
per (volt/cm) involved the generation of ions by n
particles. The second, in which the value 21.4
(cm/sec. ) per (volt/cm) was obtained, generated
ions by a point or wire-to-plane glow discharge.
Brown" has shown that it is possible to generate
appreciable amounts of He++ in the inhomogeneous
fields of this type of discharge.

' Massey and Mohr, Proc. Roy. Soc. A144, 188 (1934).' Tyndall and Powell, Proc. Roy. Soc. A134, 125 (1931).
Pearce, Proc. Roy. Soc. A155, 490 (1936).' Hoselitz, Proc. Roy. Soc. A177, 200 (1941).
Tyndall and Powell, Proc. Roy. Soc. A129, 162 (1930)."S.C. Brown, Phys. Rev. 62, 244 (1942).
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If the efFect of charge transfer is neglected, the
theoretical mobility of He++ should be nearly equal
to that of He+, since in doubling the charge, the
mean free path between ion and atom is reduced to
about half the value for the singly charged ion. On
the other hand, the eRect of total charge transfer

between He++ and He should be nearly absent.
Therefore, it is suggested that Tyndall and Powell
may actually have measured the mobility of He++
in their second experiment, inasmuch as their
criterion was to select the fastest ion as the one
which was to be measured.
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The Optical Constants of Germanium in the Infra-Red and Visible

H. BRATTAIN AND H. B. BRIGGS
Bell Telephone Laboratories, Murray Hill, ¹zoJersey

(Received February 14, 1949)

Thin films of germanium have been evaporated on glass,
quartz, and calcium fluoride slides. The thickness of these
films ranged from 4X10 ' to 1)&10 ' cm. Transmission of
infra-red light through the films exhibited the usual inter-
ference phenomena, showing alternate maxima and minima
as the wave-length was varied. From these maxima and
minima the index of refraction of the films was determined.
This index was 4.3 for X greater than 6&(10 4 cm wave-length.
It increased to 5.2 at 8.0X10 ' cm and then fell off rapidly
to 2.3 at 4.0X10 ~ cm. To determine the values of the index
and extinction coefFicients in the visible region where the
absorption is large, a wedge of germanium was made. Trans-

mission was then determined as a function of film thickness
for several wave-lengths. The values of the optical constants
in this region were then obtained by comparing these results
with the theoretical transmission equations. The extinction
coefficient increased from 0.4 at ) =1)&10 ' cm to 2.8 at
) = 4 X 10 ' cm. The density of the films was determined by an
interferometric method and was found to be the same as
bulk germanium. The real and imaginary parts of the dielectric
constant for germanium are calculated and compared with the
known results for silicon. The absorption bands for both
elements are shown to be consistent with the electron band
structure deduced from their semiconducting properties.

I. EXPERIMENTAL RESULTS

A TYPICAL result for a germanium film on
calcium fluoride is shown in Fig. 1. Here the

transmission through the film is plotted as a func-
tion of the reciprocal of the wave-length ) in cm.
The data were obtained with an infra-red spec-
trometer. ' It is seen that seven orders of reinforce-
ment were obtained before the absorption at
shorter wave-lengths became too large. Another set
of results on a thinner germanium film on glass is
shown in Fig. 2. These results were obtained with
a quartz spectrometer. Here both the transmission
through the film at normal incidence, and the
reflection from the film at 45' incidence are plotted
against the wave-length X in cm. Three orders of
reinforcement are obtained and it is seen that the
transmission maxima and minima correspond
respectively to the reflection minima and maxima
as they should. fhe well-known simple relations
which govern the position of the maxima and
minima are: fhe condition for transmission maxima

2nt =mX,

where n is the index of refraction, t the thickness,I the order, and X the wave-length; and the con-
dition for transmission minimum

2nt = ,' (2m+1)/—X
'%'e are indebted to P. P. Debye of these laboratories for

use of the spectrometer to make these measurements.

It is therefore obvious that if one knows the thick-
ness of the film and the order number m, one can
calculate the index n for every value of ) for which
either a maxima or minima occurs. Since the order
number must be an integer, choice of the wrong
order number makes a large difFerence in n. It is
therefore easy to assign the correct order numbers
if data are available on films of several thicknesses.

If the films are uniform in thickness and the
density of the films is known, one can determine
the thickness by weighing the films. The slides on
which films of germanium were deposited were
weighed before and after deposition of the film,
and the area of the film was determined in each
case. The uniformity in thickness of a film was
determined by choosing a particular wave-length
and measuring the transmission through diRerent
parts of the film. Since X is fixed, n should be the
same for all parts of the film, and therefore, if the
thickness varies, the order m in Eq. (1) must vary.
The percentage variation in the thickness of the
film can be determined from the change in order:

a~/~ =Zmlm, (3)
where t is the thickness and m the order for a
particular spot on the film, and ht is the change in
thickness for a given change hm in order as the
position on the film is changed. By making such
measurements on a single film for two diR'erent
wave-lengths, the interpretation could be made


