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The use of fast polarized projectiles in nuclear reactions provides a possible tool for studying the
spin-dependence of nuclear interactions. In the first section general properties of such reactions are
discussed. For incident neutrons or protons and a value L, for the maximum partial wave that
need be considered in the incident beam, the results are summarized in theorems 3 and 4.

The following reactions involving polarized protons are shown to be possible: (a) production of
polarized protons by the (n,p) reactions of N or He using polarized thermal neutrons, (b) detection
of polarization by means of the Li {p,a)n-reaction, and (c) production or detection by the resonance
scattering of protons from helium. Considering these reactions alone and exploring the fundamental
limitations on intensity, one finds that the intensity problem appears to be least critical if {c)is used
for both production and detection. The polarization e6'ect usually depends on at least one parameter
which does not aAect or affects much less critically the unpolarized result. The polarization eEect
caused by the spin-dependent Coulomb scattering is calculated and found to be less than 5 percent
for atomic number Z less than 5, except for special cases. Protons retain their polarization while being
slowed down.

I. INTRODUCTION

'HE production of a beam of polarized ele-
mentary particles might provide a useful tool

for the study of the spin-dependent interactions of
these particles. During the past twenty years a
number of methods have been suggested for accom-
plishing this. The most successful of these has been
the polarization of thermal neutrons by scattering
in iron in a magnetic field. ' The use of these neutrons
to study spin-dependent nuclear interactions is
limited by their low velocity. Proposed methods for
polarizing fast particles depend upon the presence
of spin-orbit coupling in the scattering of the par-
ticles. Mott first proposed such a method for
polarizing electrons in 1929,' but the experiments
did not prove successful until recently. ' Similar
methods for polarizing fast neutrons have been
discussed recently by Schwinger. 4 ' The experiments
suggested by Schwinger have not as yet been
attempted because of the difhculties associated with
the double scattering of neutrons.

The present investigation concerns the possi-
bilities of producing and utilizing polarized beams
of protons. In the introduction the general proper-
ties of reactions involving polarized particles of
spin —, are considered, while in succeeding sections
specific reactions involving polarized protons are
proposed and discussed. It will be assumed through-

~ Now at Carnegie Institute of Technology, Pittsburgh,
Pennsylvania.'F. Bloch, Phys. Rev. 50, 259 {1936);Sl, 994 (1937). A
summary of the latest work is given by D. J. Hughes, J. R.
Wallace, and R. H. Holtzmann, Phys. Rev. 73, 1277 (1948).

~ N. F. Mott, Proc. Roy. Soc. A124, 425 {1929);A135, 429
{1932).

3 C. G. Shull, C. T. Chase, and F. E. Myers, Phys. Rev. 63,
29 (1943).

4 Julian Schwinger, Phys. Rev. 69, 681 (1946).' Julian Schwinger, Phys. Rev. 'j3, 407 (1948).

&r =2Re(A)*A )),
o„=2Im(A~*A «), (2)

A superposition of n states of the form (1) with
arbitrary phase relations is expressed

(
Q {A;»'+A *,a ') c~~~
X=1

(3)

where c), is the weight with which a particular state
is introduced, and eq is an arbitrary phase factor'
which enters into any meaningful result (such as an
expectation value) only in the form eq*eq, which is
defined to be equal to 8),), . In this notation an
unpolarized spin state may be represented

{s&&~+s—42 I/2&.

For the states given by Eq. (3) the expectation
value of the spin operator c is

e=Pcg cry
)=i

where the components of eg are determined from

6 Possibilities involving polarized target nuclei have been
discussed by M. E. Rose, Phys. Rev. 75, 213 {1949).

A similar factor is used by G. Breit and B. T. Darling,
Phys. Rev. 71, 402 {1947).The ~'s may be thought of as
basis unit vectors, and the summation over ) indicated in
Eq. (6a) as a vector summation.

out that the target nuclei involved in the reactions
are unpolarized. 6

The spin function corresponding to a state of
complete polarization is written

A;s&+A )s-&

with ~A;~'+ ~A;~' equal to unity. The expectation
value of the components of the spin operator e are:
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Eq. (2). If one makes the substitution in Eq. (3)

(6a)

where ~y and v ~ are unit vectors like ~q but are not
mutually orthogonal, Eq. (5) yields a generalization
of Eq. (2);

(r =2Re(A)*v)*A gv g),
o„=2Im(A)*v)*A )v y),
o*= IAal' —IA-al'.

(6b)

The most complete knowledge that may be
found experimentally concerning a spin state is the
mean value of an arbitrary operator for that state.
Since any operator may be written in terms of cr„
0„,o„and the unity operator, a spin state is com-
pletely designated by the values of o„rr„,fJ„'that
is, a vector e. For each vector o, and thus for each
spin state, there exists a representation in which the
spin functions are quantized in the direction defined
by e, and vy and v y are orthogonal. In this coor-
dinate system it is seen directly that the percentage
of polarization I' is given by

I"=o o = (e.)'+(ev)'+(e*)' (&)

Since the right-hand side is a scalar, Eq. (7) holds
in all coordinate systems.

Several general theorems concerning nuclear
reactions involving polarized particles vill now be
demonstrated. (Theorems 1 and 1A not restricted
to particles of spin —,'.)

Theorem 1.—If I is the maximum orbital
angular momentum that need be considered in a
nuclear reaction the maximum degree spherical
harmonic that can enter into the angular distribu-
tion of the outgoing intensity is 2(L, +5), where
S is the spin of the incident particle if it is polarized
and S is zero if the particle is unpolarized. Further-
more, if 2(I, +S) is odd, the maximum degree is
2(L-*+5—2)

Theorem IA.—The maximum degree is 2(L
+5+5') if the angular distribution of a specified
state of polarization of an outgoing particle with
spin S' is considered.

The following corollary follows immediately for
particles of spin -', :

Theorem Z.—The maximum degree spherical
harmonic that can enter the angular distribution of
the outgoing intensity is 2J, whether or not the
incident particle is polarized. In particular, polar-
ized particles can never be detected by a reaction
in which only s-waves are involved.

These theorems may be proved most directly
using a method given by Yang. ' It will be con-
venient for later purposes, however, to folio~ the

"C. N. Yang, Phys. Rev. 74, 764 (1948}.

procedure of Eisner and Sachs. ' (In both references
Theorem 1 is proved for the case in which the
incident particle is unpolarized. ) A collision char-
acterized by orbital angular momentum I of a
projectile with spin S and a nucleus of spin I will
be considered. The initial state may be written as
a sum of products of functions of the spin and angle
variables. If the nuclear spin is unpolarized the
initial state in any coordinate system is written

+O=ZmrmsmrAmsBmrs b ~a emr/(2I+1)», (8)

where s & represents the spin state of the projectile
with a spin component mq along the s axis, and
a ' and b L similarly represent nuclear spin and
orbital angular momentum states. Amq and Bmz,
are the coefficients with which the states s ~ and
b~& are introduced. " The products s ~b L may be
expressed in terms of the eigenfunctions 0; of the
total projectile angular momentum j,

s sb~r =Z;(SLj ms+mr
l
SLmsmr) O~,~~+~s

using the usual transformation coefficients. The
products 0, L+ &a ' may similarly be expressed in
terms of the eigenfunctions &yJ L+ 8+ ' of the total
angular momentum J. (Since three angular mo-
mentum functions have been combined, the eigen-
functions for each Jvalue are in general degenerate.
Here a particular set of eigenfunctions has been
selected according to the j values, and the members
are distinguished by the left-hand superscript. )
Equation (8) may now be written

+0 ~~r~s~L1rA ~SI3~L(SLj ms+mr, l SLmsmr)
X (Ij&mr+ms+m&

l Ijmrms+mr, )
Xrx mr, +ms+mr& /(2I+ 1)$

The effect of a nuclear reaction is to transform
each state &xr into Zrr(2I+1)& pr' C'r, where
~pJ& is independent of 3f, and ~C J~ is one of the
states of the outgoing particles having the same
transformation properties as XJ~. The outgoing
wave function then is

0'f = ZmgmgmZ, g JK PJ Afl?JBYQI,

X (SLjms+mr, l SLmsmr)
X (Ij &mr+ms+mr,

l Ijmrms+mr)
Xir@ mr, +ms+mr& (9)

The argument of Eisner and Sachs' can be fol-
lowed from here on. If the coefficient of C in Eq.
(9) is written as n, the absolute square of the
outgoing wave function has the form"

4'r 4'r =ZmrZmsmr, rR a msmi, Jr'( 4r ~+ s+ )
XZmg'm I ' J'K' Cmg'ml ' J'K'

X (rr'@,mr, '+~s'+mr') (]p)

'E. Eisner and R. G. Sachs, Phys. Rev. 72, 680 (1947);
L. Wolfenstein and R. G. Sachs, 73, 528 (1948).

"A~8 may in general contain phase factors like ~),. Thus
for an initial unpolarized state of spin $, Ay = e1/2&, A ~

= ~2/2&.
» m is the conjugate transpose of +. +t+ implies a sum-

mation over all the spin variables involved in +.
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If the product of the C's in Eq. (10) is reduced to a
sum of terms % J& which transform under rotation
like an eigenfunction of total angular momentum J,
the maximum value of p, that occurs is seen to be
2(I +S). Because this holds in all coordinate
systems it follows that J must be less than 2(L+S),
that is

J=2(L+S) la=J
2 ~J»+J».

J-o I
=—J

If Of +f is integrated over all the independent
variables except the outgoing direction of one
particle, it follows that the maximum degree
spherical harmonic that can enter in the angular
distribution of the intensity of this particle is
2(I.+5). Furthermore, the parity of each term
entering Eq. (9) is the same being determined by L,
the intrinsic parties of the initial particles, and the
conservation of parity, It follows that each product
obtained in squaring +J has even parity, and con-
sequently only even spherical harmonics enter the
angular distribution. Theorem 1 is now proved for
the case of a single L value. Theorem 1A may be
proved in a similar manner.

The argument is easily extended to the case in
which more than one orbital angular momentum is
effective with L in the previous results interpreted
as the maximum orbital angular momentum L, .
Equation (10) takes the form

+f +f = Z(Q ~rnax+Q L'max &+ ' ' ')
mI

X (Qfrnax+QLrnax &+ ' ' ')

The terms Qf. , 'Qf, have been considered. By
the previous argument the terms Qf, , 'Qf. ,„

when reduced to the form (11) can contain no J
value greater than (L, , +I, —1+2S). Further-
more, these terms must have odd parity. It follows
that the maximum degree spherical harmonic which
can arise from these terms is one less than that
which can arise from the terms already considered.

For particles of spin —, the outgoing intensity is
related to the initial direction of polarization by the
following theorem:

Theorem 3.—(a) Polarization parallel to the axis
of incidence (z axis) has no effect on the intensity.

(b) Assuming initial polarization along the
y axis, the effect of the polarization on the angular
distribution of the outgoing intensity is to produce
a left-right asymmetry given by

2L max

r2„cos "8 sin8 cosrlr,

where 8 is the angle of scattering and @ is the
azimuth angle measured from the x axis. If only

one parity need be considered in the incident wave
(that is, only odd or only even I.), rs is restricted to
odd values.

To prove Theorem 3(a) an outgoing beam is con-
sidered with intensity Io in a given direction
(xo, yo, zp). Symmetry about the axis of incidence
(s axis) must obtain because no other direction is
defined; therefore, the intensity is Ip at (xo, —yo, &0).

Now consider the transformation

X =X) 8 =S.

The only effect of this on the incident wave is to
reverse the direction of polarization (because the
spin is an axial vector); for the outgoing wave it
gives the intensity Ip at (pop, —yp, sp). Thus the
intensity is the same for the two directions of
po1arization.

The proof of 3(b) will be given in two steps, the
first of which parallels the proof just completed.
Let the intensity at (xo, yp, zp) be Ip. In this case the
transformation y'= —y does not alter the incident
state but gives the intensity Ip at (xp, yo zo):

I(—yo) = I(yo),
I( y) = I(y)-.

Setting mf, equal to zero in Eq. (10), 4'f 0 f
contains products of the form (Cf"'+"s)'(Cf "'+"').
Analyzing C J into products of the outgoing spin and
orbital functions, carrying out the sums over the
spin variables, and designating the remaining
orbital functions V~~, one is left with products of
the form (Y&~r+~s+~)o(y&, mf+ms'+~). Since (FP)~
equals & V& ~, these are of the form

P' —(mI+m8+m) P,mI+mg'+m

Consequently, in Eq. (11) the maximum absolute
value of p is the maximum absolute value of
me' —me, namely, 1. (For the unpolarized case, the
maximum value of p is zero. ) For polarization
parallel to the y axis, A) = 1/2~, A; =i/2& For th.is
case the sum of all the terms ( Y~~'+"s+")t V~."'+"s'+"
for which nzq=mq' gives the unpolarized result,
considering Eq. (4). The remaining terms for
which mg 4m~' represent the difference between the
polarized and unpolarized cases and reduce into
those terms of Eq. (11) for which )s equals &1.
Thus the angular distribution of the intensity dif-
ference between the unpolarized and polarized
cases may be expanded in spherical harmonics
4'g' and 4'y '. To satisfy Eq. (12) the combinations
proportional to cosp must be chosen; these are

J= 1 sin8 cosP,
J= 2 sin8 cos8 cosg,
J =3 (5 sin8 cos'8 —sing) cosrfr, etc.

The maximum value of J is 2L (Theorem 2), and
odd values of J are forbidden if only incident waves
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of a single parity need be considered. Theorem 3(b)
follows immediately.

The formalism employed here is clearly sym-
metrical in initial and final states. Theorems 1, 2,
and 3 may therefore be easily transformed into
theorems concerning the angular distribution of a
specified state of polarization of an outgoing par-
ticle provided the incident particle is unpolarized.
In particular, from Theorem 3 one obtains

Theorem 4.—For an incident unpolarized beam,
the outgoing particle, if polarized, will be polarized
perpendicular to the plane of the motion and the
polarized intensity will have an angular distribution

2 L1118,X 1

a„cos"8 sin8.

The special case of elastic scattering will now be
considered further. In the customary theory of scat-
tering" extended to particles of spin 2 the scattered
wave may be written:

where U(r) is essentially an outgoing spherical wave,
uo is the initial spin state, and f(8, P) is an operator
operating on this state. An arbitrary operator f may
be expanded

f(8. ~)=g(8, ~)+ h(8, ~)

The scattering cross section per unit solid angle is
given by

dS—=«'If(8, 4) I'no
d(d

= lgl'+ lhl'+250 Re(g*h), (14)

where eo describes the initial spin state. The
polarization of the scattered wave is determined
from

d5
~r =«'f" (8,—@)~f(8, 0)No

dc@

= lgl'~, +2Re(g*h)+2eo)&Im(g*h)

+2eo h*h —
I
h I -ao. (15)

For an initially unpolarized beam

~f = 2«(g*h)/ I I g I
'+ Ihl' I

This expression, of course, is also equal to the
percentage change in cross section introduced by
polarizing the initial beam in the direction of
Re(g*h), as obtained from Eq. (14). If the scattering
is not dependent on the nuclear spin, it follows

' N. F. Mott and H. S. W. Massey, Theory of Atomic
ColLisions (Oxford University Press, New York, 1933).

from Theorem 3 or 4 that h is normal to the plane
of the motion and is proportional to sin8. The last
follows from the fact that g(8, P) is as in usual scat-
tering theory a polynomial in cos8.

II. PRODUCTION OF POLARIZED PROTONS
USING POLARIZED NEUTRONS

If polarized thermal neutrons' are used as pro-
jectiles in the (n, p) reactions of N" or He' it is
possible that the resultant protons may also be
polarized. These possibilities are investigated fol-
lowing the formalism of Section I."

For the (n, p) reaction with nitrogen, the spin I
equals 1 so that J values of ~ and —,

' are possible.
Since both N'4 and C'4 have even parity, the final
orbital angular momentum values l are limited to
even numbers. Since C" has zero nuclear spin, the
values J=-,' and J=-,'must correspond to l equals
2 and 0, respectively.

Using Eqs. (9) and (6), the expectation value e
of the proton spin may be calculated. The com-
ponent of o normal to the plane defined by the
outgoing particle direction and the original direc-
tion of polarization is zero, while the other com-
ponents resolved perpendicularly and parallel to the
outgoing direction are

o~—=8, cos8 —o, sin8=-', (1+W) sin8,
/r„=/r, sin8+o.—, cos8= —-,'(1—2W) cos8, (17)
II/'= I I /312 I '+2Re(/3/2P:*) I / I I / ~/21'+ 2 I p~ I

'
I

Here the z axis is the direction of the original
neutron polarization, and the outgoing particle
direction is given by the usual spherical coordinates
8 and p with p equal to zero. The fact that no
higher power of sin8 or cose than the first can enter
Eq. (17) can be demonstrated on general grounds
for this case.

The penetrability of the Gamow barrier for the
outgoing protons is about 0.001 for outgoing
d-waves (J= ~3) and 0.14 for outgoing s-waves
(J=-,'). As a consequence it may be shown that the
probability that the experimental cross section is
primarily due to the J= ~ resonance is only about
one-sixth the probability that it is primarily due to
the J=-,' resonance. If the J=-,' resonance has only
a small e8ect, the outgoing proton will have a
polarization of about 33 percent for 8 equal to 90'.

For the (n, p) reaction with He', the spin I equals
—,
' so that J values of 1 and 0 are possible. Since the
product H' nucleus has spin -,'the value J=1 may
correspond to a final orbital angular momentum l
of either 0 or 2, while the value J=O corresponds
to l equals 0. For the s-disintegration the proton
energy is above the Coulomb barrier, while for the
d-disintegration the barrier penetrability is only

"I wish to thank Dr. Frank C. Hoyt for showing me the
work he had initiated on this problem.
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about G.02. It seems reasonable therefore to ignore
the d-disintegration completely; one then obtains
in the same manner as before

&r~ = —-,'sin8(1+R cosy)/(1+~oR'),
o„=-', cos8(1+R cosy)/(1+ ioR'),

Re "& = po/pi
(18)

If R is close to zero the proton polarization is about
67 percent, while if R is equal to infinity there can
naturally be no polarization because only angular
momentum J=0 is involved. The polarization is
found to be at least 20 percent for a wide range of
values of R and y.

III. DETECTION OF POLARIZATION SY THE
Li'(p, 0.)e-REACTION

A possible reaction for the detection of polarized
protons is'4

Li'+ H'~2He4.

For unpolarized protons the angular distribution of

the reaction may be represented by"

(dS/d&u) o 1+A (E) cos'8+8(E) cos'8, (19a)

where 8 is the angle between the line of centers of
the leaving particles and that of the incident par-
ticles, and E is the initial kinetic energy. This
angular distribution has been successfully ana-
lyzed"" on the assumption that the ground state
of Li' has odd parity so that only odd orbital
angular momenta are effective in the reaction. In
particular, s-waves are not effective in the reaction,
which makes it especially favorable for the detection
of polarization. If p-waves alone are considered it
follows from the general analysis that the only pos-
sible e8ect of polarizing the incident protons along
the s axis is to add to the unpolarized angular dis-
tribution a term

(dS/doi) „C(E)sin8 cos8 cosoo. (19b)

If f-waves also are considered a still further term
may be added;

D(E) sin8 cos'8 cosQ.

An explicit expression for C(E) will be worked
out for the case of P-waves alone. Since I= oo(for
Li'), I.=1, and S=-,', and since the final state has
even parity and no spin, there are three factors p&'.
pa&, p2&, and p2&. The final intensity may be obtained
by squaring Eq. (9) and interpreting Cz~ as the
spherical harmonics YJ~. For initial protons
unpolarized this yields

(ds/d~) o = l I
po'I '+ l I p 'I '+ l I p '

I

'
—

l ', Re(po&po-&*) —(5i/6)Re(po~po~*)
+(5&/6)Re(po&po&*) }(3 cos'8 —1). (20)

For polarization along the y axis the diR'erence
(dS/do&)„between the polarized and unpolarized
intensities is

(dS/d~) ~ =
l (5'/2) Im(po' p )o—(5/2)Im(p, &po&*) } sin8 cos8 cosP.

From Eqs. (19a), (19b), (20), and (21),

(21)

C(E) 5&Im(po'po'*) —Im(po'*po'*)
(22)

A(E) 5'Re(po'po'*)+«(po'p '*) Re(po'po'*)—

IQ
qMev)

FIr. 1. Fractional change r in the scattered intensity as a
result of the polarization of protons in the Li~(p, a)u reaction
for 8 =45' and @=0' as a function of proton energy E and
phase factor y. Upper curve: one J=O and one J=2 reso-
nance assumed. Lower curve: two J=2 resonances assumed.
(A change of 180' in y changes the sign of r.)

'4 I am indebted to Dr. Robert G. Sachs for this suggestion
and for discussions concerning it.

(dS/doi) ~ C/A

(dS/coo) o 1+2/A
(23)

Since A ranges between 1 and 2, for energies from

5 Heydenburg, Hudson, Inglis, and whitehead, Phys. Rev.
73, 241 (1948)."C.Critchfield and E. Teller, Phys. Rev. 60, 10 (1941).

David R. Inglis, Phys. Rev. V4, 21 (1948).

The fractional change in the scattered intensity
caused by polarization has a maximum for 0=4S'
and @=0, given by
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0.5 to 2.0 Mev, an appreciable effect is expected
unless (C/A) is in the neighborhood of zero. Equa-
tion (22) shows that (C/A) may vanish only if—

(1) p2&=0,
(2) Im(po&pg&") =5&Im(pg&p2&*).

Both of these conditions are very special and there
is no reason to believe that they hold. Furthermore,
even if the second condition were valid at one
energy it would not be expected to hold over a
sizeable energy interval. From the previous equa-
tions upper limits r may be set on the possible
absolute values of r. If only J= 2 is involved

r „=(3&/2)(3+2A—A2)&/(3+2).

Using the experimental value of A," this gives a
maximum r of 0.36 at 1-Mev energy and of 0.6 at
energies of 0.5 and 2.0 Mev. If both J=O and J=2
are involved, for the values of A of interest,

r ...= -', (63+662 —A') &/(2+2).

At 1 Mev this limit is 0.86, while at 0.5 and 2.0 Mev
it is 0.95.

The use of the resonance formula to determine
the value of r (Eq. 23) is not generally possible for
two reasons: (1) it is not possible from the experi-
mental data to determine all the constants in the
resonance formula for the unpolarized angular dis-
tribution; (2) even if these constants are determined
there remains completely undetermined a phase

Q2

6- 0

wQ4

-IP I I
-30 -20 - IO

I

IO
I

30

FIG. 3. Polarization 0' of protons scattered from a doublet
P resonance as a function of energy e and s-phase shift bo.
~=0.5, ~=0, e=90'.

factor" which critically affects (dS/des)~ although
not affecting (dS/des)0. However, it was thought of
interest to calculate the polarization eAect using the
resonance formula for two cases:

(a) A very broad resonance with J=O plus a narrower
resonance with J=2 was assumed, using a set of constants
suggested by Inglis' to fit the experimental data.

(b) Two resonances with J=2 were assumed, each having a
width of 1 Mev and located at 0 and 2 Mev, "using one set of
constants that fit the data roughly.

The results are given in Fig. 1 as a function of
proton energy 8 and the undetermined phase
factor y.

y= 0

IV. POLARIZATION EFFECTS IN RESONANCE
SCATTERING

The possibility of polarizing neutrons and also of
detecting the polarization by means of the scat-
tering from a resonance level that is split because
of spin-orbit coupling was suggested by Schwinger. '
In particular, he considered the scattering of neu-
trons with energy about 1 Mev from helium. Ex-

I
-20 -IO IQ 20

I
3.0

FIG. 2. Polarization 0 of protons scattered from a doublet
P resonance as a function of energy e and splitting x. 80=45',
~=0, e=90'.

' This is the phase of the scattering from total spin 1
relative to that from total spin 2 (see the bottom of page 26
of reference 17). For purposes of calculation this phase factor
was introduced by replacing sin& on page 14, of reference
16 by single'&. If two J=2 resonances are considered one
obtains in a similar manner factors y for the higher energy
resonance and p' for the lower energy. (dS/da&)0 depends on
(y —y') but otherwise is independent of y (or y').

"This possibility has been suggested by R. Christy and
S. Rubin, Phys. Rev. 71, 275A (1947).
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odS/dec = —2X' sin8 sin(y3/2 y))
X {sinbp sin(y»2+y)+o1 —80)
—(1//2$ ) sin('r»2+'ran+0'1+g ills )
+3 cos8 sing»2 sing~ }n.

Here
(25)

It =h/3A, r/ =Ze'/A1/ a1= 2 tan-'r/,
s =sin(8/2), n = (kXk')/ {k Xk' ~, (26)

where e is the incident velocity, M is the reduced
mass of the proton, and k and k' are incident and
outgoing wave vectors, respectively. From Eq. (7)
the percentage polarization is equal to the mag-
nitude of e n, which will be written o-.

-ID t
120

Fj:G. 4. Polarization 0 of protons scattered from helium as a
function of scattering angle 8 under two assumptions.

' T. A. Hall and P. G. Koontz, Phys. Rev. '72, 196 (1941');
H. Staub and H. Tatel, Phys. Rev. 58, 820 (1940).*It is to be noted throughout that 8 is in the center-of-
mass system.

periments" indicate that a p-wave resonance exists
around this energy and that there is a considerable
splitting between the 'P3i2 and 'P~ levels. A similar
split resonance level would be expected around
2 Mev in the case of the scattering of protons from
helium.

The scattering of a proton from a nucleus without
spin is erst considered in general with only one
assumption: that incident orbital angular momenta
I greater than 1 need not be considered. (For con-
venience, the polarization of an initially unpolarized
beam is discussed, although, of course, one can
directly convert this into the effect of initial
polarization on the outgoing intensity. ) In terms of
the s-wave phase shift bo and the two p-wave phase
shifts ys~g and y~, which correspond to total angular
momenta J of ~ and —,', respectively, the scattering
cross section for an unpolarized beam is*

d5/der = I1' { ~

—(r//2s') exp[ —i// Ins']+sinboe'"
+cos8{2 siny3/1 expLi(y»2+ D1)]
+sing; exp[i(y~+o1)]] ~'

+sin'8 sin'(y»1 —y)) I, (24)

and the expectation value e of the spin after scat-
tering is given by

For a small value of the splitting as measured by
(y»2 —yy) the polarization effect is directly propor-
tional to the splitting. It is of interest to compare
this with the effect of the splitting on the cross
section. Introducing a mean phase shift y into Eq.
(24) by the substitution

2 siny3/2 exp{i(y3/1+ IT1) g+ singly exp{ i(y~+o 1)]
3—ie "&$(1—T)/2]+3T sing exp[i(y+o 1)j,

T= L1 —8/»in'(v»2 —v~)]', (2/)
2 sin2ye/2+sin2y;

'V= xi tan '
2 cos2yy2+cos2y~

one Ands that the effect of the splitting on the cross
section is proportional to sin'(y»& —y~) and thus to
(y3/1 —y,)' for small values of the splitting. Con-
sequently sizeable polarization effects may exist in
some eases even though the splitting cannot be
detected from the cross section alone.

If the p-wave scattering is assumed to be due to
a split resonance with energies 23~2 and E~ and a
single width F, the phase shifts at an energy E are
expressed

y1/2=cot '(e+x),
"ri =cot (e x), (28)

& = [(E1/2+E/)/2 —E](2/r),
x = (E3/. —E()/I',

where e and x are dimensionless forms of the energy
and the splitting. "Substituting En. (28) into Eqs.
(24) and (25), the polarization 0 is found as a
function of e and x, the s-phase shift 80, and the
Coulomb factor g. The results for 0 equal to 90' and
1/ equal to zero are shown in Figs. 2 and 3. (The
general features of the curves are the same for
values of r/ up to 0.3.) It should be noted that a.

change in sign in x merely changes the sign of cr

and a change in sign of 80 merely changes the sign
of e. One sees that for x greater than 0.2 a polariza-
tion of more than 80 percent is generally obtainable
at one energy. For smaller values of x, the polariza-
tion is approximately proportional to x. A secondary
polarization maximum with the polarization re-
versed in sign also exists, which becomes more
important as x increases and as 80 decreases. The
two maxima are separated by an energy of the
order of the resonance width, assuming this is not
less than the separation of the two resonances. In
general, there exists an angular interval about 90'
with a width of at least 30' over which the average
polarization effect is similar in magnitude to that
at 90'.

The particular case of the scattering of protons
by helium will now be considered. The experi-
mental angular distributions seem to show the
presence of a p-wave resonance between 2.0 and
3.0 Mev. " An analysis made on the basis of the

"N. P. Heydenburg and N. F. Ramsey, Phys. Rev. 60, 42
(1941); Freier, Lampi, Sleator, and Williams, Phys. Rev. 15,
342 (1949).
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earlier data and under the assumption that d-wave
scattering is unimportant indicates that this p-wave
resonance must be split. From this analysis the
following conclusions about the polarization e8'ect
are drawn:

(a) The polarization for 8 equal to 90' should reach a
maximum value of about 80 percent at an energy between 2.0
and 2.5 Mev. (The earlier data goes only to 3.0 Mev and con-
sequently does not allow the specification of a second polariza-
tion maximum. )

(b) The width of the polarization maximum may be as
large as 1 Mev.

(c) The polarization o. as a function of scattering angle 8 at
an energy corresponding to a maximum of the polarization
effect is given by one of the curves in Fig. 4. Cases 1A and 2A
are distinguished by the assumed sign of bo'. negative for 1A
and positive for 2A.

These conclusions may be modified by consideration
of the recent data.

V. POLARIZATION EFFECTS IN COULOMB
SCATTERING

The earliest method suggested for the polariza-
tion of an elementary particle was to make use of
the spin-orbit coupling in the Coulomb scattering
of electrons. ' Mott found that a polarization of the
order of 30 percent should be possible at relativistic
velocities and large atomic numbers. Recently
Schwinger' has proposed a method for polarizing
neutrons employing the interference between the
spin-dependent Coulomb scattering and the nuclear
scattering at small scattering angles where the two
are of the same magnitude. For the case of protons,
which will now be considered, however, the spin-
independent Coulomb scattering greatly decreases
this e8ect at small angles.

A classical treatment of this interaction between
the proton spin and the Coulomb 6eld is not sig-
nificant at any energy as may be shown from an
uncertainty principle argument. " In the quantum-
mechanical approach, the proton is treated by the
Dirac equation with an added Pauli term to

TABLE I. Maximum polarization effect caused by Coulomb
scattering and nuclear s-wave scattering as a function of
s-wave phase shift 50, atomic charge Z, and proton energy E.
e=Z (Mev)/2. 5 Mev. 0'=maximum polarization. 8 =angle of
scattering for maximum effect.

90'
60'
30'
15'

—30'
—60'

Z =re&
4r/e

0.0032 31'
0.0072 30'
0.026 39'
0.100 52
0.0016 54'
0.0024 39'

Z =Se&

cr/e

0.0068 66'
0.026 64'
0.090 90'
0.032 138'
0.0032 68'
0.0062 62'

z ~10e&
o/e

0.0076 90'
0.026 96'
0.020 130'

0.0038 80'
0.0084 76'

describe the anomalous magnetic moment:

(E—eV+Pmc')4 = —ce y%—(el'4/2Mc) (p./i)Pn Ee, (29)

where V is the Coulomb potential, E= —V'V, and
44, is the anomalous moment in units of eh/2Mc.
The discussion of this equation will be restricted to
the condition s'/c'(&1. An approximate solution for
the scattered wave valid under the conditions,
a'= (Z/137)'(&1 and g &1, is the following:

f(8) = —&(n/ ) I '(8/ ) —(&'/ ')(i +2) '~

n cot(8/2) I expL —ig ln sin'(8/2) 7, (30)

where n is the unit normal to the plane of motion.
This result is identica1 with the Born approxima-
tion except for the addition of the characteristic
Coulomb phase factor, which multiplies not only
the ordinary Coulomb scattering but the spin-
dependent scattering as well. "

From Eqs. (13), (16), and (30), it follows that to
this approximation the Coulomb scattering gives
no polarization e8'ect. The highest order polariza-
tion elfect is obtained by adding to f(8) of Eq. (30)
the nuclear scattering

f„(8)=XLsinboe"4+3 cos8 sin8ie'&"+"&+ 7. (31)

From Eq. (16) one then obtains for the expectation
value of the spin for scattering at an angle 8

cos(g lns') Im(f„)+sin(s lns') Re(f„)
4r=n(44. +-', )Xiv(V'/C') COt(8/2)

~ f„(Xg/2s')e '& '"'*—
~

'+-'(p +-')'(v4/c4) X'g' cot'(8/2)
(32)

where n, g, s, and oi are defined in Eq. (26). The
region of validity of the equation is energy
E)0.025Z2 Mev, E«465 Mev, and (Z/137)'&(1;
these conditions follow from g(1, (v'/c')&(1 and
n'&&1, respectively.

The polarization e8ect is seen to vanish for both
8=180' and 8=0'. The order of magnitude at
moderate angles may be obtained by setting the
product of X, the fractional expression in Eq. (32),

~ This result is to be expected from the general argument
given in reference 12, p. 45.

and cot8/2 equal to unity, giving

e~(N. +-', )g(v'/c') =1.23 10-'ZLZ(Mev)/2. 57&.

Calculations of the maximum polarization e8'ect
considering only s-wave nuclear scattering are given
in Table I. These results were calculated from Eq.

"For ill, =0 Eq. (30) is obtained by Mott (see reference 2)
as the first terms in the expansion of the exact solution of
Eq. (29) in powers of n'. The extension of the spin-dependent
part of the solution to include a non-zero anomalous moment
follows from considering Mott's expansion as a perturbation-
theory solution of the second-order equation corresponding to
Eq. (29).
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(32) neglecting the term in (s'/c') in the de-
nominator and thus are not accurate for large
values of cr (greater than 0.2). In general the
polarization effect varies only slowly with 8; the
width of the maxima are of the order of 30'. The
very large polarization eRects occurring for certain
positive phase shifts result from a large amount of
cancellation in the denominator of Eq. (32) and
therefore are associated with minima in the scat-
tered intensity. For energies much greater than
0.025Z' Mev (g«1) it may be shown that for a
given value of bp, the maximum polarization 0. is
proportional to Z&E'. This may be used to extra-
polate some of the data of Table I.

In the special case of proton-proton scattering
this eRect is of a smaller order of magnitude because
polarization effects can occur only for the triplet
state, for which there is no s-wave scattering. A
considerably larger polarization effect for this case
is likely to be that due to the tensor force in the
nuclear interaction. This too, however, is extremely

small (less than 0.1 percent at 7 Mev) under any
reasonable form of interaction. A discussion of
polarization eRects in n p—and p —p scattering
will be given in a later paper.

1 —Pg ——Sd,pXdt. (33)

Pf is the average polarization of all particles scat-
tered through an angle less than 8p, plus all particles
not scattered; that is, of all particles to be included
experimentally in the direct beam. It follows from
Eqs. (5) and (7) that

VI. DEPOLAMZATION OF POLAMZED PROTONS

For experimental purposes it is important to
know the extent to which polarized protons are
depolarized by various types of scattering as they
are slowed down. A beam of completely polarized
protons is considered; the percentage depolarization
(1 Py) a—fter passing through a thickness dt con-
taining X scattering centers per unit volume will
be expressed

P 2

l
1 —Xdt (dS/des)doi ~eo+Edt ef(dS/doo)dpi

~ &oo

1 Ddt it (dS/d—oo)des
aJ Qep

-2

Neglecting terms in (dt)' this gives

I'g 1 Edt t ——(1 ——iro. ef)(dS/des)doo,
~ &oo

So,p
—— ' (1 iro rrj)(dS/do—o)doi.

aJ &yp

(34)

Substituting from Eqs. (14) and (15)

So„=2 { ~

h
)

' —
~

eo h
~

'}dho.

&~o
(35)

where & is the angle between the initial polarization
and the axis of incidence. It is to be noted that the
depolarization is proportional to the square of the
spin-dependent interaction and is not affected by
interference between the spin-dependent and spin-
independent scattering. Since the depolarization is
found to be small the total depolarization for a

If h is a well defined vector, that is, independent of
the spin of the scatterer, the integration over g
may be carried out using the fact that h must be
perpendicular to the plane of the motion and inde-
pendent of p in magnitude. This gives

Hp

So„=(1+cos'$)2m. ~r ~
h(8)

~

' sin8d8, (36)

thickness t may be given by S&„Nt. In this case
some particles will be included in the calculation
that are scattered through a total angle greater
than 8p due to plural small angle scattering, thus
somewhat overstimating the depolarization. It will
prove satisfactory for present purposes, however, to
obtain an upper limit on the depolarization.

Five causes of depolarization are considered.
(1) Elastic Coulomb scattering from the nucleus.

Using Eqs. (30) and (36), replacing the lower limit
of the integral in the latter by an angle 8;„,and
assuming 8;„((8p((1one finds

(S „),=2 (1+cos'g)(ti, +-')"-
X (Ze'/Mc')' ln (8o/8;„). (37)

The angle 8;„is determined by the screening of the
Coulomb field by the atomic electrons; for a screen-
ing radius rp

8min =~/ro (38)

(So„)i=610 "Z'. (39)

(2) Inelastic Coulomb scattering from atomic
electrons. As might be expected, this gives a

A classical calculation based on the precession of the
spin in the magnetic field also gives Eq. (37) but t
in Eq. (38) must be replaced by the classical
minimum distance of approach. Letting 8p equal
5.7', cos$=0, and ro ——5.3 10 '/Z1 one obtains at
reasonable energies the order-of-magnitude result
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4pr I(I+1)
(Sd.p) o

=— 8o'-X'
I P r, (2L+ 1)

3 (2I+1)'(Sd.p) o &6 10—"Z. (40)

smaller depolarization than the previous case for as in Eq. (31) one obtains
Z = i and depends linearly rather than quadrati-
cally on Z. Therefore

(Seep) elecccomego. (6 ' 10 (Z +2Z) . (41)

(4) Nuclear scattering involving spin-orbit coup-
ling but no spin-spin coupling. An example is the
scattering from helium considered in Section IU.
For such a case

I
h

I
=XX sin8,

where E is of the order of unity and the propor-
tionality to sin 8 follows from the statement at the
end of Section I. Substituting this into Eq. (36)

(Sq.p) 4
——(1+cos'$) (pr/2) X'E'8o'

which is at most of the order of 10 4X'.

(5) Nuclear scattering involving only spin-spin
coupling. Let the nuclear spin be I and

fe.(8) =f(8) for total spin S=I+
f (8) =f(8) for total spin S=I

If I is a vector in the direction of the nuclear spin
with magnitude I(I+1), f(8) for both total spins
may be written in the form of Eq. (13) with

g(8) = L(I+1)f+(8)+If (8)j/(»+ 1),-
h(8) = &[f+(8)—f-(8)3/(2I+ 1).

Substituting from Eq. (42) in Eq. (35), averaging
over-all directions of I, and assuming f+(8) and
f (8) to be fairly constant about 8=0',

4pr I(I+1)
(Sd")o =— If+(o) —f-(o) I

'8o' (43)
3 (2I+ 1)'

Writing the scattered waves in terms of phase shifts

(3) 1nteraction of the proton magnetic moment
with the magnetic moment of the atomic electrons.
It is interesting to note that this interaction is of
the same order of magnitude as the Coulomb inter-
action. The Coulomb interaction is proportional to

IJ, o(eh/3fc) (e/r') (v/c),

while this interaction is proportional to

po(eh/M'c) (eh/mc) (1/r'),

where m is the electron mass and po is the effective
proton moment. 'The minimum value of r for a
collision with an electron is (h/mv); substituting
this in the above expressions shows them to be
equal ~ A Born approximation calculation sub-
stituted into Eq. (35) gives the result that Eq. (40)
also holds for (Sd,,p)o. Adding up all the electro-
magnetic effects

X sin(8 +—8 )e'~oo++oL &e)e&
I

o (44)

If the phase-shift differences involved are large this
will be the largest of all the depolarization effects
and (Se,p)o will be of the order of magnitude of
0.01X'.

As a typical example the depolarization of 7-Mev
protons stopped in hydrogen is considered. For this
case

8.+ = —,
'
(1 ~ ( —1) '+') 8,.

The depolarization (1 Py) o—f the completely
stopped protons due to all causes is only about 10

VII. CONCLUSION

It has been attempted in this paper to emphasize
the general features of nuclear reactions involving
polarized protons. In conclusion, it is worth while to
indicate the practicability of experiments using
solely the reactions considered here. Because any
experiment on polarization effects involves of neces-
sity a double scattering, the problem of obtaining
su% cient intensity is a critical one. The intensity
will be maximized if the experiment is designed
merely to detect the polarization effect, so that
good resolution of angles and energies is not re-
quired. Such experiments are simpli6ed by the fact
that polarization may be detected by the qualitative
feature of a left-right asymmetry in the second scat-
tering.

If the initial intensity is Io the intensity after a
scattering or a nuclear reaction is

s)Ip = (¹)g)I (dS/d(o) gd~gIp)

where X is the number of scattering centers per
unit volume, t is the thickness, and the limits of the
integral are determined by the experimental geom-
etry. The polarized intensity equals

r&s&Io ——(¹)i ~t'(eydS/dko) ydui Io

Similarly after the second scattering (or nuclear
reaction) the symmetrical intensity may be written
s~s&IO, while the additional scattering to the right
or left resulting from the polarization effect may
be written r2s2r]syIO. After time T the total number
of events observed to one side is

sos~IoT(1+r~ro) & [soslIOT(1 +r ~r.) ]'*,

and to the other side

sosyIpT(1 r,r..) & [sos&IpT(1 —r&ro) j*'.—
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The difference is approximately

sosiIoT(2riro) &2LsosiIoT)».

Setting the arbitrary criterion that the statistical
error should be less than one-tenth of the effect to
be measured, the total number of incident particles
required is

IoT& 100/(sosiro'ri').

The required values of IOT have been estimated
from Eq. (45) for several experiments on the as-
sumption that the scattering thickness and the
solid angle of the scattering are determined from
the following considerations: (1) the incident
energy in each scattering act must be well-defined
relative to the width of the polarization maximum,
(2) the final proton must be able to reach the
counting apparatus, (3) within these limitations
product sr' is to be maximized for each reaction.
Order-of-magnitude results follow:

A. Polarized protons produced by He'(n, p) reac-
tion and detected by Li'(P, u) reaction. Assuming a
100 percent concentration of He',

I,T&1.5 10i4/C'P'

where I' is the polarization of the protons after the
first reaction (Eq. (18)), and C is defined by Eq.
(19b). If C' has a value of 0.3 in the energy interval
around 0.5 Mev and I' is equal to 0.5, a Aux of
about 5 10"polarized thermal neutrons per second
would be required for one hour.

B. Polarized protons produced by scattering from
helium and detected by Li'(p, n) reaction. Assuming
that the solid angle for the helium scattering is
chosen symmetrically about 90',

IoT&2 10"/(r„)'C-',

where (roo ) is the polarization for 90' scattering
from helium. If (roo ) has a value of 0.7, and C has
a value of 1 in the energy interval about 1.5 Mev,

2.0 microampere-hour of protons around 3.0 Mev
is required.

C. Double scattering from helium. This is partic-
ularly hard to estimate because it has not been
possible to determine the expected energy depend-
ence of the polarization effect. If a resonance actually
exists, it appears to be as broad as the proton
energy loss caused by 90' scattering. It therefore
seems possible that the initial scattering could be
done at the high energy side of a polarization maxi-
mum and the second scattering at the low energy
side of the same maximum. Another possibility is
that suggested by Schwinger for the case of neu-
trons; that is, using one polarization maximum for
the first scattering and a second maximum (see Figs.
2 and 3) for the second scattering. In either case
one has very roughly

IoT& 2 10"/(roo')io(roo )2'.

This gives about 0.005 microampere-hour of 3.0-
to 4.0-Mev protons required.

Thus neither of the last two possibilities can be
ruled out solely on the basis of the fundamental
limitations considered here. On this basis the double
scattering experiment from helium appears the
most practical. Both of the last two are made more
difficult by the fact that the energy at which the
polarization effect occurs for each of the two reac-
tions must be determined experimentally. It must
be emphasized that important practical limitations
have not been considered here; in particular, limita-
tions on the usable solid angle in each reaction
imposed by the experimental geometry and the
background count. Consequently it cannot be con-
cluded whether any of the possibilities considered
here is practical at this time.
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