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Using pseudoscalar meson theory, the behavior of a single-
nucleon system in an electric field is studied. From the electro-
static interaction, the interaction between neutrons and elec-
trons is computed. From the spin-orbit interaction, the mag-
netic moments of neutron and proton are computed. The
calculation is carried out relativistically, with nucleon and
pseudoscalar meson fields both subjected to second quantiza-
tion. The Hamiltonian of the nucleon-meson system is diag-
onalized to second order in the coupling parameters by two
canonical transformations, and transitions induced by the
electric field between single-nucleon states are investigated.
For pseudoscalar coupling of 282 e.m. mesons, estimating the
coupling constants for charge-symmetric theory from the
observed singlet neutron-proton scattering length (using static
nuclear forces), it is found that the volume integral of the
neutron-electron interaction potential is about —14 kev

X(4~j3)(e'/mc')', and that p~ and pN are about 1.7 and —5
nuclear magnetons respectively. Results are also given for pure
charged theory. Pseudovector coupling is compared to pseudo-
scalar coupling, and is found to give the same magnetic mo-
ments, but a logarithmically divergent neutron-electron inter-
action. The inAuence of the contact interaction term is
discussed.

The results are compared with those of "non-relativistic"
methods and with experimental values, and the neutron-
electron interaction is computed approximately for several
types of mesons with an improved non-relativistic method.
Charge renormalization and the approximate, distribution of
the charge cloud around a neutron are discussed. The pseudo-
scalar meson contribution to the Lamb Shift of the 2$ hydro-
gen level is estimated as +0.08 Mc.

(2) Hole theory was not used, and it is conceivable that
negative-energy processes might cancel part of the divergences
of positive-energy processes, as is the case for electron self-
energy, etc.

L INTRODUCTION

A MESON field coupled to nucleons modifies the
behavior of the nucleons in electromagnetic

fields. It had thus been hoped that meson theorv
would provide an explanation of the anomalous
magnetic moments and other properties of neu-
trons and protons, as it does indeed qualitatively. '
Unfortunately, quantitative investigation of the
magnetic moments' and charge clouds' led to di-
vergent results with the ordinary weak-coupling
theory that necessitated the introduction of ad hoc
cut-offs, while other theories4 led to incorrect results.
This, together with the failure of meson theories to
yield nuclear forces free from objectionable singu-
larities was considered to limit severely the value
of the theory.

However, in the calculations with weak-coupling
theory cited above, " the divergences may have
been introduced by the following assumptions
made there:

Moreover, recent advances in quantum electro-
dynamics suggest how divergences due to mass ef-
fects can be separated from true divergences in rela-
tivistic calculations. It was thus thought worth while
to reinvestigate the divergent results relativistically.

On the other hand, experimental evidence has
very recently been obtained by Havens, Rabi, and
Rainwater, ' and Fermi and Marshall' that indi-
cates a weak attraction between neutrons and elec-
trons that is not a spin effect. Improved experiments
by Rainwater, Rabi, and Havens are in progress
the earlier experiment' suggesting a value of
minus several kev for the quantity Uo=—Volume
integral of interaction —:(4x/3)(e'/mc')', which is
called the "neutron-electron interaction. " This is
of the sign and order of magnitude expected quali-
tatively from meson theory, ' so that a detailed in-
vestigation is of considerable, interest.

The two forms of weakly coupled meson theory
that have proved most useful are the pseudoscalar
and vector theories, and we will restrict our atten-
tion principally to the former. We will investigate
the behavior of a single nucleon in an electric field.
The interaction between the neutron charge cloud
and the electric field of an electron will be used to

(1) The nucleon was taken to be infinitely heavy. If nucleon
recoil is taken into account, certain energy denominators
occurring in the calculations will be large for high momentum
virtual states and may decrease the degree of divergence.
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compute the neutron-electron interaction, while the
magnetic moments can be computed from the spin-
orbit interaction of the nucleon in an electric field. '
By dealing only with electric fields, we avoid use of
the more complicated vector potentials and current
density operators.

It should also be stressed that exact quantitative
agreement with experiment can hardly be expected
from pseudoscalar meson theory alone, since it fails
in other respects' (high singularity of tensor force),
and because the solution will be carried only to
second order in the coupling parameter. It is also
likely that mesons of mass 700—j.000 e.m. will add
contributions.

II. METHOD OF COMPUTATION

Lagrangian and Harniltonian

The nucleons will be described by a doubly
quantized Fermi-Dirac field, with 8-component field

|'yp)
operators P= { {, where Pp and f~ are 4-com-

EP~J
'

ponent Dirac operators for proton and neutron re-

spectively. We define the charge operators

pO 1y pO Oq r'I Oq

EO Ol (1 0) LO —1)

t I 0~ pO Oq

(0 0) (0 1)

where ~ changes e,eutrons to protons, v~ protons to
neutrons, and 7.I and 7N respectively single out the
proton and neutron parts of tt. P* is the Hermitian
conjugate of P.

The mesons are described by a doubly quantized
Einstein-Bose field with pseudoscalar field operators
0' and its Hermitian conjugate 0'~ for charged
mesons and 0'=4't for neutral mesons. k and c will
be taken as unity throughout and the summation
convention will be used. We use the Schrodinger
representation with time-independent operators.

The Lorentz- and gauge-invariant Lagrangian
density of the system of mesons and nucleons in the
external field is:

1 8%'8+0 (~
Z = —{d„Ãtd.%'+v, '+%I —— +p'4" +inst y, { ierpA. {+M—f+(4m) tg(B%'+BR't)

~+v ~~v Lax.

(4lr) & (4lr) & 84' 4lr &4~
f(B+„@+B„td„Ãt)— f&„0 +s f'B.tB,+— fo'B.'B—.'—(2)

p, p, 8Xv p 2 p

where the following notation is employed:

ft =if~P is the "adjoint" operator of P;
8 8

d, = —ieA„; d„~ = +ieA .
~&v ~&v

A„=(A(r), iU(r)) =4-potential of external elec-
tromagnetic field;

v=meson mass (assumed equal for charged and
neutral mesons);

M =neutron mass =proton mass (the mass differ-
ence is neglected);

B= (O' V«lf') ' B = (lf'V «t4') ' B'= (O' V«V) '

75 71727374 ~

B„= (/tyler„rtt'); B„t= (Ptysy„r P);
B„'= (Pyg"r„r'f);

s and t are arbitrary constants to be discussed
later;

3{„g0 are "pseudoscalar coupling" constants for
charged and neutral mesons, respectively;

f, fo are "pseudovector coupling" constants for
charged, neutral mesons.

The Hamiltonian density is given by

V
K(r) =IItII+Vet Ve+tl'et%+-', {ll + (/4')'+tl'e" I+lp* 0 +$3/I lp —(4%.)&g(Be—+Btet)

(4lr) & (4lr)& (4lr)&—(4 )&goB'4'+ f(B ~O+Bt v%t)+ f(IItBo+IIB,t)+ fo(B'v%')

(4lr) t 4s f2 47rf' t 4s fo' (1+t) 4~f0'
+ foIIOB0' sBt.3+ (1+—s) BotB0 B"+-— jg 02

p 2 p 2 p

+ie{V(II@t—11%')+0'tA p%' —%A plI tI +e'A'+t4+e Vip~rpp eA'()*arpl/)— .

(4lr) &

+ie f{4tA Bt —%A BI (3)

We are indebted to Professor H. A. Bethe for pointing out this fact.
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B= (P*ainsnsPTQ), Bt = (ip ninsnsprtp),

B'= (4*aiasasPTV),

& = Q*nM) &' = (|I*nr'4)

Bo= —z(l// ninsnsrllt'), Bot = Z(lp ninsnsrtp),

B0' —— i (g—oniasn sroy)

In (3), the first line refers to the pure meson and
nucleon fields, the second to the meson-nucleon
interaction, the third to a self-energy and a contact
or "b-function" interaction between two nucleons
that will be discussed later, and the fourth line to
the interaction between mesons and nucleons and
the electromagnetic field. Putting fo go 0——give——s

pure charged theory, while go ——g/v2, fo f/v2 gi——ves
symmetrical meson theory. More generally, the
neutral meson need not have the mass p. and v' can
be any diagonal charge-operator, but we will deal
only with pure charged and symmetrical theory.

We transform to momentum representation by

where II, H~, and IP are the momenta conjugate to
4', 4't, and%', and

q (r) =+1 (2okL3)-e{g+x exp(ik r)
+g-l t exp( —ik r) }

00(r) =+1 (2okL3) i{qo1 exp(ik r)
+gol t exp( —ik r) }

II(r) = Pk i( o/k2I. )3& {g+1st exp( i—k r)
—

q —1 exp(ik. r) }
II'(r) = +1 i(ok/2I. 3) & {qoi t exp( —ik r)

—go1 exp(ik r) }

P(r) =Pp I. &apup exp(ip r), (4)
and the conjugate equations. Here, I is the length
of the cubic enclosure in which we imagine our
system, ok

——(ks+tss)&, and uu is a normalized 8-
component Dirac spinor for which we have omitted
subscripts for spin direction, sign of energy, and
charge. The commutation relations are in this
representation:

[g+1, q+l j= [q-l, g —1* ]= [qol*t, gol* j= blu

[apt, ap'7 = ~pp' (5)
Other commutators involving q's and anticommuta-
tors involving a's are zero.

The Hamiltonian II=J Xdr then becomes (we
restrict ourselves to the case A(r) =0):

H=H +H"+H'+H'+H',
where

H"= +1 ok(%+1 +N —1+Vol), H"= pu Zu¹,
t' f sfH'= Z a"ap(2~/okI )'I up* (q+"+q-"')I -gaiasasP —okainsns+~ k

I

w'& }{ E. )

fo if0
+gotr

I
gonlnsn3p okalasns+ & 'k

} flu', 0+13

p u i

( f sf
+ (q+ls 7 +g le 7) I

galnsasp+ okalasns
p

fo ifo l ]+qO13tr'I feoniasnsp+ —Okainsns ——n k
I ~u +13,P uu

I

He Hem+Hen

dr U(r) Q (okok) &{(q+1 tg+1 —g —1 &q —l)(ok+ok) exp(i(k —k') r)
2L» ~l

+g —1 gal (ok ok ) exp(i(k+4') r) gy1 'tg —1t(ok ok—) exp( —i(k+k') r) }

e
+— dr U(r) Q au tap(up *7pup) exp(i(y —y') r)

L3~ PP

/427 f'~
»+p', ps+pa'aptapo'ap' auo{ (1+2)(uu*ainsnsr uuo) (uu'*ninsasrupo)

&u'I. '& u'uo. o

+s(up lrrtupo') (up' srrupo) }

P47rfo' y
tlu+P Ps+00 autauo au ~auo{ (1+t)(uP nln2n3T uuo )(uP nlnsnsr uuo)

Pu'POPO'

+t(up*oroupo ) (uu *nrupo) }. (7)
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Here, Ep=(ui*[e p+p3f]up), and is w(p'+M')&'
while Xp=ap~apo, X+z=g+i tq+j, %—i =g —i tg —i,
Xo~ =qoi tqoi.

It should be mentioned that the nucleon charge
density operator used above, namely, Q~rpP (see
(3)), gives a nega, tive infinite expectation value for
the total charge in the vacuum state. This can be
avoided by using Heisenberg's symmetrized charge
density e/2 (/*ref Pr p—f*) Ho. wever, only off-
diagonal elements of the charge density will be en-
countered, and by virtue of the commutation rela-
tions, the two definitions give identical results for
such elements.

The Canonical Transformations

The representation in which Xp, X+m, N —v, Xoz,
and hence H'=H +H" is diagonal will be used as
the unperturbed representation. The state in which
all N's are zero, except that the Np's for negative-
energy states are unity, is the vacuum state. A
single-nucleon state of momentum p is one that
differs from the vacuum state only in that for this
one positive-energy state, Xp ——1.

If a canonical transformation exp( —iS) is applied
to H to diagonalize the part H'+H'+H' not con-
taining the electric field, the unperturbed single-
nucleon states are transformed into the true single-
nucleon states in zero field. The transformed
electrical part exp( —iS)H' exp(iS) has matrix ele-
ments between the zero-field single-nucleon states
that determine the properties of single nucleons in
external fields. Actually, however, the diagonaliza-
tion will only be carried to second order in the
coupling parameters, and an unknown error will
thus be introduced into the final results.

Before proceeding, account must be taken of the
self-energies, which have the effect of causing a mass
change bM for the nucleons and bp, for the mesons.
(8M diverges logarithmically for pseudoscalar and
quadratically for pseudovector coupling. ') We write
the Hamiltonian as follows:

H (Ho+bH)+(Hf+ II& bH) ~Ha
where

t dr{gllIP*PP+$ii QtQ+qbiio Q } ~

The term in the first parenthesis in H is simply H'
for the nucleon mass 3II+bM, charged meson mass
p, +by, and neutral meson mass p, +by, o. These, how-
ever, are the experimentally measured masses, and
in a correct theory would presumably differ only by
a second-order quantity from the inertial masses.
The Hamiltonian could then be written, at least to
second order, in the form

H =Ho+ (H'+ EP bH) +H'—
9 N. Kemmer, Proc. Roy. Soc. A166, 127 {1938).

T
E(e) —E(a)

(non-self-energy transitions)

R. P. Feynman, Phys. Rev. '74, 1430 {1948).

(14b)

where H', etc. , are all given by (7), but with lid
and p standing for the experimental masses, and bH
chosen so that it just cancels the self-energy parts
of H'+H'. The form (8) will be used hereafter
despite the fact that it is not strictly applicable. It
is very reasonable to suppose that any convergent
results so obtained will agree to second order with
those of the "correct" theory. Divergences, how-
ever, should really be treated with refined methods,
such as Feynman's relativistic cut-off" before it can
decisively be stated that they are not really "mass
effects. "

We note the formula:

exp( —iS)H exp(is) =H+( —i) [S,H]

(—i)'
+ [S [S H]7+'' '. (9)

2!

Then, to second order, we have from (8):
Hi —=exp( —is)H exp(iS)

=H' —i[S H'] i2[S [S H']]
+H' i[S, H']—+H' bH+H'—

-'Ls, H']- l[s, Ls. H']7. (10)

To eliminate first-order terms, put —i[S, IP]
+H'=0, so that

Hr =Ho (i/2) [S,H']+—Hs 8H+H—
i[S,—H'] ——,'[S, [S,H']] (11)

with the elements of S between states e and e of
energies E(e) and E(a), given by

S,.= iH,.'/(E(e) —E(a)).
We next apply a transformation exp( —iT) to

eliminate second-order terms from H~. Then

Hrr =—exp( iT)Hi exp(—iT )
=H' i[T, H'] —(i/2—) [S, H']
+H' bII+H' i[T, H']- —

i[S, II ] ', [—S, [S,H']]—. -(13)
"Self-energy transitions" are those for which

either initial and final states are identical or (be-
cause of the p in 8H) those where a nucleon has
merely changed the sign of its energy. For such
transitions, the matrix elements of (—(i/2)[s, H']
+H' bH) are zero by ou—r choice of bH. Then

T„=0 (self-energy transitions). (14a)

Otherwise, we put T= T'+T', with

iH„'H, ' i

2(E(e) E(a)) E—(e) —E(s) E(s) —E(a)
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giving

Hrr =H'+H' i—[S H']
—i[T, H'] ——,'[S, [S,H']]. (15)

In (15), H' has no off-diagonal matrix elements,
all transitions being induced by the 6eld. The H'
term has the same matrix elements between single-
nucleon states as it would have had if there were
no mesons; zero for neutrons and the customary
Dirac value for protons. The [S,H'] term is not
diagonal in the number of mesons, and hence has
no elemen ts between single-nucleon states. The
operator of interest is thus X=X'+X', where

X'= i[T', —H'] ,'[S, [S—, H—']],
X'= —i[T', II']. (16)

Then, from (12) and (14), we have

H,„'H„,'H„'

(Z(e) —E(w)) (Z(e) —Z(e))
H,„'H„,'H, '

+
(Z(w) —Z(a)) (Z(z) —Z(rr))

Hetv Hmz Hza

(E(e) —&(w)) (&(s) —&(o))

H, 'H„' H,„'H„.'E„'=— +
Z(w) —Z(e) Z(o) —Z(w)

'

(non-self-energy transitions), (17a)

except that in case the transition e~s in the first
term of E' or a~a in the second term are self-
energy transitions, we must make respectively the
substitutions

H,„'H„,'H, '

(&(e) —&(w)) (&(e) -&(s))

H,„'H,'H„'

2(&(e) &(w)) (&(w) —&(s))

H,„'H„,'H„'

(&(w) —&(~))(&(e) —&(~))

H,„'H„,'H„'
(17b)

2 (&(w) —&(s)) (&(e) —&())

In P, only non-self-energy elements of P should
be taken. Equation (17) is our basic formula.

IIL NEUTRON IN ELECTRIC FIELD: CONVERGENCE INVESTIGATION

The Matrix Element

The matrix element due to the electric field for a transition from a single-neutron state of momentum
po to a single-neutron state of momentum p (not equal to po), Eooo will now be examined. In the following
table of processes contributing to hippo, which will be seen to be exhaustive, p+ and p, stand for positive
and negative mesons, X+ and X for positive- and negative-energy neutrons, and P+ and P for protons.
The momentum of each particle is written immediately after the symbol for the particle, and the term in
the Hamiltonian causing the transition indicated by arrows is written in square parentheses.

1. Processes contributing to hippo' due to H™
(a) X+(po) destroyed before X+(p) created:

( ) &'(Po) [H'] &+(—k)+ (b) (h) [H'7 ( ) &'( —~)+ ( ) [H'7 &'(P)
(P) [H']~l+( —b)+l (a) ' &+(Po)+r+( —b)[H']~&+( —&); &+(—&)+r (a)[H'7~&+(P)
(7) &+(Po)[H']~&'( —&)+l (h)' &+( k)[ 'H—]~&'( )P+ 'r( a); r

—(b)+r'( —a)[H']~
(b) X+(p) created before X+(po) destroyed:

(~) & &
—~)[H']~&+(P)+!+(—a); r +( a) [H']~—u+( h) &+(P—o)+r +(—h) [H']~& (—&)

(P) & (—k)[H']~&+(P)+r '(—a) &'(Po)[H'7~& (—&)+r (h); r+( —a)+r (h)[H']~
(v) [H'] r+( —b)+r (a); & (—~)+r (a)[H'] &+(P)' &+(Po)+r+(—b)[H'] & ( —&).

2. Processes contributing to Expo' due to H'":

(a) N+(po) destroyed before N+(p) created:

( ) ~+(p )[H'7 &+(b)+r (—~) ' &+(b)LH'7 &+(a) ' &+(a)+r (—&)[H'7 &+(P)
(P) & (h)LH'7 &"( ) &+(Po)[H''7 & (h)+ (—&) &+( )+ ( —~)[H;7 ~+(P)
(v) &+(Po) [H'7 &+(b)+r -(—k) & (a)+r '(—&)[H'7 &+(P); &'(b) [H'7 & (a)

(b) X+(p) created before X+(po) destroyed:

(~) & (a)[H']~&+(P)+r+(&)' & (b)[H']~& (a)' &+(Po)+r+(&)[H']~& (b)
(P) P (a)[H'7~~+(P)+r+(&); ~+(Po)+r+(&)[H'7~&+(b) &+(b)[H'7~& (a)
(7) & (b)[H'] &+(a)' &+(a)[H']~&+(P)+l+(&)' &+(Po)+l+(&)[H'7 & (h).
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3. Processes contributing to Expo' due to II'":
(a) & (b)[~'] &+(a) &+(po)+&+(a) [II'] &+(p)+& (b)
(b) P (a) +N+(po) [Hb7 —+X+(p)+P+(k); P+(b) [II'j—bP—(a).

Here,
a=k+p, b=k+po, (18)

and we note that none of these processes are self-energy processes (since popo), so that (17a) should
be used.

Using (5), (7), (8), and (17a), as well as properties of Dirac matrices and the usual projection operator
tricks, "one obtains:

hippo = Gptapo( —7l e/2I o) ~(dr U(r) exp(o(po —p) .r) (up*ORupo),

where for general pseudovector and pseudoscalar coupling:

2

OR= —F F=F~+Fb= P (Fg~+ F b) F& ——F&~+F»= P (F &~+F &&)

p k k

(1+ e) (1+E') (1—e)

(1-~t)(1+&')(1+) (1—e) (1 —Z') (1 —m)
+ (o.—ob) + (o.+ob)

( +oob Eyo+—E„)(ob Eyo+—E) (o.+Ey+E) (ob+Eyo+E)

(1+e) (1+%')(1+e)
Fb* =(o.+ob) 6g

(oa Ey+E) (ob Eyo+E) (oa E„+E)(o~+ob Ep+Eyo)

(19)

(20a)

(1—e) (1—E') (1+x) (1+e) (1—X') (1—e)
+ (oa, ob) (20m)

(o~+Ep+E) (oo+ob+Ey Eyo) (o~+ob+Eyo Ey) (ob+Eyo+E)

(1+A)(1+8) (1+A) (1 8)—
Fp'" = —o(1+X)

(E~ Ey+b)(Eb Epo—+o) (Eo Ey+o)(E~+Eb Ey+Epo)

(1 —A) (1+8)
(1+X)

(Eo+»+Ey Eyo) (Eb Ey o+o—)—
(1 —A) (1 8)— (1 —A) (1+8)—o(1 —X)

(E.+Ey+o)(Eb+Eyo+o) (E.+E,+o)(E.+Eb+Ey Eyo)—
(1+A) (1 —8)

(1—X) (20n)
(E.+Eb E,+Eyo) (E—o+Eyo+o)

jV +g~+ jV —jVpo

f2f, 'q f
—4ti aXby

t
1

+I II II + —
I

(20'( fo i E E~b ) EE.+Eb Ey+Eyo Eo+Eb+Ey Eyo~
Here,

(1+s)(1+A)(1 8) —se(1+A) (1 —B—)e (1+s)(1—A)(1+8) —sn(1 —A) (1+8)e
Fk = —2 —2

~.+K—&,+&no

E =+(a'+M')& o, =+(a'+p')&, etc. , (E=Eb, o=ob); p=lbg/f;—
A=(n a —PM)/E. , 8=(e b —PM)/Eb, X=(e.k —PM)/E;
A'= —(e a+PM)/E„B'= —(e b+PM)/Eb, X'= —(e k+PM)/E;
e= —(n a+pp)/o (8= —(e b+pp)/ob, X=+(n k —pp)/o.

For pseudoscalar coupling alone (f=0),
OR =g'G G = G"+G" = Q (G) "+Gv")

(21)

(22a)

"See W. Heitler, The Quantum Theory of Radiation (Oxford University Press, London, 1947), p. 150.



NUCLEONS AN D ELECTR I C F I EL DS

&a &b(1+X)
i

Oa+ Ob

+
l (oo Ep+E) (ob —Epo+E) (oo E—p+E) (oo+ob Ep+Epo)

6a

(o.+ob+E p Ep—o) (ob Ep—o+E)

ta+ 6b

o,ob (o,+Ep+E) (ob+Epo+E)

E'a &a 45

+
(oa+Ep+E) (o.+ob+Ep EP—o) (oo+ob Ep+EPO) (ob+EPO+E)

1 (1+A') (1+8') (1+A') (1 8')—
6 n

o . (E.—Ep+o)(Eb —Epo+o) (E. Ep+—o)(E.+Eb E„+—Epo)

(1-A') (I+II') 1 (1-A') (1-II')

(E.+Eb+E„Epo)(E—b Epo+—o) o (E.+E,+o)(Eb+Epo+o)

(1 —A') (1+8') (1+A') (1 8')—
(22n)

(E.+E,+o)(E.+Eb+E„Epo) —(E.+Eb E,+—Epo)(Eb+Epo+o)

In (20) and (22), the terms are listed in the same
order as in the table of processes, so that for in-
stance 2 (a P) contributes the second term of (20n).
(In (208), the first and second lines come from the
charged and neutral mesons, respectively. ) We note
too that the contribution of every (b) process is the
same as that of the analogous (a) process, except
that the signs of a, P, Ep, and Epo are reversed. The
aptapo in (19) stands for the matrix element of this
operator between the two neutron states in ques-
tion, and is +1 or —1, depending on the ordering
of the states. It is not important physically (when
Eypo is squared to compute transition probabilities,
it has no effect at all) and will not be carried further.

Charge Consexvation and Ambiguity
of the Integrals

Since pi (L/2or)o J dkgkpk„and the oper-
ators (21) are all of order of magnitude unity (or
less) for large k, F can diverge no worse than
quadratically; G no worse than logarithmically. In
fact, the quadratically divergent terms of pi Fb
are from processes 1 (a n) and 1 (b n), which con-
tribute +2/k each to Fe~, and 2 (a n) and 2 (b n),
which contribute —2/k each to Fio'". Thus, in
both the meson and nucleon contributions, positive-
and negative-energy processes contribute terms of
the same sign that diverge with equal strength.
(For Pi Gi, the situation is the same: 1 (a a) and
1 (b a) contribute (1/2k') each, while 2 (a n) and
2 (b a) contribute —1/(2k'). ) This contradicts
the conjecture made initially that negative-energy
processes would help the convergence.

The e8'ect of negative-energy processes found
here is to be expected intuitively. If, for instance,
the total meson charge in a single-neutron state is

Q=egi (N+v —X—v)+s
Proton

states on&y

(23)

(Note that since we will consider only changes of
total charge, use of the simple charge operator
rather than Heisenberg's symmetrized operator is
immaterial. ) By (7), II' becomes identical to Q if
V(r) =1, so that Kppo for this V(r) gi~es the change
in charge due to the canonical transformations,
which must be set equal to zero. Now if p =po, the (b)
processes in the tabulation cannot occur, and (17b)

considered, it is seen that this differs from the meson
charge in vacuum for two reasons:

(1) The single neutron can make transitions to a proton-
negative meson state, causing a net negative meson charge.

(2) Certain transitions (from negative-energy protons to
positive meson+the neutron in question) that would take
place in vacuum are now excluded, decreasing the positive
meson charge and effectively providing a further negative
meson charge. Thus, instead of canceling most of the negative
meson charge, the negative-energy processes increase it.

The case with nucleon charge is exactly similar:
(1) causes a positive nucleon charge while (2), pre-
venting "dissociation" of negative-energy protons,
further increases the positive nucleon charge.

A convergent matrix element is thus possible only
if the meson and nucleon charge clouds, which are
of opposite sign, give contributions that cancel to a
su%cient extent. In fact, it will now be shown that
charge-conservation implies that (19) is zero for
p=po. Thus, the leading divergences of I'j and Gj,
which are independent of p and po, must cancel.
(This already guarantees the convergence of G.)

The formal statement of charge conservation is
that the Hamiltonian and contact transformations
are all diagonal in the total charge; i.e. , they com-
mute with the total charge operator
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must be used for processes where H' occurs first or
last—and these give a zero contribution, as may be
seen from the numerators of the corresponding
terms in (20). The result is that

(1+6')(1+X')(1+e)
pk I Qyo 2eb

(ep —Ei p+E)'

(1+X)(1+&)(1+&)(1+X)
upo

I
=0. (24)

(K—Ei 0+a)'

Since the same equation holds true if —e,
Epo are substituted for a, $, Eyo in (24) (see the

Appendix), it is seen that (19) is zero as asserted
for p=po.

It is very diIIicult to prove (24) by direct calcula-
tion. This is connected with the naming of the
momenta that has heretofore been used, which was
chosen so that the electric field scatter's momenta of
magnitude Ia I

and Ib I
in both nucleon and meson

cases, which suggests itself rather naturally. If,
however, we substitute in Fx' and Ge" only

—(k+2ia) for a; —(k —~2m) for b;

sq (-I k+- I=-I a+-
I

2) E 2)

(25)

where

s =po+p& & =po —p (25a)

it can immediately be seen for po =p, that not only
is (24) satisfied, but that J"i and Gi are identically
zero. If the meson and nucleon integrals converged
individually, such changes of variable would cer-
tainly be admissible. However, especially for a
quadratic divergence, such a change can alter the
results essentially, so that both choices of variable
should be examined to verify that the results are
not ambiguous. (If they were, the results obtained
using the substitution (25) would be preferred, since
it is known that charge conservation would then be
satisfied practically as well as formally. )

We note that the substitution (25) could just as
well have been made in the nucleon terms only, but
this will be seen to give the same results.

Degree of Divergence and ES'ect of
Contact Interaction

To determine whether Xis0 converges, (20) must
be expanded in a power series in k '. Only the three
leading terms (in k ', k ', and k ') give divergent
contributions to F, so that all quantities appearing
in (20) need be expanded to second order only. One
then obtains for finite, but not necessarily small, p

and po, after averaging over the possible angles of
the vector k,

Fi *'

I
2&' —s(E„D—E„)'+2ie poXpj &-'

+terms in k ' etc.

)5—4sq f 1 —4sq
I~*+I

5 )

—2~ poXp .k—'+terms in k ' etc.

(1+4$)
I
L~2-(E„-E,)~g. ~-i

+terms in k ' etc. (26)

The lengthy algebra used to derive (26), which made
use of the substitutions listed in the Appendix, will
not be reproduced here.

If the substitution (25) is made in (20), precisely
the same result (26) is obtained, so that any am-
biguity is unlikely. In fact, if Fj ' is expanded in the
original notation, and then —(k+-, s) is substituted
for k (before the averaging over the angles of k),
further expanded, and then averaged over angles,
only the terms in s' and e can be changed. The
former is, however, zero by charge conservation or
direct computation, while the spin term is found to
be actually unchanged. Moreover, it is immaterial
whether (25) is used on the meson or nucleon
contr'ibutions to F~.

The absence of a term in p' (or even p) in (26)
again verifies the convergence of the pseudoscalar
coupling contribution. Moreover, since the diverg-
ence of G and G" is only logarithmic, a change of
variables such as (25) is very unlikely to change the
value of the matrix element.

We note that Fx has a relativistically invariant
form, which would seem to indicate that relativistic
invariance has not been lost due to divergences. It
is important that if Fd were neglected, the result
would not have an invariant form. Also, the spin-
dependent term, which will be seen in Section IU
to represent the magnetic moment, diverges if Fe'
is neglected. However, if the contact term is con-
sistently handled, the magnetic moment is seen to
converge for any value of s, i.e. , regardless of
whether or net any invariant contact term is added
to the Lagrangian. This convergence has been
noticed for the special choice s= —1 by Case."

However, the matrix element F will diverge un-
less we choose s= —4. On the other hand, the
physical significance of the contact terms is rather
dubious, so that results critically dependent on
them, including the convergence of the magnetic

"K. M. Case, thesis, Harvard University (1948); Phys.
Rev. V4, 1884 (1948).
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moments, must be accepted with great caution. In
this connection, note that the neutral meson part
of (208) sums to zero, at least if E~=Ep p, as is most
easily seen by using (25). It should also be men-
tioned that the choice s= —

~~has sometimes been
recommended to remove contact terms from the
static nuclear potentials, but this is a very question-
able procedure.

Comparison of Pseudosca1ar and Pseudo-
vector Couplings

Dyson has shown rather generally" that the
pseudoscalar and pseudovector couplings give equiv-
alent results, at least to first order. This may be
seen directly from (7), which gives for the matrix
element for a transition from a nucleon of momen-
tum po to a meson of momentum k and nucleon of
momentum p=po —k the value

(2x/oI. b) b I g(u—p*u,a,a,Pup p)

+(&/u) (u.*[«i~p~b —O~ k7»o) I

and similarly for absorption. If both nucleons have
positive energy, it follows from the Appendix that
this is just

(2~qb (' g q (
~, ~,)~ ~,

—
2~,~~,

"*"

approaches —k+k, while that of the f term ap-
proaches —k —k, so that the pseudoscalar coupling
matrix elements are less divergent. Moreover, many
matrix elements between nucleons of di fferent
energy signs occur in the calculations, and here the
couplings differ considerably.

It is very instructive to extend Dyson's proof to
our problem. We de6ne Hy and IIg to be the Hamil-
tonians (6) with g=0 and f=0 respectively. We
also omit the neutral meson Geld —which we have
seen makes no difference in the neutron scattering
element —and set s=0 for simplicity. If a unitary
transformation exp(iR) of H' is carried out, with
R=(4m)&(f/u) fdic(Bp@+Bot%'t), we obtain to sec-
ond order for the transformed H~, after considerable
reduction, exp(iR)H~ exp( —iR) =Ho+H', where

H'=(4~f'/u'))I dr o(Bo'Bo—B&o')

+—[(p*iog) (II+—IIt% t)
2

+(4*urV) (+~+' +'~+)3—

—(p*pmp) (~tey~~t) t. ,

and in Ho, g is given by (28). (It is convenient to
perform the reduction in coordinate representation. )

~ ipmpog Neo
In diagonalizing the non-electrical part of IIJ, we

may first ca,rry out the transformation exp(iR),
(g& ( and we then obtain for the neutron scattering ele-

+( -
I( u, ~

Lu) ( E„o+E„
(P+P') ' ~ ( ) ment precisely the value for pseudoscalar coupling

with an additional term X„' given by (cf. (17a))

g = —(2~/u)f (28)

In many calculations (such as of static nuclear
forces, where only positive-energy processes are
considered and only in non-relativistic approxima-
tion) the two couplings give rise to the same result.
Although this has frequently been overlooked, one
need only put (f ug/2M) for f—to rectify the omis-
sion of pseudoscalar coupling. (Note that from (28)
a g' of 30 is no more "strongly coupled" than an f'
of about 0.2.)

It may thus seem surprising that pseudovector
coupling can give a divergent interaction while
pseudoscalar does not. However, a closer inspection
of (27) for high momentum processes (~k~»M
or ~yo~) shows that the square bracket of the g term

'3 F. J. Dyson, Phys. Rev. 73, 929 (194g).

Thus, apart from the second term in each square
bracket, which is negligible for low momentum
processes, the couplings behave identically; a
pseudovector coupling of strength f behaving like
a pseudoscalar coupling

H,„'H„' H,„'H„,'
X, '= +

E(e) —E(w) E(a) E(w)—
Only two transition schemes give non-zero con-
tributions:

1. [H']~u+(a)+u —
(—b);

u+(a) yu-( —b)+X+(po) [H'j~&+(p).
2. &+(Po)[H']~&+(p)+u+( a)+4 (b);-

'(—)+ ( I[H'&

One obtains Anally for the contribution to I'z
of (20a):

(ob —oa) (pb oa)+c'(a+5)F"=
)

pa&b ~ —&a+ob+(Epp Ep)

(pb —p,) —n (a+b)
+-

Pa+oh (Eop Ep)

If E.=Eop, Fx' becomes 2(pb —p)'/[p~(po+pb)),
which is rigorously spin-independent. Thus II gives
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zero contribution to the magnetic moment, so that—to second order at least —pseudoscalar and
pseudovector couplings give exactly the same neu-
tron magnetic moment. Investigation of the term
proportional to s in (20) shows it to be spin-
independent, so this equality of the magnetic mo-
ments holds even for non-zero s. The arguments
may also be extended to the case of the proton
moment.

However, p3 Iip," itself diverges logarithmically,
since it is easily verified that asymptotically, Fz'

-'3[42 —(Ep3 —E„)']k '. Since IIp gives no diverg-
ent contribution, Fx' is the only term giving rise to a
divergence, and I'p itself 3[42—(Epo —Ep)2]k '.
This agrees exactly with (26) (since we have here
put s=0), which was computed entirely independ-
ently. We note that 8' has self-energy terms corre-
sponding to an infinite mass renormalization, but
as is to be expected (cf. Section VI), it contains
no "charge renormalization" terms.

It thus seems that the pseudovector element
diverges genuinely (except for the special choice of
s mentioned). On the other hand, Case, using the
newer methods, has recently reported that pseudo-
vector and pseudoscalar couplings are exactly
equivalent to second order insofar as scattering in
an electric field is concerned. '4 The reason for this
discrepancy is not known to us at present. If it is
not spurious, it may prove to be of great interest.

In any case, the greater simplicity of the pseudo-
scalar coupling, its freedom from questionable con-
tact interactions, its apparently stronger converg-
ence, and its equivalence to pseudovector coupling
in the theory of nuclear forces, are arguments for its
exclusive use in the present preliminary stage of the
theory. Only pseudoscalar coupling will be con-
sidered in Sections IV and V.

(using charge conservation):

G~/L' = C3+ (s'/3P) CI+ (4'/M') C3."
+(ia ppXp/M2) C."

Ge/L3 C (s2/M2) C + (+2/M2) C~s

+(ie poXp/M2)C. "
G/L3 —(g2/M2) (C m+ C n)

+(i~ p, Xp/M') (C.-+C.-) (29)

where C3(12/M) is a logarithmically divergent in-
tegral and C„C~, C~", C, , C" are dimensionless
functions of (u/M), (s'/M'), and (cL2/M2). (Since p
and po of interest are (&M, the C's will be computed
for cL'/3P =s'/3P = 0; i.e. , only the first non-
vanishing terms of an expansion in p and po will be
used. ) The matrix element for a transition between
the two single-neutron states in the electric field is
then, by (19),

( 2reg2)
Eppo =

~

—
~ ) dr V(r) exp(ia r)

2I. J

( Q2

X
~

up* (C~"+Cg")
M2

zo''p Xpo
+ (C,"+C,") upp i. (30)

)
On the other hand, a magnetic dipole moment p

is associated with the spin-orbit interaction energy
—p (—V V) X L

—(i/M) V] ( iV is—the momentum
operator), which has a matrix element for the transi-
tion in question of

( Z

~I (L-&up*exp( ip r)—)l —
& v VX—v I

E. M )
X(L 'upp exp(ip3 r))dr.

IV. THE NEUTRON-ELECTRON INTERACTION AND
MAGNETIC MOMENT OF THE NEUTRON

Determination from Matrix Element

In a static electric field, only energy-conserving
processes are of interest; i.e. , we may take E~ =Epo.
In this case, G, etc. , may be written, after using
the Appendix, in terms of the following scalars:

P =So 9 Po &.P & Po, ~ PXPo,

which (apart from the masses) are the only inde-
pendent ones available. As may easily be verified,
cr enters only in triple products involving a cross-
product of two other vectors, which either vanishes
when averaged over angles, or takes the form
0' ' p Xpp. Thus the expressions will take the form

"K.M. Case, Phys. Rev. 'i5, 1306~(1949).

This is seen to be, apart from a neglected surface
integral,

(uve/2M2L3)
~

dr V(r) exp(i& r) (up*ur pXpoupo)

where we have put @=au(e/2M)32; yu being the
neutron moment in nuclear magnetons. Comparing
the above expression with (30), we obtain for the
neutron moment

~g2(C m+ C n) (31)

(Note that as in the Schwinger calculation of radia-
tive corrections to the electron spin-orbit inter-
action, no Thomas factor must be used. )

In the neutron scattering experiments from which
the neutron-electron interaction is determined, '~
spin-dependent eBects are not detected because of
lack of polarization of both neutron beam and
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scattering sample, which averages out interference
between spin-dependent neutron-electron and neu-
tron-nucleus scattering. Thus only the C& part of
(30) is to be compared with these experiments,
which may be done, for instance, by inserting the
effective atomic for V(r) in (30).

Alternately, the experimental result may be given
in terms of a neutron-electron potential U(r). This
v ould give, for an electron bound to a fixed position
(taken as the origin), a matrix element between the
two neutron states of

(dr(L ~up* exp( ip—r)) U(r)(L lupo exp(ipo r)).

If U(r) has a range short compared to the neu-
tron wave-lengths —a condition well satisfied—
this reduces to IL 'J'drU(r)I(u„*u~o). Compar-
ing this to (30) after noting that V'exp(iA r)
= —4' exp(iA r), using Green's theorem and then
discarding the surface integral, and using V' V
= —4sp(r) =+4se6(r) for an electron fixed at the

origin, the expression

~ U(&)dr = U—OV. = (2&'s'g'/3P) (C~"'+ C~") (32)

is obtained, where by convention V, =4s/3(e'/mc')'

Computation for Pseudoscalar Coupling

Using the Appendix, (22) can be written as a
multiple of the unit operator plus the scalar product
of c and a vector. The spin-dependent term, which
contains the magnetic moment, converges even
before averaging over angles, so transformations,
as (25), do not change the magnetic moment.

If the part of Gx not involving e is expanded in
a series in p and po (or s and ck), one obtains a,

logarithmically divergent term in k alone, plus
converging terms. If (25) is used, the term in 6' is
not influenced at all, while the s' term, which is of
no interest, is changed in form but integrates to zero
in either case.

The results are:

p" dk 4k' 1 1 2k'(2 1 2 ) p" dk 16k4(E+e)"( -eR
C."= ('

—+——
(
—+—+

!i

1+
2s' R I E g 3g EE 2g ER) &

o 27r 3E pR ( 4E(E+g)')
(33m)

r" dk 4k'
C n

2s-" R'E4

4E R
2B+6+ +

3R 2E
(33n)

p" dk k' 2 1 k' ( k' ) (e'+k-' 2k'-) 2E ( k' ) 4k"-(E+e)".
C.-=-

i

— + +
I

2—i+i +
3&2) ( g E j gR E 3e') 3ER'

(34m)

4k'(E+e)' 25 ( k

E ) 3E2R2 ER E 3E2)

k'(2E+g) (R ) k'- ( 1 ) 2k'
+ I

—I
l

—
I

I+ l+
3E3e EE' 3 E3 ( 3E'J 3E4e

(34n)

where

R=(E+.) 1and E= (k'—+1)', .= I k'+(~/M)'):
which differs slightly from previous notation. The
second form of C, is obtained with (25), and was
used as a check.

We note that (33m) and (33n), taken together
with (43c) and (43s) below, agree exactly with the
results of a recent calculation of the magnetic mo-
ments by J. M. Luttinger, who used an entirely
diRerent method. "

"J.M. Luttinger, Helv. Phys. Acta 21, 483 (1948},espe-
cially Eqs. (12), (23), and (25), after correcting some mis-
prints. Note that his p~ and g~ correspond to our pj, —1 and
g'/2. Unfortunately, Luttinger substituted for his g' twice the
experimental value for symmetrical theory and four times the
experimental value for pure charged theory, and made some
additional numerical errors in his final substitution. He points
out that the integrals corresponding to our (33) are elementary
and may be brought to familiar form by introducing the vari-
able Z= (8+~)~. This is also true for (34).

Equations (33) and (34), integrated graphically
for p/&=0. 154 corresponding to a meson mass of
282 e.m. , give

2m C.-=O 343 2x2C -=0477.
2 'C "=—0.520; 2 'C "=—0.001. (35)

Using (31) and (32), it follows that

„,= —0.128g2; U, = —0340g2lev. (36)

Further discussion of the behavior of the integrands
at low momenta, variation with p/M, etc. , will be
left to Section VI.*

V. THE MAGNETIC MOMENT OF THE PROTON

The matrix element for the transition from a
single-proton state of momentum po to one of mo-

~ For p /&=0. 50, (918 e.m. ), 2m'C~ ———0.118, 2~'C~"
= —0.010, U0= —0.0834g' kev.
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mentum p in an electric field is given by the ordi-
nary Dirac term plus Eppb as defined by (17). The
Dirae term, as is well known, gives a spin-orbit
interaction corresponding to one nuclear magneton
(with a Thomas factor of —,') when a reduction to
two-component wave functions is made. The anom-
alous part of the proton moment, p~ —1 nuclear
magnetons, is given in analogy to (31) by

Pb —1 = —m.g'(D. +D."). (37)

Here, D, and D" are the coefficients, exactly
analogous to C, and C," in (29), in the expansion
of the operators G+™and G+", where OR in (19) is
given by

OR =—g'G+—=g'(G+™+G+"). (37a)

Discussions and interpretations will be considered
in Section VI.

Gi+m Gym ~ D m C' m (38)

For the nucleon contribution, none of the proc-
esses (2) of Section III, or slight modifications, can
be used. For instance, if the initial proton state
changes to a virtual neutron plus positive meson
state, the neutron cannot interact with the field.
However, the following processes are now possible:

Charged Meson Contribution

The processes that contribute to the meson part
G+ of G+ are precisely those under (1) in the tabu-
lation of Section III, except that the P's and N's
must be interchanged, as well as the signs of all the
meson charges. It is easily seen from (7) that this
change does not alter any of the matrix elements,
except those involving II', where it always reverses
the sign. Thus, as was to be expected intuitively,
we obtain

1 P'(po) [H*]~&+(b)+~"( —k); P (po) [H']~P"(p); &+(b)+~'( —k) [H']~P (pb)
2. P—(p&)[H']~X+(a)+y+( —k); P+(p,)[H']~P—

(p); 1V+(a)+p+( —k)[H']~P+(p).
H']~P+(p) P+(P) [H*]~&+(a)+~+(k); &+(a)+~+(—k) [H*]~P+(P)
H']~P+(p); & (b)[H']~P+(po)+p (k) ' P+(po)+I (k)[H'7~& (b).
H'7 P+(P); P+(P ) [H'7 &+(b)+~+(—k) &+(b)+~+(—k) LH*] P (Po)
H']~P+(P); & (h)[H']~P (Po)+~ (k) P+(Po)+~ (k)[H*]~& (b).
H']~&'(b)+i+( —k) &'(b)+i+( —k)[H']~P+(Po) P+(Po)[H']~P+(P)

3. (a) P'(Po)L
(b) P+(Po) L

4. (a) P-(P)L
(b) P (Po)L
(a) P+(Po)[
(b) &-(a)[H'] P+(P)+b (k); P+(P)+b (k) [H'] & (a) P+(Po) LH'] P+(P)

6. (a) P (P)[H']—&E+(a)+ib+( —k); E+(a)+ib+( —k)[H'] —+P+(p); P+(pb)[H']~P —(p).
(b) & (a)LH*] P'(p)+b (k) P (p)+b (k)LH'7 & (a) P'(Po)LH'] P (P).

1+A' 1 —A'
Gi+"=— +

2b (E,+c E„)' (E.+b+E—„)'
a p+PcVq 1 t' e pb+P3I~

!&! 1+ !+—! 1+E„) 2 & E„)
1 —8'

X --—+ (39)
(Eb+e Ei o)' (Eb+~+Ei—o)'

It is significant that the highest term in a power
series expansion in k ' is +(1/k'). Since the highest
term of Gk+~ (see (38) and Section III) is —(1/k'),

Note that

(i) All of the above processes in which an H' transition
follows an H' transition are self-energy processes, so that the
substitutions (17b) must be made in (17a).

(ii) The above list of processes is exhaustive, except that
processes in which neither 8+(p) nor P+(po) are involved in
the II' transitions can also occur. These, however, cancel since
the contribution of such a process to the third term of (17a)
just compensates the contribution to the first two (for which
(17b) must be used). These processes correspond to irrelevant
vacuum fluctuations.

(iii) 4 (a) cancels half the contribution of 1; 6 (a) cancels
half of 2.

In the usual manner, the above processes are
found to result in a total contribution:

these two terms, which give rise separately to log-
arithmically divergent contributions, just cancel, so
that G+=G+ +G+" converges as in the neutron
case. One could then compute the correction to
Rutherford scattering of protons and electrons, but
this will not be done here.

The spin-dependent term, not only the first term
of the power series expansion, is found from (39),
by a brief calculation, to be zero exactly. Thus

D,"=0 (charged mesons).

This result is physically clear, since all the processes
in the above table are just contributions from the
renormalization of the nucleon wave function,
which is evidently a pure numerical factor inde-
pendent of spin. Renormalization of the nucleon
wave function might change the Dirac moment, but
this would also only appear on reduction to two-
component wave functions (see Section VI).

Neutral Mesons; Symmetrical Theory

Although neutral mesons contribute to neither
neutron moment nor neutron-electron interaction,
they contribute to proton processes. There is no
meson contribution due to neutral mesons, and the
nucleon contribution arises from the following two
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sets of processes (again, canceling vacuum fluctua-
tions are neglected):

(a) Every transition listed above under cha.rged
mesons, except that N must be changed to P, and
p+, p, to po. Since for neutral mesons the matrix
element for emission or absorption of p, by P is
given by —(2s/bL'')bgoabn2abP (see (7)) as opposed
to —(2s/eL') &ge~n2abp for emission or absorption of
charged rnesons by neutrons or protons, this gives
a contribution to G+ of precisely (gb/g)' times
(39), or

Gdo = (g,/g)'Gv+" = —,'Gv+"; D,"= 0 (41)

since gb=g/K2 for symmetrical theory. By (40),
this gives rise to no spin-dependent term, i.e. , to
no contribution to the neutron moment.

(b) Every transition listed under (2) in the tabu-
lation of Section III is possible, except that N must
be changed to P a,nd bb+, p to bb'. Just as above, this
gives precisely Gx", apart from a factor (gb/g)' or —',.
Thus,

G+ob (g /g)2Gb. + 1G~&. D Ob 1 C + (42)

Note that the highest term in the expansion
of Gj" is +(g&/g)'(1/k'), while that of Gdb is
—(gb/g)'(1/k'). The sum G'=G"+G" thus con-
verges.

The final result for the magnetic moments in
nuclear magnetons is thus:

sumed that the nucleon is so heavy that it can be
well localized, that negative-energy processes, which
involve energy changes 2', contribute negligibly,
and that the nucleon recoil is negligibly small. In
fact, 3/J is usually set equal to infinity at the outset
and the nucleon is taken as localized at a point. This
procedure gives zero for calculations with pseudo-
scalar coupling, as is evident from (27) or (28), and
a slightly modified procedure will be discussed below
in connection with the charge cloud. First, however,
we will consider a diAerent method that is less
graphic, but simpler and more direct.

We will assume that the nucleon mass 3I, though
finite, is go large that all quantities can be expanded
in a series in M ', and only the term of lowest order
kept. The scattering element Zpyb, as well as (29),
(31), and (32), may still be used, though matrix
elements and energy denominators will be replaced
by the simpler "non-relativistic" expressions.

In general, processes involving negative-energy
nucleons are thus excluded because of the large
energy denominators, so only processes 1 (a n),
1 (a P), 1 (a y), and 2 (a n) of Section III are in-
volved. For pseudoscalar coupling, their contribu-
tion can easily be computed using the simpler ex-
pressions from the start„or, since we have already
done the work, directly from the appropriate terms
in the exact expression (22). In either case we easily
obtain

bb~ = —~g'(C."+C."); pp 1= +sg'C—."
(pure charged) (43c)

and

2 a b+ie aXb
i ml Grani7

M babb(Ea+ bb)

k2

(45)
M' e'

~g2(C tn+ C n) ~ + I +~gb(C m LC e)

(symmetrical) (43s)

where C, and C," are given by (33). This agrees
with results obtained recently by Case, as well as
with the results of Luttinger.

For (y/M) =0.154, (43) becomes

p, ~ ———0.128g2; pp —1 = +0.0535g2
(pure charged) (44c)

p, v = —0.128g', pp —1 = +0.0164g'
(symmetrical). (44s)

VI. NON-RELATIVISTIC METHODS, THE CHARGE
CLOUDs AND COMPARISON WITH EXPERIMENT

In this section, the previous results, especially
those pertaining to the neutron-electron interaction,
will be discussed in a more qualitative and pictorial
manner, and the connection with "non-relativistic"
methods and experimental results will be given.

The Non-Relativistic Approximation. Comparison
with Present Method

In the usual "non-relativistic" method (more
properly, non-relativistic nucleon method), it is as-

Gi ns2
2 1 1 1

Gi n2
'I

M e, +eg

to Gj and Gv" respectively. These terms too give

Note that G ' and Gn' individually diverge quad-
ratically, and the sum G' diverges logarithmically.
However, since it is known that the exact expres-
sions for G' converge, we can compute it approxi-
mately by integrating only up to a finite cut-off
momentum. Since the integrand is large only in the
neighborhood of

~
k

~ p, and the integral varies
quite slowly with the cut-off momentum if it is taken
several times as large as p, this procedure will give a
result close to the true value.

At this point, a phenomenon peculiar to pseudo-
scalar coupling must be mentioned. Matrix elements
of H' between positive-energy states are propor-
tional to 3f ', while matrix elements joining posi-
tive- and negative-energy states are seen to be of
order unity. Thus even though the energy de-
nominators are large, the total contribution of the
processes 1 (b) and 2 (b a) of Section III are seen
to be of the same order in M as (45). In fact, these
processes contribute
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r~ dk (k') 1 p,
'

I

—
}
-+-

2ii' (4e') 3 6~'
n2 p

t
x dk (k') 1 ji' 5 ji'~

I
—

} 1+
&0 2ir' &2e') 6 e' 12 e4 }

Cg" ——0 (47)

where X is the cut-off momentum and e as usual is
(k'+ji')&. Note that the above expressions for Cq
and Cq" (as well as C and C," to be discussed
below) are easily obtained from (34) (and (33)) by
keeping only the first term in 3I. If X is much
greater than ji, (47) is given very closely by

1}5 2X 31
2~2C ml, } log

413

11 2E 1
2C m2 log

4 3 p, 2

1( 2X
2ir'C~" ————

} log —1 }
Cz" =0. (48)

2E j
)'

E must be taken large enough to include the region
in which the integrands are large, but not so large
that the incorrect asymptotic behavior that causes
the logarithmic divergence affects the integral ap-
preciably. A value of E midway between p and M,
or about M/2, seems plausible. (We see incidentally
from (48) that the Cz's are not very sensitive to
changes of the meson mass. )

For X=M/2 and ji/vV=0. 154, we obtain

P 3y 2~2C~~2- P 02'
2s'Cg" = —0 40 Cg" = 0 (49)

Comparing (49) and (35), we see that errors of
about 20 or 30 percent arise from this approxima-
tion, Ke note too that negative-energy processes
have little eR'ect even for the singular case of
pseudoscalar coupling. In Fig. 1, the exact inte-
grands of C~ and C~" are compared with the non-
relativistic expressions, for ji/M=0. 154. It is seen
that even for this mass ratio, which is not very
small, the agreement is fair for low momenta.

The spin-orbit interaction cannot be used to
compute the magnetic moments by the above non-
relativistic approximation, essentially because the
spin-orbit interaction is a higher order effect. At

rise to a logarithmically divergent contribution that
must be cut off.

If (45) and (46) are expanded as in (29), we find
readily that

"x dk (k2) 5 ji' Sji4}
Cmi —

} }
+, C~i 0

"0 2s' (4e') 3 6c' 6&4 I

first sight, this seems false, since (45) contains a
spin-dependent term that converges and is easily
evaluated. Moreover, it gives a value of the neutron
moment in better agreement with experiment than
the exact method, because it gives a zero nucleon
contribution. (The exact method gives a nucleon
contribution that will be seen below to be much
too high. )

However, this agreement is illusory, since the
substitution (25) makes (45) give zero for both
meson and nucleon contributions to jiiii (cf. the
second form of (33m)). Moreover, this substitution,
which has no effect on the Cg's, is to be insisted
upon, since otherwise, when (45) is expanded, it is
seen to contain a spurious term in s', which violates
charge conservation. A "non-relativistic" method
for computing the moments by considering inter-
action with a magnetic field is possible, but will not
be attempted here. It is interesting to note that
many phenomena noted above have counterparts in
the calculation of the Lamb effect and the radiative
corrections to the electron moment.

The Neutron-Electron Interaction for Other
Types of Mesons

Since pseudoscalar and pseudovector couplings
are equivalent (using (28)) for positive-energy proc-
esses in non-relativistic approximation, and to this
order, as may be verified from (20), no negative-
energy processes (including the contact interaction)
contribute, we obtain for pseudovector coupling,

Uo U, = (8~'e'P/ji') (Cz"'+ C~"') . (50)
We have used (28), (32), and (47). However, we
have seen that cutting off is here unjustified except
for the special choice of contact term mentioned
above. Note that the C~ ' term for pseudoscalar
coupling is small, so that (28) ma, y be applied to
(36) without very great error to get the pseudo-
vector value.

The non-relativistic calculation may very easily
be carried through for the case of vector mesons.
Here too, two couplings occur, characterized by
constants f. and g. , which, however, are not equiva-
lent. Moreover, both couplings have matrix ele-
ments of order unity for positive-energy transitions,
so that no negative-energy processes need be
investigated.

For charged vector mesons we have:

II™= (e/2L') tdr V(r) Q (e&e& ) &(j j')
Qg I)j I

X I (i2+j'k'jg+jk —
g —j'k'ti7 —jk) (tg+8g~)

Xexp(i(k —k') .r)+g j'k'g+jk(ei—, Ei, )—
Xexp(i(k+k') r) g+i k tg i—j(eg ~i, )—

Xexp( —i(k+k') r) I, (51)
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2 2
gv v

(G, myG„a)+ (F myP a).
2 2

pg Pv

2 a b (,— )(—8 b)
( +PPb)—G«" = P

k 6g,6y tabb e (p +pb)

(53)

(p.—pb)( —a b)

Pb (Ea+ Pb)'

8a b

k Paeb(ea +Pb)

2 2&k k
Gii" =P —— 4k'

k
(54ii)

and similarly

2 (~ j.Xa)(j. jb)(~ jbXb)
& ae(b& a+Pb) jajb

L2a b —ie axbj
iL' each(ea +Pb)

where j is the polarization unit vector and can have
three possible values for each k: one along k (longi-
tudinal mesons), and two others perpendicular to k
and to each other (transverse mesons). In non-
relativistic approximation, the matrix elements for
emission and absorption of a meson of momentum k
are, disregarding g, e, and v factors as well as
the up's, *

(2pr/pL') I ai(g. /jb„) kj (52)I)

for longitudinal mesons and

(2pr/pLP) &
t &i (f„/jb„)a"j Xk I (52i)

for transverse, where the upper signs are for
absorption,

Then from (51), (52), and (17a), we have im-
mediately for the relevant processes of Section III
the contributions:

t,O"

LP

0
n
7

Lj O

j4UCLKO4 ( O.I g &e

Ibid(, Lf.o4 (NOhl~ RCL)

FIG. i. Comparison of exact (Eq. (34)) and non-relativistic
(Eq. (47)) integrands of 2x'Cp. Note that minus the integrand
is drawn. For C~", multiply abscissas by 2 and divide ordi-
nates by 2.

The Charge Cloud. Charge Renormalizatton

If the spin-independent parts of the scattering
matrix element Eppo can be interpreted as resulting
from the interaction of a charge cloud p(~ r —

rp ~)
around a nucleon at rp, and an electric field V(r),
we would have

ICppp = drp(L jup* exp( —ip rp))

well as the change in the C~'s due to the difference
between jb and jb.):
P V —8«2(G tnl+G al)

1 1 ( pg$-
X (g.'—+2f.')+

~
f

~

. (56)
. jb.' jb' E 2M)

In fact, if we adjust (56) to agree with the exact
expression (36) for f=f.=g„=0 and jb/3f =0 154, .
we obtain

I/p ——57.3
( f —)+ ]

—
[ (g„+2f„P) kev. (57)

I'j )'
235i ( jb.)

4
(54j.)

k

Comparing (53) and (54) with (45) and (47), we
see that

V.p= (8«'/ )u(G~™+~~"') (g '+ 2f ') (55)
Note that here, the legitimacy of cutting oE has not
been investigated. Assuming it possible, we have
for an arbitrary mixture of pseudoscalar and vector
mesons (neglecting Cq"' and other small effects, as

* The u's for the intermediate states may be omitted, since
they are effectively two-component wave functions and are
summed over both spin indices. Thus g (up* 81up')

BP ills

X (@p'*s+po) = (+p*6162lpo) for any operators 81 and 82
involving e and unity. Of course, the Np~ and Npo must be
inserted.

X J
dr V(r)p(~r —rp~)

X(L jupp exP(iPp rp)) (58).

Comparing this with (19),we see that we must have

J
"p(

~

r —
rp ) exp(iA rp)drp

= ( err/2L') exp(iA —r) OR, (58a)

where 5K is a function of po and 4 only. By Fourier's
integral theorem:

d'L ( eir p

P(r —rp) = J" exP(iA (r —rp))
~

— (OR
(2n-)p E 2L'j'

eir q

~ Pg exp(i~ (r —rp))W(~, pp), (59)
2LP]

so that p is essentially the Fourier transform of 5K.
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We therefore see immediately that a constant
term in K corresponds to a 8-function charge dis-
tribution; i.e. , a point charge at the position of the
nucleon. It follows, for instance, that the constant
term in G (Eq. (29)) corresponds to an alteration
of the nucleon charge by g' times a logarithmically
divergent integral. Since G" gives an equal and
opposite alteration, the nucleon charge is entirely
unchanged. The divergent point charges are thus
not to be looked on in any sense as a renormalization
of nucleon charge due to the meson field. This cir-
cumstance, guaranteed by charge conservation, is
necessary if proton and electron charges are to be of
the same magnitude. However, the fact that G,
etc. , give rise to a (divergent) point charge plus a
convergent continuous distribution shows that it is
sensible to separate meson and nucleon contribu-
tions. (It might have been objected that since G"
and G" individually diverge, only their sum has any
significance and a separation into C~ and C~" is
inadmissible. )

Equation (59) can be rewritten, with R =r —rb, as

em 't

p(R) =
~

—
~

QZ +1 3II2 exp(ia R)
2L3)

f e2r )
Pa Qb 3IIk exp(i(b —a) R). (60)

2I.3)

The usual non-relativistic method of obtaining the
charge density is to evaluate the expectation value
of the charge density operator —ie(II@—IIf%'f)
(see Eq. (3)) for an infinitely heavy nucleon at rest
at the origin. Using perturbation theory, precisely
the value (60) is obtained if the non-relativistic OR

is used. The double-summation in (60) is there due
to the neglect of nucleon recoil, and hence mo-
mentum conservation, so that a and 1 are inde-
pendent. If this method is to be applied to pseudo-
scalar coupling, one need only remember that g/M
is finite, but that for other purposes M may be
taken infinite, and that a contribution from
negative-energy processes is being omitted. (59)
may also be looked on as a transformation back to
coordinate representation, or as resulting from a
summation of plane-wave matrix elements hippo to
give the matrix element for a localized neutron.

The charge density will now be evaluated in the
non-relativistic approximation for a mixture of
pseudoscalar and vector mesons (neglecting the
small negative-energy contribution f'or pseudoscalar
coupling). We have then from (60), (45), and (54):

( e2r ) ( pg i
p(R) =I —

I I f I+(g—'+2f')
2I.'132) & 2M)

8a.b

The second term in this summation —the nucleon
contribution —is independent of 4 and corresponds
entirely to a 5-function charge. This is due to the
fact that the nucleon charge is smeared out over
approximately the neutron Compton wave-length
(divided by 22r), which is here assumed zero (see
Fig. 1). We will accordingly omit this term, but
remember that it cancels the 8-functions arising
from the meson portion and causes the total charge
to be zero. The integrals in the meson contribution
may with this understanding be computed in the
sense of summability, which has the effect of neg-
lecting such singularities. We then obtain, integrat-
ing first over the angles of a and 1:

-( @g )2
p(R) =

( f —
) +(g.'+2f')

2rbp2 0 2M)

(cosaR sill aR )
X i i dadba2b2~

R aR' )
(cosbR sinbR~ 1

xi
R bR' J 2 bb(2, +2b)

2e

Ã p

(cosaR sinaR)

R aR' J
(cosbR sinbR) 1

xi
R bR' ) bb(a2 —b')

e 1 t" b'db

R3 J (p2+b2) $

X cos2bR+ —
~

bR
~

sin2bR
bRi

e 1 5i—Hpi 1(2ipR)
R' 4

5 pR
H, "i(2ipR) — Hi&'&(2ipR) . (62)

4p,R 2

p(R)dr = ——
)&c 2

—5Hi&'& (2iR,p)
+iHp&'& (2iR.p) (63)

2R,p

Though this converges at any finite R, it has a
1/R' singularity, and should be cut off at a value
of R that gives a value for the neutron-electron
interaction near that given by (57). For the total
meson charge outside the cut-o8 radius R„we obtain

2g2b(eg +fb) 2
exp(ia R). (61)

which diverges I/R. 2 as R.~O.
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The volume integral of the electrostatic potential
U, due to a charge distributed with density (62)
outside of R„and with a charge at the origin suAi-

cient to make the total charge zero is

00 Xl

I U,d = —(4ir)' I RdR l r'pdrJ„J„
FK'. 2. Neutron-

electron potential and
meson charge cloud
around neutron (very
rough).

9
DISTANCE FROM l4EUYAOhl

p&c ~
QO

—(4ir)' RdR r'pdr
4Rc

(4n-)'
+ pR4dR

3 ~ac

= —(4 /6)
i

pR'dR
~&c

( Pg 'l-
{ +2f g' " 'exp( ~r)

and

for symmetric theory

mesons of mass p, , the theory gives a singlet potential

= eir/6 p'L 7{SiHO&'& (2iR,p)

+p(2R p)'iHO&'&(2iR, p)

—7/2(2R, p)Hi~'&(2iR, p) I. (64)

f—2
{ f {—+2f„' g„' r '—exp( —pr)

2m)

for pure charged theory.

(The three terms in the first line are due respec-
tively to charges inside R for R&R„ to the bare
nucleon for R&R„and to charges outside R for
all R.) The volume integral of the potential of a
neutron in the field of an electron is given by
UOV, = —eJ'Ugr For agree. ment with (56) or (57)
the expression in curly brackets in (64) must be
about unity, so that 2R,IJ, must be slightly greater
than 1. The total dissociated meson charge given
by (63) is correspondingly about —,'0 or -', of an elec-
tronic charge, using a value of about 0.2 for the
factor in square brackets, as will be discussed in the
next paragraph. The range of this interaction is
about R„or a little more than 1/(2p), or about
~ of the classical electron radius for p, =282 e.m.
Figure 2 is an attempt to depict very roughly the
meson charge cloud and neutron-electron potential
as a function of the distance from the neutron. In it,
the cut-o8 distributions have been smoothed out to
simulate the result that would have been obtained
from an exact calculation.

VII. COMPARISON WITH EXPERIMENT
AND CONCLUSIONS

To compare the results (44), (36), and (57) with
experiment, the coupling constants will be evalu-
ated by comparison with the known nuclear forces.
To avoid questions associated with the highly singu-
lar tensor force, the '5 neutron-proton potential
will be examined, since it does not involve the tensor
force. For a mixture of pseudoscalar and vector

All non-static terms have been neglected in these
expressions, so an unknown —perhaps quite large—
error has been introduced. On the other hand, the
experimental data can be fitted to a potential
—0.239r ' exp( —pr) calculated for a singlet scatter-
ing length of —2.375 10 'Ocm and p= 282 e.m. from
Eq. (35), of Rosenfeld s book. "

We first assume f=f„=g.=0. Then from the
above equations, (pg/2M)' 0.239 or g'=40. 3 for
symmetrical, and similarly g'- = 20.1 for pure charged
theory. We then have from (36) and (44)

Uo= —13.7 kev; pv = —5.15; pp —1 = +0.66 (65s)

for symmetric theory, and

Uo= —6.9 kev; pq- ———2.56; pp —1 = 1.08 (65c)

for pure charged theory, as compared to the experi-
mental values

Uo —several kev; p.y = —1.91;
pp —1 = 1.79. (6Se)

I t should be remembered that pure charged theory
gives unsatisfactory nuclear forces even apart from
the tensor force difficulty, so that (65c) is not to be
taken toe seriously.

The most important conclusion to be drawn from
(65) is that pseudoscalar-coupled pseudoscalar
meson theory gives results that are convergent and
correct in sign and order of magnitude. Quantita-
tively, however, the magnetic moments depart con-

' L. Rosenfeld, Nuclear' Forces I (Interscience Publishers,
Inc. , New York, 1948), p. 88.
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siderably from the experimental values. This is not
due merely to the coupling constant, since for the
ratio —(ui —1)/u~, which is independent of g',
we have

—(imp
—1)/@~=0.128 (sym. ); 0.418 (charged);

0.936 (exp. ) (66)

respectively for symmetrical theory, pure charged
theory, and experiment. As mentioned before, quan-
titative disagreements due to higher order terms,
other meson masses, etc. , are to be expected, but
the disagreement of —(up —1)/p~ may indicate a
more serious fault. The difficulty stems from the
fact that if equations such as (43s) or (43c) are to
be fitted to experiment, the nucleon contribution to
the moments must be very small, while in fact,
(35) shows it to be 40 percent greater than the
meson contribution to the neutron moment. If the
nucleon contribution is omitted altogether, we find
for symmetrical theory p& = —2.16, p& —1 = 2 ~ 16,
in good agreement with experiment even for the
present coupling constant.

The large size of the nucleon contribution may
also seem surprising in the light of simple qualitative
considerations. ' For instance, if a neutron of
S,= + ~ is dissociated into a negative meson of
L, = 1 and L,= +1 and a proton of S,= ——,

' for about
—,'o or —,

' of the time (in accord with the total meson
charge estimated in the last paragraph) we would
expect a negative contribution of about —,', to —,

'
from the proton, and a further negative contribu-
tion from the meson about M/u times as large
(since the meson magneton is M/y times the proton
magneton). Instead, we And a nucleon contribution
even larger than the meson contribution (and nega-
tive, so it does not arise from transitions involving
mesons of L =0) for the neutron moinent, and none
at all for the proton moment.

To understand these results, we note that the
nucleon contribution, at least to the spin-orbit
interaction, does not seem to arise in the manner
suggested above. In fact, the spin-orbit interaction
in the ordinary Dirac case arises because the elec-
trical matrix element

etc. , is made. Here q is the charge of the particle.
Thus, since the charge of the proton is reduced (by
an infinite amount!) due to "dissociation, " the
expected decrease of the Dirac moment does appear
on going to the 2-component functions. However,
the meson charge results in a term in

)I dr V(r) exp(ik r)(uy*upo)

in the Hamiltonian that just compensates the reduc-
tion of proton charge. The case of the neutron is
exactly similar. Charge conservation thus ensures
that the spin-orbit interaction does not change on
reduction to 2-component functions. The nucleon
contribution is thus to be thought of as arising from
sharing of the orbital motion by the nucleon, which
also explains the zero result for the proton moment
(orbital motion of the neutron gives no contribu-
tion). Though this too may be thought to be small,
we have seen that high momentum ( M) contribu-
tions are important, and here relativistic mass in-
creases makes the sharing large. It should also be
remembered that higher radiative corrections,
which, judging from the "dissociation time, " are
y p to 5 or even larger, have been entirely neglected.
For vector mesons, which possess an intrinsic angu-
lar momentum, the situation may be entirely
diferent.

From (57), noting that for symmetric theory

ug )'
~
f (+—2f.' g.' =0—.239

for a mixture of vector and pseudoscalar mesons, we
see that unless g, is very large, Uo is still about
—15 kev. Thus, if they converge, the other coup-
lings do not give a substantially different neutron-
electron interaction.

To summarize, the results of the above investiga-
tion seem sufficiently positive to warrant examina-
tion of other couplings and higher corrections. How-
ever, use of the newer methods seems advisable for
more secure treatment of divergences.

(g/L') )
"dr V(r) exp(ia r) (up*upo),

becomes

(q/ ')Lj dr U(r) exp(ia r)

f P'Po ur'PXPo
X( uo'* 1+ +

4ar2 4.V2
uoo'

I

when reduction to 2-component wave functions Ny'
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EpEyp+3P —p po —ie.y Xpo
r

M(Ep+Epp)

c s+ze cX&
0. ~ C~

Eyo+Ep

c 4+. ie cXs t'Epp —Epq c s+ie cX&
Pn c=

~Z»+E, ~

EpEpo+ M' 2ic s X4+ (s' —4')e c+ 2(c 4) (e"' 4) —2 (c s) (e s)
iie c~—

M(Ep+Epp)

~ s

4M(Ep+Epo)

Qyg2Q3

If uy and Nyo are Dirac 4-component columns corresponding to positive energies E'„and A~0, then for
any Dirac operator X) an operator I)' of the form const+ (const e) can be found so (uppSup&) = (up*X)'upo).
The operators and their replacements (indicated by ~) are as follows: (Of course, 1—+1 and e—+e.)

ze 4 (Epp —Ep) Qt s
+I

2M t Epp+Epl 2M

where s =po+p, 4 = pq
—p, and c is an arbitrary ordinary vector.

Note on Meson Contribution to the Lamb Shift

An estimate of the shift of the 2s hydrogen level caused by the meson charge cloud around the proton
is of some interest. As may be seen from the non-relativistic approximation or from (39) directly, the
nucleon contributions are not very important, while the meson contribution is by (38) just the negative
of that for the neutron case. Thus, in analogy to (30), we have for the proton

xeg' meg2 Cg"
Xppo=+, dr V(r) exp(icL r) C~™= —

~~ dr U(r)&' exp(iA r)
2I.' ~ 3P 2I.' ~ 3P

By Green's theorem, this is, apart from a surface integral,

( —7reg /2L ) I dr exp(i& r)y~V(r)(Cq~/M')

Now for a proton localized at the origin, the product of the initial and final wave functions is 5(r) rather
than L, ' exp(iA r). Also, O'V= —4ep(r) =+47regf, where f(r) is the electron wave function, so that
the change in energy due to smearing of the proton charge is approximately

(7r~g2C& /2M ) dr&(r) '4esPPf= (2e C~~s g /M ) ly(0)

For an s electron, ~g(0)
~

'= (en'ap') ' (ao ——Bohr radius). Thus with 2m'Cz" = —0.5 and g'=40 we obtain
+0.08 Mc for the shift of the 2s level, considerably less than the present experimental error.


