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ECENTLY Levine and Schwingeri developed a theory for
approximately solving the problem of diffraction of a

scalar plane wave by an aperture in an infinite plane screen.
In particular they obtained for the transmission coefFicient of
a circular aperture, in the case of normal incidence, the ap-
proximate expression

t&2} = (8/27+3(ka)'L1+0. 32{ka)'+0.047823(ka) 4+ J {1)
which was then compared with my previous result, '

t = (8/2 "IH}(ka)'t'1+0.32(t'ta)'+0. 022422(ka}'
—0.004393 (ka) '+ ], (2)

obtained by the method of spheroidal wave functions.
For a long time, however, I doubted the correctness of the

last two numerical coefFicients in (2). In fact both are wrong,
and in view of the interesting results of Levine and Schwinger,
it may be worth while to mention the correct expression. This
reads

t = (8/27m )(ka)4)1+0.32(ka)'+0.0507755{ka)'
+0.0002613(ka}'+ ~ ~ j {3}

It is to be observed that the approximation of (1) to (3}
is far better than to (2). On the other hand, however, it is
remarkable that the first-order approximation of Levine and
Schwinger, viz. ,

t&'& = (8/27m') (ka) 4I 1+0.32(ka}'+0.049061{ka}4+ ~ ) (4)

is closer to the correct expression (3) than is the second-order
approximation (1).

I derived Eq. (3) in two completely different ways. First,
by the method of spheroidal wave functions as before. As I
have shown, ' one has, up to and including terms of the order
of (ka)io

t = (8/27m ){ka)4(bI4XIs(1}j) I XI'(0) I 4+4(ka)'bI4/81~'j ', (5)
in which'

b =1—(3/2. 5'7)(ka)'+(2/3 5'7)(ka)'+
X (1)= 1+(1/5')(ka)' —(3/2. 5' 7')(ka)'

—(641/2 34 5s 7')(ka)'+
XI (0) = 1 —(3/2'5 )(ka) +(51/2 '53'7 )(ka)'

+{6641/24 3'5s.7'}{ka)'+
Inserting these expressions in (5), and expanding in powers of
ka, we obtain (3).The exact values of the coefFicients are
311/5' 7'=0.0507755, 2612/3'5'7' —4/81m'=0. 0002613.

In the second method, we do not use properties of spheroidal
wave functions; it proceeds rather along the lines of Levine
and Schwinger's paper cited. I shall briefly indicate the new
approach, details of which wi11 be published elsewhere.

Let exp(ikz)/ik represent a plane wave impinging normally
upon the screen. Then the resultant wave field in the aperture
may be determined from an integro-differential equation. '
This aperture field can be developed in ascending powers of
ika, viz. ,

|I = Z q „(ika)",
n-o

in which the coefFicients depend on p, the distance to the
center of the aperture. Setting

v»= & B, & II1—(p/a)'j»

in which I' denotes the Legendre polynomial, while

m&n/2, n even,
m&(n —3)/2, n Odd,

I obtained the recurrence relation

r(m+1) „,„r(~+f)
B...=(—1)-+I(m+-,')— —Z Z (—1)"

r(m+$) -o '-o r{v+1)

rt —( /2)+(n —1/2) 3'I:—( /2)+(n+1)/2j
X-— B,„

rf —(o/2)+ v.+(n+2)/2 —m)
)(r t' —(4r/2) —r+ (n+ 2)/2+ m'j

Xr[—(a/2)+ «+ (n+ 3)/2+ m]
y, r t

—(~/2) —~+ {n—1}/2—mg

from which the coefficients B, can be obtained successively,
in virtue of

BQ Q
= —2/x' ', BQ, =0(m g 0); BI, =0(m &0).

The transmission coefficient then becomes

0 2
t =Rg 2ika p(p) pd p =- 2 (—1)"Bs„~,Q{ka)'"+'

Q 3 n,=o

which leads to (3) because

B3, Q
—4/97''; BQ, Q

= —32/225'Ir; B'I, o = 1244/55 125'Ir

BS, Q= 16/729m' —10448/44651252r2.

1H. Levine and j. Schwinger, Phys. Rev. V4, 958 (1948).
2 C. J. Bouwkamp, Thesis, Groningen (1941).
& J. Math. Phys. 26, 79 (1947).
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N connection with the accompanying letter of Bouwkamp, '
- - a few remarks appear desirable as a sequel to our paper. '
A small numerical error in one term of an expansion for the
second variational approximation to the transmission coef-
ficient requires correction; the first two variational approxi-
mations, with an additional term in each beyond those given
previously, are
t&'& = (8/272r') (ka) 4L1+0.32(ka)s

+0.0490612(ka) '—0.0008054(ka) '+
t&» = (8/272r') (ka) 4t 1+0.32(ka)'

+0.0507755(ka) 4+0.0002613(ka) '+
The latter result is identical with the exact expression (3) of
Bouwkamp, for all powers of ka retained.

A statement of the accuracy incorporated in any trans-
mission coefFicient t(~' of the foregoing sequence is readily ob-
tained. By virtue of the stationary property of the coefFicient,
its deviations are proportional to the square of the error in
the aperture wave function. Thus, with a wave function of
the form (1—(p'/a')) & (or the first-order Legendre polynomial
with argument (1—(ps/a'))&), the expansion for t&I& is in error
by a term of relative order (ka)4, since the error in the wave
function is of relative order (ka) (see Bouwkamp). Similarly,
with a wave function of the form

~ i(1—{p'/a'))'+~2(1 —(p'/a'))'

(or a linear combination of the first- and third-order Legendre
polynomials with argument as before), the expansion for t('&

is in error by a term of relative order (ka)', since the error in
the wave function is of relative order (ka)'. In general, a wave
function constructed from a linear combination of the first N
odd Legendre polynomials with argument (1—(p'/as))& yields
a variational transmission coefFIcient t&~} whose expansion is
exact through terms of relative order (ka)~~. Furthermore,
the stationary property of t:he trpnsrriission coefficient leads
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one to expect that the inexact numerical factor of the term
(ka}4~ will be in close accord with the correct value.

1 C. J. Bouwkamp, this issue.' H. Levine and J. Schwinger, Phys. Rev. 74, 958 (1948).
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ECENTLY some interest has come up in two-component
wave equations. As is well known, those wave equations,

in contrast to the four-component Dirac equation, can only
be made covariant with respect to the Lorentz group, not
including covariance with respect to rejections.

The following antilinear two-component equation presents
some interest,

y"(8/Bx"—i q „}P=pf*,

(&*=conjugate complex of tJ'), where

g{ Kg )E+ Xg K) gKX1 (2}
with g(le=+1, gii =g~=g3'= —1. In the case y =0, we obtain
by iteration the ordinary linear second-order wave equation.
Equation (2) can be satisfied with

1 0 ' ~ 0 i' ~ 1 0'

however, is another solution of {2), not differing from (2) by
an S transformation. If Eqs, {1)and {3)represent the motion
of a positive charge in the potential cpK, then Eqs. (1) and (12)
represent the motion of a negative charge in the same potential
q „, which is readily seen by forming the conjugate complex of
Eqs. {1)and (12) and comparing it with Eqs. {1)and (3).

The wave equation (1) is covariant with respect to gauge
transformations q K"= q K+RA/&xK,

y"=S-p " =S*- "S, "=St S*
with (13)

S=1 exp( —ih.),
i.e., a not unimodular S. It is readily seen that s" =s".

The charge conservation law

Bs"/Bx" =0 (14)
follows from Eq. (5) by differentiation, observing that the
left-hand side is, as s", a real quantity and the right-hand side,
by virtue of Eq. (1), purely imaginary.

We are investigating solutions of the set of Eqs. {1)with
any matrices y" satisfying Eq. (2). If P& and P2 are two solu-
tions of Eqs. (1) and (2}, we can superimpose them with
arbitrary real coefficients provided we have first adjusted
their relative phases by a transformation (13) to the same
gauge, i.e., to the same matrices p". In this theory, therefore,
the phase relations between superimposable 1IJ'-functions are
fixed.

* Research carried out at the Institute for Advanced Study and Uni-
versity of Pennsylvania, Philadelphia, Pennsylvania.

With the Bargmann operator

ct= c=
1 0

we can form a real current vector

'=
0
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(5)

{10)

1 0 ' ~ 0 —i' ~ 1 0'
V'= 0 1 (&2)

(tt ~ = Hermitian conjugate).
Let us denote a Lorentz transformation by

g/gXX g «g/gXK X g X K (6)
Lorentz covariance of Eqs. {1}and (5) can be formulated in
the following way. Let us take a and yK as a fixed set of
matrices (3) and (4) and transform the other quantities so
that (1) and (5) go over into

y"(8/8 x" —i q „')P' =pP*', (7)
s" =ft'ey"f' (8)

If P transforms under the Lorentz transformation {6}as

(9)
the covariance of Eqs. (1) and (7} demands

~Kg v S4—i~vS

and the covariance of (5) and (8) requires

0.=StaS*, (»)
Eq. (11) implies S to be an unimodular, i.e., ~S~ =1. There-
fore, the matrix S contains only 3 complex parameters which
is sufficient to satisfy Eq. (10) with 6 real parameters c„' of
the Lorentz group.

A transformation S* 'y"S with any matrix S, applied to the
y" will preserve the relations (2}, i.e., any set of matrices
di6ering from Eq. (3} by an arbitrary S transformation will
lead to nothing new.

The set of matrices

Y use of a modified crystal spectrometer at the heavy
water pile to select neutrons of 0.07-ev energy, the

intensity of neutrons scattered from gases was measured in
the angular range 5' to 90'. The gases studied, oxygen and
carbon dioxide, were contained in a steel vessel at room
temperature and approximately 60 atmospheres pressure. A
schematic diagram of the experimental arrangement is shown
in Fig. i.
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Fr@.. 1. Schematic diagram of neutron crystal spectrometer as modified
for gas scattering experiments.

Since the scattering was not very intense, precautions were
taken to reduce the background of fast neutrons penetrating
the counter shield and slow neutrons scattered from the steel
walls of the gas cell. The latter would be serious if the steel
were not crystalline with a powder diEraction pattern. As
there is no line of this pattern inside an angle of 30, at small


