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For optical light ) 10 ' we find

g»10" cm 0.1 light year. (44)

The important conclusion from these examples
is not that a given curvature can always be meas-
ured somehow, but that (a) the curvature is defined
(in the sense of the limitations of quantum-theory
measurement) only in the large, and (b) the domain

of largeness is fundamentally determined by the
momentum of the test particle with which the
curvature is measured. Here we are led again to
the idea that the conception of curvatures and,
when these are equated in the form G;A, +~g,A,G to
the stress tensor XT,I„ the conceptions of energy,
mass, and momentum, are only defined for quite
large masses and large volumes of space.
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The decoherence curve of large air showers is analyzed under the simplifying assumption of a.
constant lateral structure function for all air showers. The following results emerge: (1) Contrary to
statements found in the literature, ordinary shower theory leads one to expect a rise in the deco-
herence curve at distances much less than the characteristic lateral distance ri. {2)The theoretical
decoherence curve calculated under the assumption of a constant structure function rises more sharply
near the origin than the experimental points. This indicates that the effective structure function is
less peaked than the one we used (due to Moliere). {3)The dependence of the structure function upon
the age of the shower tends to lessen this discrepancy. However, quantitative estimates make it
appear doubtful that one can get agreement between theory and experiment without assuming a
rather high multiplicity of the event which starts the shower.

(1,) QUALITATIVE CONSIDERATIONS CONCERNING
THE LATERAL STRUCTURE OF AIR SHOWERS

'HE experiments which are to be interpreted
here are connected with the so-called deco-

herence curve of large air showers. Two ionization
chambers are placed a distance 2a apart. The
chambers are biased so that they only respond if
more than a certain amount of ionization is pro-
duced in each chamber, the bias being the same
for both. chambers. If the dimensions of the
chambers can be neglected compared with their
separation, the bias can be interpreted as meaning
that each chamber responds only if the density of
shower electrons passing through it is greater than
a certain minimum amount, which we call p.

One then measures the coincidence counting rate
lV as a function of this minimum density p and of
the half-distance a between the chambers. A curve

of W(p, a) vs. a (keeping the bias constant) is called
a decoherence curve. We shall call a curve of W(p, a)
vs. p (keeping the separation a constant) a density
response curve.

Historically, decoherence curves were measured first with
Geiger-Muller counters. ' It can be shown that a set of Geiger-
Miiller counter measurements giving the coincidence rate as
a function of the distance between the counter trays and of

*Assisted by the joint program of the ONR and the AEC.
'Auger, Maze, Ehrenfest, and Freon, J. de phys. et rad.

1, 39 {1939).

the area of the counter trays (keeping the number of counters
in each tray constant) is mathematically equivalent to a set
of ionization chamber data, giving their coincidence rate as
a function of the distance between the chambers and of the
chamber bias. However, ionization chamber data are much
preferable for the following reasons:

(1) A single set of measurements, in which pulses of dif-
ferent sizes are recorded, is required instead of a large number
of measurements with counter trays of different areas.

(2) In Geiger-Muller counter measurements, there often
exists the possibility of getting spurious counts from a single
particle traveling horizontally, since one particle can easily
produce a pulse. In ionization chamber measurements, ten to
twenty particles must pass through the chamber before a
pulse is recorded; hence, there are no spurious counts due to
that source.

{3)For the same reason, statistical Auctuations are much
less important in ionization chamber data.

(4) The mathematical analysis is incomparably simpler.

In discussing large air showers, we shall consider
only the electron-photon component, since this
component accounts for most of the ionizing
radiation observed without heavy shielding on top
of the. detecting equipment. There seems to be
reason to believe' that there are on the average
about fifty electrons for every heavy ionizing par-
ticle in big air showers. (The word "electron" is
used for both negatrons and positrons. )

We assume that the shower is started by an
"initiating electron" near the top of the atmosphere.

'G. Cocconi and K. Greisen, Phys. Rev. 74, 62 (1948);
J. E. Treat and K. Greisen, Phys. Rev. 74, 414 (1948).
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The initiating electron is very probably nol a
primary particle. ' Since observations are mostly
carried on below a considerable atmospheric depth
(twenty radiation units in our case), the observa-
tions do not distinguish whether the initiating
particle is an electron or a photon, nor can we tell
just where the shower starts, as long as it is within
a few radiation units from the top of the atmos-
phere. Recently, it has been suggested' that the
event which initiates the shower is of a highly
multiple character. The consequences of this
hypothesis will be discussed in Section 6.

The usual shower theory treats the average
longitudinal development of a shower under the
assumption that the particles are all concentrated
around the shower axis (the direction of the initi-
ating particle). The effects (neglected in the usual
shower theory) which lead to a lateral displacement
of the shower particles from the axis of the shower
are:

(1) scattering of electrons by air nuclei (Coulomb
scattering);

(2) scattering of photons by electrons in air mole-
cules (Compton scattering);

(3) the angular deviation of the particle in pair
production from the direction of the parent photon;

(4) the angular deviation of the Bremsstrahlung
photon from the direction of the parent electron.

One can estimate the angles involved in these
processes. It turns out that the scattering of elec-
trons by air nuclei gives most of the eA'ect so that
the other processes (2), (3), and (4), may be
neglected. The scattering is predominantly mul-
tiple; i.e. , defiections through a finite angle are
mostly due to many successive scattering events,
each event involving a very small angle, rather than
to a single scattering event. The mean square angle
of deviation (t&')A, &q&& due to multiple Coulomb scat-
tering of a particle of energy 5 passing through a
layer of matter of thickness dt (measured in radi-
ation lengths) is given by'

(t&')A (d&i (E /E) dt. (1.1)

The "scattering energy" 8, is 21 Mev.
Qualitatively, the development of a shower may

be described as follows: The initiating electron
defines the axis of the shower. Before the maximum
is reached, the number of particles rapidly increases
while their average energy decreases. Beyond the
maximum, the average energy of the particles stays
roughly constant (at about the critical energy
a=86 Mev in air), while the total number of par-
ticles decreases until the shower dies.

' R. I. Hulsizer and B. Rossi, Phys. Rev. '73, 1402 (1948).
4 H. W. Lewis, J. R. Oppenheimer, and S. A. Wouthuysen,

Phys. Rev. V3, 127 (1948).' B. Rossi and K. Greisen, Rev, Mod. Phys. 13, 240 (1941.).

The lateral distribution of electrons is different
for electrons of diferent energies. The root-mean-
square Coulomb scattering angle is inversely pro-
portional to the energy of the electrons. Hence,
high energy electrons are found close to the shower
axis, while low energy electrons are spread out over
much larger lateral dimensions. The high energy
electrons form a dense sbmeer-core. The density of
particles in the core of the shower is determined by
the number of high energy electrons in the shower,
not by the total number of electrons in the shower.

We can estimate the mean square distance (r'(E) )
of an electron of energy 8 from the shower axis in
the following way. First, we observe that the parent
of this electron was a particle of much higher energy
(about three to ten times as much). Hence, on a
first approximation, we can neglect the spreading
of the ancestors of the electron in question. (This is
true for 8 greater than the critical energy ~; we will
see later that it is not true for E~e.) The mean
square scattering angle per radiation unit of matter
traversed is given by (1.1).The mean square lateral
displacement can be estimated by taking the mean
square angle over the range of the particle, and
multiplying by the square of the range; i.e. ,

(r') (t&')Ay(range& ' t'range]'. (1.2)

The range of high energy electrons in air showers is
of the order of magnitude of one radiation length,
the distance in which the energy is on the average
reduced to 1/e of its original value by radiation
processes. Ke therefore get the rough estimate

(r'(E))~(E,XO/E)' for EWe. (1.3)
For electrons of the critical energy ~, (1.3) gives

(r'(e) )-(E*Xo/e)'—= ri', (1.4)
The characteristic lateral unit of length ri defined by
(1.4) gives an idea of the lateral extent of a shower
over most of its length. For air, r~ is about one-fifth
of a radiation unit. At Echo Lake, Colorado, r~ is
about one hundred meters.

For electrons below the critical energy, it is not
permissible to neglect the ionization loss. Indeed,
the range of an electron of energy E & e is of order
(E/e)XO, not of order XD. If we put this into (1.2),
we get

(x'(E) ) (E /E)'(E/c) (EXO/c) ' = (E/c) ri' (1.5)
This result must be interpreted with care. (x'(E))
is not the mean square distance from the shower axis,
but rather the mean square lateral distance from
the position of the parent particle. Since (x'(E))
decreases with decreasing energy, one is not justified
in neglecting the distribution of the ancestry of elec
trons of below critical energy This is borne .out by
more detailed calculations of (r'(E)).'

' L. Landau, J. Phys. U.S.S.R. 3, 237 (1940);S. Z. Belenky,
J. Phys. U.S.S.R. 8, 9 (1944).
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The above considerations lead to the following
qualitative picture of a shower. The shower first
spreads out as it goes down into the atmosphere.
The more energetic particles stay near the axis,
their less energetic offspring spread out somewhat,
their offspring spread even farther, etc. This makes
the shower appear like a fir tree. This behavior does
not persist, however. After a few radiation units,
electrons of about the critical energy make up most
of the population of the shower (this happens long
before the average energy is reduced to e). These
low energy electrons have a limited range and do
not spread any more. Hence, after a few radiation
units, the shower does not spread out any more, its
lateral dimensions staying constant, of order of
magnitude r&, (1.4). From then on, the shower looks
like a cylinder, provided we measure all distances
in radiation units. If we measure distances in
meters, the cylinder becomes compressed as it goes
down into the atmosphere since the radiation unit
is proportional to the density of the air. In other
words, the cylinder becomes a funnel.

The core of the shower is made up of energetic
particles (E 10' —10" ev). The relative number of
these energetic particles decreases as the shower
passes through its maximum and gets older. The
number of electrons of energy greater than E (E)e)
passes through a maximum before the shower as a
whole passes through its maximum. For a shower
initiated by an electron of energy 10" ev, the
maximum of the shower as a whole occurs about
17.5 radiation units down. The maximum of elec-
trons of energies larger than 10' ev occurs about
two radiation units before that. We see that the
relative importance of the core of the shower
decreases mith age.

In what follows, we shall restrict ourselves to the
average development of air showers. At first sight,
one might think that correlations of density fluc-
tuations in the shower introduce large errors into
the comparison of theory and experiment. This is
true for the longitudinal development of the shower,
but is not true for measurements of the lateral
structure at any one level in the atmosphere,
provided that many particles are required to set
off the ion chambers. The reason is the difference
in the "memory" and "amplification" properties
of the shower for longitudinal and lateral fluctua-
tions. In the longitudinal development, we have
a cumulative process in which a given fluctuation
is not only "remembered" for many radiation
lengths but exerts an "amplified" effect because
of the multiplication along the shower. In the
lateral development, the electrons observed at a
given distance from the shower axis go there al-
most entirely in the last few radiation lengths.
Furthermore, once they get out from the core by
an appreciable distance, they are already dose to

critical energy and do not multiply by a very large
factor. Hence, the lateral development of the
shower features both a short "memory" and a small
"amplification" for fluctuations.

It is therefore reasonable to expect that the
fluctuations in the lateral structure of the shower
have a distribution not too far from the distribu-
tion which follows from the assumption that all the
particles are statistically independent. If this is
true, the root-mean-square deviation from the
mean number of particles N expected at a given
place will be of the order of X&. We require at least
twenty particles through the chamber before it
responds. Hence, the fluctuations in density have
an effect of the order of twenty-five percent on an
individual count. Since we are dealing with a
statistical distribution (the decoherence curve)
rather than with each shower separately, this fluc-
tuation is likely to be averaged out to a large extent.
It is therefore permissible to work with average
values and to neglect fluctuations from the average
provided that we restrict ourselves to events in one
ptane of observation perpendicutar to the shower axis.
Fluctuations may interfere badly as soon as we try
to correlate the experimental information at the
plane of observation with hypotheses about the
distribution-in-energy and in place-of-origin of the
initiating particles of the shower.

We shall also assume that all showers come in
vertically. This assumption can be checked experi-
mentally by triggering a cloud chamber in coin-
cidence with the ionization chambers. This experi-
ment was done. ' The result is that the angles
involved are of order 20 or less for most showers.

The angles are expected to be small because a
shower hitting at a large angle has to go through a
thick layer of atmosphere compared to a vertical
shower. There are fewer showers which can do this.

The large angle showers do contribute importantly to the
decoherence curve at really large separations (500 to 1000
meters). The reason is that the effective chamber separation
is less for showers coming in at an angle than for vertical
showers. The two effects compensate in such a way that the
maximum contribution comes not from the vertical direction
but from some intermediate angle. This is especially so
because a shower which can set off two counters separated
by many times rj is necessarily a giant shower which is not
affected much by the path length through the atmosphere
(indeed, the shower may be so large that it does not even
reach its maximum going straight down, in which case a
bigger path length is even helpful). These considerations are
due to Cocconi. ' We shall not treat this subject here since we
are interested in the decoherence curve for small separations
between the chambers.

(2) THE LATERAL STRUCTURE FUNCTION
OF AN AIR SHOWER

Let p(Eo, t, r) be the average density of all shower
electrons, irrespective of energy, per unit area per-

~ R. W. Williams, Phys. Rev. 74, 1689 (1948).' G. Cocconi, Phys. Rev. 72, 350 (1947).
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pendicular to the axis of the shower at a distance r
from the shower axis. We assume the shower was
started by an initiating electron of energy Bo, a
distance t radiation units above the plane of ob-
servation. Then the total number of electrons at
this depth in the atmosphere is, in the notation of
Rossi and t reisen, '

II(Eo,o,t) = p(E, t, r)2wrdr

In order to correlate theory with experiment, we
should not consider electrons down to zero energy,
but rather we should make the lower limit on E
equal to the minimum energy necessary to penetrate
the wall of the ionization chamber. This does not
make a significant difference for the experiments in
question.

We now define the lateral structure function
f(Ep, t,r) of the shower by

f(Ep t r) = p(Ep, t,r)/II(Ep, o,t). (2.2)

It follows from this definition and (2.1) that the
integral of the structure function over the whole
plane of observation is unity:

(2.3)

Our qualitative considerations have shown that
the structure function depends upon the age of the
shower. A young shower, before it reaches its
maximum, has a large proportion of high energy
particles, hence a dense core. This makes the
structure function peaked near the origin. As the
shower becomes older, the core becomes less dense;
hence the peak of the structure function becomes
relatively less important.

For vaIues of r((r& and t not much beyond t, ,

electrons of energy E&&e give most of the contribu-
tion to the structure function f(Ep, t,r). In that case,
one can give a rough estimate of the behavior of
the structure function

f(Ep, t,r) r' ' provided r«ri (2,4)

where s is a quantity defined by Eq. (2.104),reference
5. s is related to the "age" of the shower, being
smaller than one before the maximum and larger
than one after the maximum. Thus, for young
showers, the peak is very strong; for showers at
their maximum, the structure function is inversely
proportional to the radial distance (for r«ri); for
very old showers, s approaches 2 and the above
estimate breaks down (electrons of critical energy
then determine the behavior of the structure func-
tion for all values of r, not just for r~r&).

Pomeranchuk, J. Phys. U.S.S.R., 8, 17 (1944). A.
Migdal, J. Phys. U.S,S.R., 9, 183 (1945).

q
=——Xp '{dXp/dh). (2.8)

q=0.041 at Echo Lake, and it is roughly proportional to t ~.

If we neglect this altitude variation of q, the coeScient in

"G. Moliere, Cosmic Radiation, ed. by W. Heisenberg
(Dover Publications, New York, 1946), Chapter 3.

"The author thanks Drs. H. A. Bethe and L. Eyges for
calling his attention to this point."L.N. Nordheim, Phys. Rev. 59, 929 (1941). J. Roberg,
Phys. Rev. 62, 304 (1942). J. Lanossy, Cosmetic Rays (Oxford
University Press, London, 1948), Chapter VIII.

The only detailed calculation of a structure func-
tion available at this time is due to Moliere. "
Moliere restricts himself to the maximum of the
shower. He starts by calculating the structure
function for particles of a single energy E under
the assumptions described as "approximation A"
in the review paper by Rossi and Greisen; i.e.,
Moliere calculates the partial structure function
f(Ep,E,t r) for electrons of energy E))p. It is
somewhat difficult to estimate the accuracy of the
Moliere function, since long numerical computations
are involved and the calculation has not been
reported in detail so far. The fact that the dis-
tribution-in-angle (an intermediate step in the
calculation) turns out to be negative for angles
near 8=3(E,/E), " is not encouraging. On the other
hand, Moliere's value for the mean square distance
(r')(Ep, E,t„,„) of particles of energy E from the
shower axis at the shower maximum turns out to
be correct within about 15 percent.

Moliere himself states the value of (r (Ep,E,t, )) implied by
his partial structure function. It is

(~'(Eo E t )) =0 835 (EsXp/E)' (2 5)

This can also be seen by differentiating his Fourier transform
q (p) twice, and setting p =0. While this value of (r'(Ep, E,t,„))
is supposedly appropriate to the maximum of the shower,
actually the only property of the shower-distribution used
was that m(Ep, E,t, )~E ~ (the notationis as in reference 5).
This, however, is just the behavior of the track-length z {Ep,E}.
Hence Moliere's (r'(Ep, E,t, )} can be compared directly
with (r'(EpE)) computed on a track-length basis; i.e. ,

(r'(EpE)) =—Jp"(r'(Eo,E,~)}7t-{Eo,E,t)dt/ Jo m {Eo,E,t)dt, {2.6)

This latter quantity can be calculated accurately under ap-
proximation A by a method due to Landa. u' or alternatively
by an equivalent method due to Nordheim. ' "The result in
either case is

(r'{EpE))=0.723(E,Xp/E)' provided E«Ep. {2.7)

The near agreement between {2.5) and (2.7) confirms Moliere's
basic calcalution. (2.7) diA'ers somewhat from the result of
Landau and Belenky in spite of the fact that we used their
own method of calculation. The reason is that they employed
approximate expressions for the track-lengths which are
valid for E«Ep but not for E~Ep. It turns out that an ac-
curate expression for z (Ep,E) for values of E~Ep is essential
to obtain the correct answer, even though the answer itself
refers to an energy E«Ep. The result (2.7) was derived using
the Rossi-Greisen Mellin transform directly.

The expression (2.7) still needs a correction because we
express (r') in units of the radiation length Xp, and Xp
decreases as we go down into the atmosphere. We define the
fractional decrease in Xp per radiation length, q, by
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FIG. 1. Two ionization chambers, 1 and 2, are placed at
x = &a, y=0. A shower whose core hits in the right half-plane
will be counted provided it has suHFicient density at the
position of chamber 2.

Eq, (2.7) (called Q from here on) is given by

1 0 87q+0 43q
(2 9)

(1—0.99q+0.19q')(1 —1.99q+0.74q')

We can understand the dependence of Q upon q as follows:
Since the particles which we measure at a given lateral
distance from the shower axis got their lateral displacement
somewhat earlier, we should replace Xo in (2.7) by Xo
measured some distance b,t above the place of observation.
This means Xs(t) is replaced by Xs(t at)=Xs—(t)[i+&At].
Since Xo enters squared, Q is given approximately by

Q=Qs[1+2gat],
where Q0=0.723 is the value computed by neglecting this
effect. Expansion of (2.9) shows that bt —1.05 radiation units;
i.e., the high energy particles mhich me observe got their lateral
displacement on the average one radiation unit above the place
of observation. This agrees with Janossy's result. This effect
is not negligible. It amounts to a ten percent increase in Q
at Echo Lake. Indeed, at Echo Lake we find that (r'(8&))
is given by

(r'(8+)) =0.786(ZsXO/Z)2. (2.10)

Even if Moliere's partial structure function for
particles of a single energy were rigorously correct
for high energy (Z)) e) particles, his over-all struc-
ture function, summing the contributions of elec-
trons of all energies, might still be in error. Moliere
states that he used Arley's approximation" to find
the total number of low energy electrons. This
approximation is quite poor, "'5 and it would falsify
his over-all structure function even if he had at his
disposal the exact partial structure function for low
energy electrons.

An even more serious error in Moliere's calcula-
tion comes from the fact that he did not use the
correct partial structure function for electrons near

» N. Arley, Proc. Roy. Soc. A1&, 519 (1938)-"S.Z. BeIenky, Comptes Rendus, U.S.S.R. 30, 608 (1941).
&~ M. Schonberg, Ann. Acad. Brasil. Sci. 12, 281 (1940).

the critical energy. Rather he extrapolated the high
energy partial structure function right down to the
critical energy. It can be shown'" that this pro-
cedure overestimates the lateral spread of these low
energy electrons considerably ((r'(Z)) is too large
by about a factor of two at Z= e). Since electrons
of about critical energy make up most of the
population of the shower, this error in the partial
structure function is preserved in the total structure
function.

Underestimation (a la Arley) of the number of
low energy electrons is likely to make Moliere's
structure function more peaked than the true one.
On the other hand, the incorrect partial structure
function for low energies will make Moliere's
structure function less peaked (extending farther
out) than the true one. A rough estimate's' shows
that the over-all effect makes the Moliere function
less peaked than the true one. Just how much more
is not known at this time.

It must be emphasized that Moliere's calculation,
even though we have no estimate of error for it, is
the best one available at this time. *~ For this
reason we shall choose it as the basis for comparison
between theory and experiment. Ke shall assume
that the Moliere structure function represents the
lateral structure of all showers. This assumption
implies that we disregard the variation of the structure
function with ttge. An estimate of the error thus
introduced will be given in Section 6, It may be
appropriate at this point to emphasize that the
main merit of the theory to be developed here lies
in the qualitative understanding of the main
features of the decoherence curve, not in the
quantitative results.

The over-all structure function of Moliere can be
approximated for sma11 values of r by an analytic
expression due to H. A. Bethe."

f(&o t-* r) =r 'e(ri» ), -
4(x)=Cx '(1+4x) exp[ —4x&j for x 0.5.

rt is the characteristic lateral unit of length (1.4).
C is a constant, C—0.450. Since we are concerned
with distances of the order of one to ten meters
while rj is 106 meters at Echo Lake, we can use
(2.11) without introducing a large error. (Roughly
ninety percent of the contribution to the counting
rate of two chambers even twelve meters apart
comes from showers whose cores hit no farther than
fifty meters (r/r& —0.5) away. )

We see that the Moliere function has the pre-

'"J. Roberg and L. Nordheim, Phys. Rev. 75, 444 (1949).
The author wishes to thank Professor Nordheim for calling
his attention to this point and for giving him the numerical
results of the above paper prior to its publication.**Pomeranchuk and Migdal, reference 9, put the proper
emphasis on the age-dependence of the structure function, but
their work is more qualitative in character."H. A. Bethe, private communication.
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dieted r—' dependence near the origin. It should be
emphasized, though, that the exponential factor
is very important. It gives an appreciable deviation
from the r ' law already at distances of order
(r/ri) 0.01 (i.e. , one meter at Echo Lake).

&f(r)) p

The area of the circular strip is

(3.1)

dA =2 arc cos(a/r) rdr (3.2)

There are S[p/f(r)] such showers per unit time. We
get the contribution hf the right half-plane to the
counting rate W(p, a) by summing over all these
circular strips; i.e. , by integrating from r=a to
r = ~. By symmetry, the showers whose cores pass
through the left half-plane give the same result.
Hence

(3) THE THEORETICAL FORMULA FOR THE COUNT-
ING RATE NEGLECTING THE DIMENSIONS OF

THE CHAMBER. THE INVERSION THEOREM

Let S(X) be the number of showers crossing the
plane of observation per unit time, with their axes
falling within a unit area, such that the total
number of particles crossing the plane is greater
than X. We want to determine W(p, a), the coin-
cidence counting rate of two ionization chambers
of dimensions much smaller than c, and biased so
that a particle density greater than p is necessary
before either chamber will register.

One can see from Fig. 1 that the recording of
showers whose cores pass through the half-plane
x&0 will be limited by the ionization chamber at
x= —a. That is, if it registers, the other one will
certainly register. (KVe are neglecting fluctuations. )
Similarly, showers whose core passes through the
half-plane x&0 will be limited by the chamber at
X= +Q.

Consider those showers whose cores pass through
the shaded circular strip in Fig. 1. They will be
recorded provided

rather unfortunate fact. It means that it is prac
tically impossible to get the detailed behavior of f(r)
from the experimental data. The statistical accuracy
necessary before the second derivative of S' has
any meaning would require years of taking data.
Conversely, this result explains the agreement
between theory and experiment, found by inves-
tigators who assumed a structure function f(r), and
a frequency function S(X) and determined the cor-
responding W(p, a) fram (3.3). In the light of this
discussion, such agreement is to be expected for any
reasonable choice of f(r), but it proves very little
about the correctness of th'is choice of f(r).

S(X) =&rX ~= Xo" (4.2)

will give a good approximation to the behavior of
the decoherence curve near zero separation.

We now show that V(a) behaves in the fallowing

way for small values of u:

(4) THE BEHAVIOR OF THE DECOHERENCE CURVE
AT SMALL DISTANCES

The experiments' show that the coincidence
counting rate W(p, a) has approximately a power
law dependence upon p, i.e.,

W( p, a)=p & V(a), (4.1)

where the exponent y is a slowly varying function
of u, In order to discuss the asymptotic behavior of
the decoherence curve near a=0, we shall assume
that y is constant. Some evidence in favor of this
assumption comes from the experiments of Cocconi"
who investigated the distribution-in-density of
showers somewhat smaller than the ones con-
sidered here. The results of Cocconi can be inter-
preted to mean that S(X) N 'i' for X of order
10' —10'. Since showers of this order of magnitude
contribute most of the counting rate in %'illiams'

experiments for separations less than a meter, we
can infer that the assumption

W(p, a) = jt 4r arc cos(a/r)S[p/f(r)]dr. (3.3)
V(a)= V(0) —ha' ". (4.3)

(3.3) is a»ntegral equation connecting the
experimental function W(p, a) of p and a with the
unknown function S[p/f(r)] of p and r It turn. s
out that (3.3) has an explicit solution. This is due
to the fact that the kerne1 involves only the ratio
of r to a. The solution is

Sf p/f(r)]=(2v) 'jt (a' —r') '(&'W/&a')da (34)

The kernel (a' —r') & has an infinite (but integrable)
peak at the lower limit a=r Therefore, .Sfp/f(r)]
is essentially proportional to the second derivative of
W(p, a) with respect to a, at the point r =a. This is a

Referring back to Fig. 1, we see that the region
between the dotted line and the y axis would con-

tribute to the counting rate of the left-hand chamber
if the other chamber were moved over to x= —a.
Hence, we must integrate S[p/f(r)] over the area of
this strip and mu1tiply by 2 to get the differene
between W(p, 0) and W(p, a). Ke introduce polar
coordinates to get

~x/2 &o sec/

W(p, 0) —W(p, a) =2 d4 rdrS/p/f(r)]
2 0

We use Eq. (4.2) and the limiting form of the

"G. Cocconi, A. Loverdo, and V. Tongiorgi, Phys. Rev.
7'0, 846 (j.946).



JOHN M. 8LATT

structure function for small values of r:
f(r)—C/r r.

Equation (4.2) then gives

W(p, 0) —W(p, a) = p
—&[V(0) —V(a) ],

where

(4.4)

The coefficient in brackets is the h of Eq. (4.3). The
importance of this result does not lie in the value of
the coe%cient. It lies in the fact that the theory
predicts an extremely sharp rise in the decoherence
curve for small distances. Indeed, formula (4.3)
implies an infinite slope of V(a) at a =0.

We have already seen that predictions like this
cannot be trusted for very small distances. First of

IOo

COUNTING RATE

' 0Oa 0.06

Fro. 2. Ordinate: Counting rate. Abscissa: Half-separation
tl between the chambers in units of the characteristic lateral
distance r&. The values of the exponents y in the distribution-
in-number 5(N} are indicated next to the curves. The cor-
rection for ihe point at a=0 is discussed in Appendix A,

~sr/2 +a Sec@

V(0) —V(a) =2, d@ .drf (r). (4.S)
~0

lf we now substitute (4.4), we find that

V(0) —V(a)

m j2

= 4o(C/ri)&(2 —y)-' (sec@)'-~dy a'-~

all, the chambers are not infinitely small —this will
be discussed in Appendix A. Second, the structure
function is not the Moliere function for these small
distances. This will be discussed in Section 6.

However, the qualitative result stands. From
ordinary shower theory, one should expect a risein the
decoherence curve for distances considerably less than
the characteristic lateral unit rI. The usual argument
against this is that most of the counts are due to
showers whose cores hit far away. This is not true
for very small separations. Essentially there are
two effects here: (1) the cores of showers of a given
number of particles N have to pass through an area
which becomes smaller as N becomes smaller, and
(2) the total number of showers per second per unit
area is a rapidly decreasing function of ¹ The two
effects work against each other. The net result
depends upon the exponent p in the power law of
the distribution-in-number 5(X). For y between
one and two, we get a sharp peak at the center.

A few remarks may be in order here concerning Moliere's
calculation of the decoherence curve for Geiger-Miiller
counters. Moliere finds that the theoretical decoherence curve
should flatten off at distances of the order of three meters, in
contradiction with the experimental data. On the other hand,
a lengthy but elementary argument of the general nature of
the one just given enables us to state that the result (4.3)
also holds for Geiger-Muller counter decoherence curves; the
only diAerence lies in the coefticient k.

A possible explanation for Moliere's result is that he did
not use a power law distribution for S(N), but rather a power
law for the distribution-in-energy of assumed primary elec-
trons. The resulting S(N) is not a pure power law. In particular,
it rises less rapidly for small values of ¹ Hence, our assump-
tion of a pure power law for S(N) gives a larger rise of the
decoherence curve near zero than Moliere's assumption.
However, it is doubtful that even under this assumption the
decoherence curve should flatten oC quite that rapidly. One
is tempted to believe in an error in Moliere's calculation,
stemming either from the use of approximate functions for
II(B&,0,t) or from the very complicated numerical integrations
involved in this method.

The asymptotic form (4.4) of the structure func-
tion is not very accurate. V(a), as defined by (4.1),
was therefore calculated numerically from the
Moliere function (2.11) for various values of y.

The results are given in Fig. 2. They are nor-
malized to unity at a=0.06 (twelve meters separa-
tion at Climax). For each value of y there are two
points at zero separation. The upper one is uncor-
rected for the finite size of the chamber. The lower
one is corrected for this effect. (See Appendix A. )
The numbers next to the curves show what values
of y were assumed.

The theoretical decoherence curves show a drop
of 2 or 3 (depending upon y) between a =0.01 and
a=0.06 (i.e. , 2 and 12 meters chamber separation
at Echo Lake). A factor of this order is observed
experimentally. ~ On the other hand, the theoretical
curves definitely disagree with experiment for very
short distances. There the experimental curves
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Hatten off whereas the theoretical ones keep rising,
even after one takes the finite chamber size into
account. This will be discussed in the next section.

We would only like to point out here that the
existence of this disagreement is not in contradiction
with the remarks of Section 3. 5[pjf(r)] is propor-
tional to the second derivative of W only where f(r)
is regular. In the present case, the theory predicts
not only an infinite second derivative at c =0, but
also an infinite first derivative. The experiments,
even with rather poor statistics, can distinguish
between a finite and an infinite slope, and they give
a finite slope.

(5) THE DISTRIBUTION-IN-NUMBER 8(N)

Ke start by recalling the experimental data' con-
cerning the exponent y in Eq. (4.1).These data are
summarized in Table I. YVe see that the effective
exponent p f f of the density response curves
increases with chamber separation; p, ff —1.5 for
chambers close together, y, fr=1.9 for chambers
separated by twelve meters (a=0.06ri).

This behavior of y, ff takes place because the size
of the showers which contribute most to the
counting rate depends upon the chamber separa-
tion. As the chamber separation increases, showers
containing increasingly larger numbers of particles
make the major contribution to the counting rate
W(p, a).

There are two reasons for y, ff to vary with the
number of particles in the showers which contribute
most to the counting rate: (1) the distribution-in-
number S(N) of the showers may not follow a pure
power law; (2) the structure function may be (and
we know it actually is) age-dependent.

The first effect needs no explanation. In order to
understand the second effect, let us assume for the
moment that the distribution-in-number 5(N)
follows a pure power law, S(N) =oN ~. The age-
dependence of the structure function implies that
we overestimate the sharpness of the peak in old
showers by using the Moliere function. Since the
structure function is normalized by Eq. (2.3), a
smaller peak near zero implies that f(r) has larger
values for larger values of r. This situation is shown
schematically in Fig. 3.

If the event which originates the shower is known
both as to kind and height above the equipment,
then the number of particles X in the shower also
defines the age of the shower. YVe may therefore
consider the structure function as a function of iV
and r:

TABLE I. Effective exponent ye ff as a function of chamber
separation, for a bias p =460 electrons/m'.

Chamber separation
in meters at
Echo Lake

0.015
0.36
1.0
7.0

12.2

0.0007
0.0017
0.0047
0.0332
0.0575

1.50
1.67
1.56
1.85
1.90

We shall assume that Eq. (5.2) has a unique
solution for every r and p of interest. Then Eq.
(3.3) becomes

W(p, a) = 4r arc cos(a! r)SLN(p, r)]dr. (5.3)

W(p, a)-p (5 4)

with o. evaluated at r =a. This shows that even a
pure power law for 5(N) will lead to effective
exponents y, ~~ which increase with increasing separa-
tion due to the age dependence -of the structure function.

Since we have no quantitative information about
the age-dependence of the structure function, we
shall neglect elfect (2) altogether in the quantitative
discussion of this section, restricting ourselves to

Next, we determine the dependence of E upon p.
For a constant structure function, X is of course
proportional to p (see Eq. (3.1)). Figure 3 shows
that for small values of r, f(N, r) increases with N,
while for large values of r, f(N, r) decreases with N.
Over a small interval in p, N may be assumed to
behave like p where n is less than unity for small r,
greater than unity for large r.

We now substitute a pure power law for S(N).
Since most of the contribution to 8' comes from
distances r of order of magnitude a, we conclude
that the dependence of W(p, a) upon p is roughly

Nf(N, r) = p. (5.2)

Ke define the minimum effective number of
particles N =N(p, r) by

FIG. 3. Schematic picture of the age-dependence of the
structure function. Curves 1, 2, and 3 are in order of increasing
age of the shower. The structure function decreases with age
for small values of r, increases with age for large values of r.
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We point out that a function S(1V) which goes
from X "to X—"more gradually than our simple
assumption (5.5) would make the theoretical curves
in Fig. 4 even Hatter.

The age-dependence of the structure function
makes y, fi smaller for small separations, larger for
large separations (see (5.4)); hence the theoretical
curves in Fig. 4 will become steeper if this effect is
taken into account, in better agreement with the
experimental data. However, it is uncertain whether
the effect will be pronounced enough to lead to
quantitative agreement between theory and experi-
ment.

Showers near their maximum (for which the
Moliere f(r) is presumably a reasonable approxima-
tion) contribute proportionately' more to the
counting rate at 7 meters and 12 meters than at
close distances. Ke therefore choose the "best"
value of the breakpoint distance uo to fit the points
farther away; i.e. , u0=0.06. One can then assume
that the discrepancy between the theoretical and
observed values of y, ~i at small separations is due
to the age-dependence of the structure function (see
the next section, however, for another important
effect).

A value of F0=0.06 with a minimum density
p=460 particles per m' corresponds, according to
(5.6) to a breakpoint 1VO of 1.03X10', or within the
accuracy involved here,

It may be of interest to put down some numbers
here for S(1V) W. e obtain

S(1V) =1.8X10 '(1V/10') " 1V&10'
)

10—(1V/10 )
—.

, 1V

where S(1V) is in (meter) ' (hour) '—In. particular,
(5.12) tells us that there are 0.0018 showers per
hour whose cores hit within one square meter and
which have more than 10' particles at the place of
observation. It hardly needs to be emphasized that
(5.1Z) is only an order of m-ag-rtitude estimate In.

view of the uncertainty in the theory, we prefer not
to give any estimate of error at all. The reader is
referred to Appendix B for an alternative way of
determining S(1V) which gives a result diff'erent by
more than a factor of two from (5.12).

The qualitative agreement between theory and
experiment in Fig. 5 for larger distances cannot be
used as an argument in favor of the Moliere func-
tion, in view of our remarks in Section 3.

(6) SOME ESTIMATES CONCERNING THE INFLUENCE
OF THE AGE-DEPENDENCE OF THE STRUCTURE

FUNCTION AND SOME SPECULATIONS
ABOUT MULTIPLE PRODUCTION

Ke shall now discuss in more detail whether the
discrepancies between the theoretical and experi-

il
Counts&

hOur

Xp = 10 particles. (5.11)

Ke now compare the theoretical and experimental
decoherence curves under the assumptions (5.5) and
(5.11) (y, ff was related to the density response
curve). We shall determine the coefficient &ro1VO

"
= 0 ~NO "in front of the distribution by fitting the
points at 7 and 12 meters. The result is shown in

Fig. 5.
K'e see that the trend of the curve is correct

except at very small separations (less than one
meter). The theoretical curve drops by a factor of
two, approximately, between ar/~ = .010and /ra~

=0.05 (i.e., between 2 meters and 10 meters
chamber separation). The experimental points are
in rough agreement with this.

On the other hand, there is decided disagreement
for (a/r~) (0.01. The theoretical curve rises sharply
up to a value of 1.73 at zero separation. (This is
already corrected for the finite chamber size; see
Appendix A.) The experimental points indicate a
fiattening off. (The indication that the curve
actually drops for small distances must not be
taken seriously. ) This discrepancy can again be
attributed to the age-dependence of the structure
function and is again explained qualitatively by the
smaller peak if the structure function for older
showers. It will be discussed quantitatively in
Section 6.

I 0'

0.5

I

GO2

i&r, )
I

0.04
I

0.06

FIG. 5. The decoherence curve. Ordinate: Counts per hour
with a bias of 460 particlest/m'. Abscissa: Half-separation
between chambers in units of ri ~ The experimental data are
due to R. W. Williams. (See reference 7.) The theoretical curve
is fitted to the points at a=0.0332 and a =0.0575.
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mental values of W(p, a) at small distances can be
accounted for by the age-dependence of the
structure function, under various assumptions
about the way large air showers are initiated.

Ke shall use the estimate of Pomeranchuk and
Migdal' for the behavior of the structure function
at small distances

(r) ~re —'2 (6.1)

t —tp
(radiation

units)
F-p

(ev)

3.23 X 10''
3.70X 10»

1.42 X 10'
1.18X 10'

( /')

1.5X10 '
10 '

Chamber
separation at

Echo Lake
(meters)

0.03
0.20

where s defines the age of the shower. s=1 cor-
responds to the shower maximum. In Section 4 we
have derived the asymptotic form of the deco-
herence curve, (4.3). The "y" in (4.3) came from
the [f(r) j» in the integral (4.5), under the assump-
tion that f(r) behaves like r ' lf f.(r) behaves like
r' ' instead, the asymptotic behavior of the deco-
herence curve near a =0 becomes

U(a) —V(0) —ka' —"-'». (6.2)

Qf course„ the constant 0 is also changed.
For s=1 (showers at their maximum), this

reduces to (4.3), as it must. But now consider older
showers for which

2 —(2 —s)y&1, s&2 —y-'. (6.3)

Then V(a) will come in horizontally at a =0, rather
than with a vertical tangent. Since we are talking
about older showers, it is reasonable to use Coc-
coni's" result for y; i.e. , y—1.5. We then cLassify a
shouer as "old" if s&4/3

It may be worth while to point out that this
classification involves not merely the properties of
any one shower, but also their distribution-in-
number. Unless we know something about the
exponent y, we do not know which showers we are
to classify as "old" for our purposes.

It is useful to put a few numbers in here, just to
get an idea of the orders of magnitude involved.
Ke shall make two different assumptions:

(1) The shower is initiated by an electron at the
top of the atmosphere.

(2) The shower is initiated by a (secondary)
electron four radia. tion units (144 g/cm') below the
top of the atmosphere. We choose this number
because the absorption length of the X radiation"
in the atmosphere is of this order of magnitude.

Ke can determine which shower has s = 1.33
under these two assumptions, by using formula

TABLE II. (6.1) Maximum chamber separations over which an
"old" shower can produce a count.

(2.104) of reference 5. We then estimate what
regions of the decoherence curve will be affected
seriously by these showers. A shower containing
only a few particles cannot affect the counting rate
of two ionization chambers if they are placed far
enough apart. Indeed, the largest possible half-
separation a .„ is given by

&f(a-*)= u (6.4)

where p is the chamber bias. This corresponds to the
case where the shower hits just midway between
the chambers.

Unfortunately, we cannot use (6.1) here for f(r)
since the constant in front is important. VA there-
fore have to fall back upon the Moliere distribution.
The results are given in Table II. The first column
is the distance over which the shower develops, the
second is the energy of the initiating electron for
s=1.33, the third the number of particles at the
place of observation. The fourth and fifth columns
give the maximum chamber separations over which
the shower can be effective.

These numbers are disconcertingly small. On
Fig. 5, the experimental results start deviating
from the theoretical curve at distances of the order
of one meter, probably even two meters if we want
to get a smooth curve.

Of course, the Moliere function, being too large
at the origin, will falsify the numbers in Table II,
but the schematic Fig. 6 illustrates that we are
likely to overestimate a „ in this way. For large
enough values of (p/X), the true intersection point
P gives a lower value of a than the intersection
point Q with the Moliere function. Since the values
of r involved here are extremely small, we are very
probably in that region of p/X.

It is not possible to say at this time whether a
correct calculation will improve the situation or
whether the qualitative discrepancy in Fig. 5 will
remain. The estimates given here make us inclined
to believe that under either one of the two assump-
tions about the generation of the shower presented
so far, a mathematically correct application of
shower theory will not yield agreement between
theory and experiment. (We emphasize that the
disagreement we are talking about here is in the
opposite- direction from the one sometimes referred
to in the literature. "' The theoretical curve rises
too steeply near the origin. )

This leads us to believe that we may have been
underestimating the age of the showers which are
responsible for our counting rates. Suppose that
air showers are not produced in an event involving
only one initiating electron (or photon), but rather
in an event of high multiplicity v, involving elec-

~~ B. Rossi, Rev. Mod. Phys. 20, 537 (1948).
1' L. Janossy, Cosmic Rays (Oxford University Press,

London, 1948), Chapter VI II.
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trons (or photons) originating in the same place
and in roughly the same direction. In that case,
the value of ¹inTable I I have to be multiplied by v.

If v is of order 10' to 10', we are right in the region
of X which contributes most to the counting rate
for moderate separations. In that case, the fIatten-
ing off of the decoherence curve becomes eminently
understandable.

There is another effect of multiple production
tending to make the decoherence curve come in with
zero slope at r =0. This is the granular structure of
such a many-core shower. After all, the initiating
particles do not all have exactly the same directions.
Khereas the angles are small, the distance to the
place of observation is large.

It is not certain just how one should estimate
the ang1es involved in such a multiple-production
process. We shall assume that a primary (pre-
sumably a proton) creates a large number v of
short-lived mesons, each of which then generates a
shower. In analogy with electron pair creation, ' we
shall assume that the mesons get sidewise momenta
of order uc, where u is the meson mass. (We shall
assume uc' = 160 Mev; i.e. , the mass of a s-meson. )
The angle between the meson and the primary is
then of order pc'/8 where 2 is the energy of the
meson. If the total energy of each meson goes into
the shower, we can relate B to the total number of
particles X at the place of observation in the fol-
lowing way. The number of particles in each com-
ponent shower of this many-core air shower is X/v.
This determines B through

X/v=11(Z, 0, t), (6.5)

where II(Z, 0, t) is given by formula (2.104),
reference 5 Ke shall assume t =16 radiation units;
i.e., the showers are created 4 radiation units (144
g/cm') below the top of the atmosphere

The result of this estimate is shown in Fig. 7, in
which we have drawn lines of constant (estimated)
core-separation in the N-v-plane.

The figure shows that showers of 10' particles
have cores separated by distances of order 10 cm
if v=10, of order 0.9 meter if v=100, of order
5 meters if v = 1000. Williams observed a few events
with his "arrangement A" in which there were
about that number of particles in the shower, with
an apparent unique coer over distances of one
meter. A multiplicity of order 20—40 would not
contradict this result, yet it would already give an
appreciable structure to the shower core. True, the
equipment used in the experiments could not resolve
such a granular structure explicitly. But the struc-
ture would appear through the substitution of a
much Hatter "effective" structure function instead
of our f(r). This helps to explain the flattening oA
of the decoherence curve.

W'e want to emphasize that these estimates are

(Pjg)

l

I

wo

Fio. 6. The Moliere structure function is likely to overestimate
the area of inRuence of an old shower.

very rough and are based upon an assumption
(sidewise momentum of order uc) which may well
be completely wrong. In addition, our estimate of
the multiplicity v depends upon the assumed efI'ec-
tive height of shower-production, becoming smaller
as this height increases. We have also indicated in
Fig. 7 the curve of multiplicity vs. number of par-
ticles predicted by the Oppenheimer-Lewis theory. 4

These multiplicities are somewhat high, if we use
our estimate of the angles involved, since showers
of 10' particles contribute appreciably to the count-
ing rate near zero separation, and these showers
would have core-separations of order 1 meter.

Ke remark that the Oppenheimer-Lewis theory
itself would give much larger angles than we have
estimated, but this has been disproven experi-
mentally. " It appears to the author that it is not
justifiable to dismiss the possibility of high multi-
plicity, but small angles, on the grounds of theo-
retical arguments which involve rather doubtful
meson field theories.

Since we do not accept the Oppenheimer-Lewis
estimate of the angles involved in the production
process, there is no obvious reason to accept their
prediction for the multiplicity of production. Indeed,
it is likely that the Oppenheimer-Lewis multiplicity
provides an upper limit for what we can expect. A
somewhat lower multiplicity, with ordinary rela-
tivistic angles of production, seems consistent with
the data analyzed here.

In conclusion, the following points emerge from
our analysis:

(1) Contrary to statements found in the literature,
ordinary shower theory leads one to expect a rise in the
decoherence curve at distances much less than the
ckcracteristic lateral cBstznce rj.

(2) The theoretical deco herence curve calculated
under the assumption of a constant structure function
rises more sharp/y near the origin that the experi
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Fro. 7. Estimate of the
granular structure of many-
cored showers. Ordinate: Mul-
tiplicity of production v. Ab-
scissa: Total number of particles
in the shower at the place of
observation. The straight lines
are lines of constant separation
between cores, given in meters.
The dashed curve is the multi-
plicity-number relation pre-
dicted by the Oppenheimer-
Lewis theory. (See reference 4.)

Io
(p$ io'

mental points This.indicates that the effective structure
function is less peaked than the Moliere function.

(3) W1rile the age depende-nce of the structure func
tion tends to lessen this discrepancy, the quantitative
estimates of Section 6 make it appear doubtful that one
can get agreement between theory and experiment with
out assuming a rather high multiplicity of the event

which starts the shower.

ACKNOWLEDGMENTS

It is a pleasure to acknowledge many helpful
discussions on this subject with Professor B. Rossi
and R. W. K'illiams of M. I.T., H. A. Bethe of
Cornell University, and L. %'. Nordheim of Duke
University.

APPENDIX A

The Correction for the Finite Dimensions of the
Chambers

We recall that the chambers are biased so that they record
only if the ionization exceeds a certain minimum amount. The
chambers used were of cylindrical shape, about half a meter
long and ten centimeters in diameter. We shall therefore

IIy

~ (xy)

j'I

AC

F1G. 8. A shower of N particles whose core hits at the point
(xy) will send n particles through the shaded ionization
chamber, n being given by formula (A.1).

neglect the width of the chambers, but not their length. A
minimum value of the ionization can then be interpreted as a
minimum number of particles which have to pass through the
chamber before it records.

We shall determine S'(p, c) for a=0, i.e., for a single
chamber. Consider Fig. 8. If the core of a shower of N particles
with a density function p(r) =Nf(r) passes through the point
(xy), the number of particles n passing through the chamber is

n =ff «'~y'pP((x —x')'+(y —y')')'3 (A 1)
Area of Chamber

If we neglect the width of the chamber, the double integral
becomes a single integral over y' between —l and L with x'
set equal to zero and fdx' replaced by T, the width of the
chamber. Assuming a constant structure function,

(A.1) becomes

where

p(r) = Nf(r)

n = Ng{xy) (A.2)

I x2+(y-L)'1~-(y-l)
R '—= (2l) 'log {A.S)

R is zero at x =y =0; for large values of x and y, R approaches
r —= (x2+y )~.

For values of x and y much larger than l, the dimensions of
the chamber can be neglected. In that case, formula {A.3)
gives

g(xy) ={2/T)f(r), r» l. (A.6)

We now observe that both (A.4) and (A.6) can be written as

g (xy) ~™(2LT)f(R). (A.7)

In practice the condition l«rQ is satisfied, since l=0.003r~
for the chambers used. Equation (A.7) then holds for R«rQ
and for R» l. Since these two regions of validity overlap, it
is evidently a good approximation to assume that (A.7) holds
for all values pf R.

Since S(N) dx dy showers of more than N particles have
cores which pass through the elementary area dx dy, per
second, and since (A.2) implies that N must exceed n/g(xy)
in order that a count be recorded, we conclude that the

g(xr) = Tf-1' 4'fP(x'+ (y—y')')'3. (A.3)

Let rQ ( 0.01r~) be the largest value of r for which (4.4)
is an adequate approximation for our purposes. If both r«rQ
and l«rQ, we can replace f(r) in (A.3) by the expression (4.4).
The integral can then be evaluated explicitly, with the result

g(x, y)={2/T)(C/r~R) ~ ~ *r&&rQ and l&&rQ (A.4)

where the variable R is defined by
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counting rate S"{n,0) of a single chamber is given by

lV(n, 0) = J' J'Sgn/g {xygdxdy, (A.s)
where the integral extends over the whole xy plane.

We now make the approximation (A.7) and introduce the
notation

{A.9}
for the average particle density through the chamber. We
then get

W(p, 0)=J Sl p/f(R)/A(R)dR, {A.10)

where A(R}dR is the area in the xy plane enclosed between
R and R+dR. A lengthy but elementary calculation gives the
result

A (R}dR=m(R/l }2'.RdR, (A. i 1}
where the weight function m is given by

m(x) = [1+$sinh'(1/x)$ [x sinh(1/x)g s. {A.12)

The weight function m(x) is shown graphically in Fig. 9. We
see that m(x)~0 as x~0. This cuts out the inAuence of the
very small showers, as expected.

Ke proceed to calculate the correction b, W to the counting
rate for zero separation. We define

68'= $8'(p, 0)$~ —
I S'(p, 0}fg o. {A.13)

We observe that we can obtain the limiting case of a point
chamber from (A.10}and (A.11) by letting l go to zero (this
is of course obvious from the start), in which case the weight
function zo becomes simply unity. We therefore have

We then get
~IV= p~~V;

6 V—a (C/rg)& R &t m(R//) —1)2xRdR,
0

(A.15)

We can introduce x=R/l as variable of integration, getting
the Peel ress@

AV=p(C/rq)«P «J x «Lm(x) —1]2xxdx. (A. 16)

This formula for the correction has the advantage that it
gives the dependence of 5 V upon r& and l explicitly. The
dependence upon p is not quite explicit, part of it being con-
tained in the definite integral. The integral is a smooth func-
tion of' y, however. In Table III we give values of the integral
for various values of y. The integral is negative, indicating
that the correction is in such a direction as to decrease the
counting rate for a single chamber of finite size compared to
a point chamber. This was, of course, to be expected.

APPENDIX B

The Counting Rate of the Triangle Arrangement

In order to check the Moliere structure function experi-
mentally, three of the four ionization chambers were placed

DW=J SCp/f(r)Xw{R/1) —1j2«rRdR. (A, 14)

We remark that the integral extends from zero to infinity
only formally. Practically, the factor I zo{R/I) —1) approaches
zero for R & l quite rapidly. Indeed, m(R/l) = 1+{7/120)(l/R) 4

+ ~ ~ ~ for R &/. Hence, the main contribution to (A.14) comes
from the region R~gl. For the chambers used gl is about 0.40
meter, i.e., 4X10 W~ at Climax.

The asymptotic expression (4.4) for f{r) is good out to r
of order 10~r&. Hence, it is permissible to replace f(r) by its
asymptotic form (4.4) in the integral (A.14) for hi%

We again assume a power law for S(N), i.e., S(N) =o-N ~.

Fj:G. 10. A shower whose core passes through the shaded
circular strip wi11 be counted if it has sufhcient density at the
position of chamber i.
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1.50
1.60
1.70

TABLE III,

J' x 7 [w(x)-l 1 2xxdx

—2.08—5.84
-10.42

The observed counting rate was 47 counts in 325 hours, at
a minimum density p = 616 particles/m'. If we assume a single
power law for S(N) with exponent y=1.9 (this agrees with
the density response curve at the distances involved; see
Table I), we obtain the following result for the absolute
number of showers per square meter per hour, containing
more than N particles, at Climax, Colorado:

S(N) =8.4X10 ~{N/10 ) ' (meter) {hour) '. (B.4}
at the corners of an equilateral triangle, with the fourth
chamber in the center of the triangle.

We shall not discuss here the method used to test the
validity of the Moliere function. SufFice it to say that the
Moliere function agrees with experiment within the (rather
large) experimental error, for the distances used (the side-
length of the equilateral triangle was 12.2 meters) ~

We merely intend to derive the formula for the absolute
counting rate of this arrangement. Consider Fig. 10. If all
four chambers are biased to the same minimum density p, the
showers whose core passes through the shaded circular strip
will be counted if they have sufFicient strength to set off
chamber number one. This is true since chambers two, three,
and four are nearer than chamber one for any point of the
strip. The strip is defined by segments of circles centered at
chamber number one, with radii between r and r+dr. The
area of this strip is 28rdr, where 8 is the angle indicated on the
figure. The sine law of trigonometry gives the identity

r sin({x/3) —8}=a sin(2m/3),

8 = {m/3) —arc sin[(v3/2)(a/r) j. (B.1)

If the core of a shower hits within the shaded area, it will be
recorded provided its total number of particles N is big
enough to give a sufficient density p at chamber one, a distance
r away:

We have seen before (Section 5) that a single power law is
not expected to be a good approximation to S(N) for all
values of N. The values of the exponents y, qg at various
distances (see Table I) make it appear reasonable to assume

roE "for N&10",
cr ) N "for N & 10', (B 5)

where 00, oi are adjusted so as to make S{N) a continuous
function. The subsequent analysis is exactly analogous to
that of Section 5. The result is:

S(N) =8.4X10 {N/10 ) ' (meter) -'(hour) ', N&106
S(N) =8.4X10 '(N/10') "(meter) '{hour) ' N&10'. ' (B.6)

The coefFicient is the same in (B.4) and (B.6), indicating
that the showers with less than 10' particles contribute a very
small part (actually about 5 percent) of the total counting
rate.

(J3.6) is directly comparable arith (5.8). We see that there is a
discrepancy of slightly more than a factor of two. Since the
experimental inaccuracies cannot account for such a large
error, this discrepancy must be ascribed to the rough nature
of the. theory used here.

The discrepancy is probably due to two causes: (1) The
Moliere structure function is too spread out; the true structure
function, being more concentrated, will lead to a decoherence
curve falling off more rapidly with distance. Since the measure-
ments with the triangle arrangement count showers at a
larger effective distance this will improve the comparison
between (B.6) and (5.8). The fact that the triangle arrange-
ment was used to count showers with greater minimum par-
ticle densities will also work in the same direction. (2) It is
rather likely that S(N) of (B.6), does not vary rapidly enough
for very large N. The effective exponent for very large N is
likely to be considerably greater than 1.9. A qualitative argu-
ment shows that this effect will also improve the agreement
between (B.6) and (5.8).

Whether these two effects are sufficient to remove the dis-
crepancy altogether cannot be determined at this time.
Without a knowledge of the true structure function, one can-
not even make a sensible estimate.

N ~&I /f(r)
The number of such showers per unit area per second is
S(N) =Sgp/f{r) j. We cover one-third of the plane by letting
r vary from a to ~. We therefore have for the absolute
counting rate 8'{p, a) of the triangle arrangement

We again assume a power law for S(N), S(N) =a.N ~; this
gives

W(u, a) =~-'~(a),
00 Va

V(a) =a f&{r) 2n —6 arc sin —— rdr.
0 2r- (B.3)

The integral has been evaluated numerically, for y =1.9.

&CO Qa
jV(p, a) = S"Lp/f(r)] 2~ —6 arc sin —— rdr (B.2).

a 2r


