PHYSICAL REVIEW

VOLUME 75,

NUMBER 10 MAY 15, 1949

Quantum-Theory Restrictions on the General Theory of Relativity

M. F. M. OsBORNE
Naval Research Laboratory, Washington, D. C.

(Received December 27, 1948)

The limitations set by the uncertainty principle on the measurement of the curvature of space are
determined by passing a small test particle around a geodesic triangle. In measuring the curvature
of space around a Schwarzschild-solution particle of finite size and physically realized density, it is
found that the mass must be at least of the order of 10* kilograms, or the curvatures cannot be
measured with an accuracy equal to the order of magnitude of the terms in the defining Eqs. G =0.
For mass points, the lower limit is 1075 g. For smaller masses, the curvatures can only be measured
with less accuracy and only over large regions of space. Similar limitations apply to alternative laws
of gravitation involving higher derivatives of the metric. It is concluded that in any theory which
attempts to unite quantum theory with the general theory of relativity, the relation of the metric
to the energy momentum tensor, G —gixG/2 = — K Tit, must appear only in the large and in a statistical
sense, i.e., for large regions of space and large numbers of elementary particles.

N this paper we endeavor to answer the question:
What restrictions does the uncertainty principle
place on the measurement of the curvature of
space, and thus on the conceptions of the general
theory of relativity? We shall do this by considering
the definition of curvature as the ratio of the sum
of the angles of a geodesic triangle minus = to its
area in the limit of small area, and then determine
the errors in measurement of angles and area when
a small test particle or light quantum is passed
around the triangle.

The basic measurements (to obtain the metric)
of general relativity are coordinate and time. The
basic measurements of quantum theory are coordi-
nate and momentum. It is just the limitation of
quantum theory on general relativity that coordi-
nate and time cannot be determined alone, but
must be tied up with a measurement of momentum
or energy, which in turn are restricted by the
uncertainty principle. As will be seen, this consider-
ation becomes of especially simple and classical
interpretation when one measures curvature in a
time-like or xt plane.

We first recall the expressions for the curvatures
of a space. The Riemannian curvature of a space,
or product of the principal curvatures (Gauss
curvature) of the surface formed by geodesics
through a linear combination of two orthogonal
directions at a point, is given by

an = Rijklemienjemkef'lly (1)

where R;j; is the Riemann-Christoffel tensor and
en', €,' are the contravariant components of the two
orthogonal unit vectors e,, €, which determine the
surface.! The Riemannian curvature at a point is
also definable as the ratio, in the limit of a small
area, of the difference from 7 of the sum of the
angles of a geodesic triangle to its area.

1 C. E. Weatherburn, Riemannian Geomelry and Tensor
Calculus (Cambridge University Press, London, 1938), p. 119.

The sum of the Riemannian curvatures for all
pairs of orthogonal directions formed with one
given direction, is the mean curvature M,, given by

Mn= Zm -Affmn'_— "'Gikeniemkr (2)

where G is the Ricci-Einstein tensor.
The scalar or total curvature is the sum of all
the mean curvatures

(M)go. =30 M= —Gag. (3)

We now ask what is the order of magnitude of

these curvatures in a case of physical interest. To
answer this question we observe that if one writes
the Ricci-Einstein tensor in mixed' form in (2),
that is,
Mﬂ = “‘Gkienkem’; (4)
the dimensionality of the unit vectors cancels out.
The same is true if (1) is written in mixed form.
Furthermore, if the coordinate system and field is
such that G* has only diagonal elements, these
elements are the mean curvatures (ignoring sign)
since the sum in (4) reduces to one term. Also, if
G is diagonal and expressed as a sum of terms,
the individual terms are of the order of the Rie-
mannian curvatures, or the elements of the Rie-
mann-Christoffel tensor.

Exactly the conditions stated above are met in
the fundamental example of greatest interest, the
Schwarzschild solution of the equations of general
relativity. Thus, if the metric is

ds*= —exp(\)dr? —r2d6® —r* sin%*0d o*+exp(v)di?,
we easily find? for the G/
Gi'=—exp(—=N)(»"'/2—=NV' /442 /4—N /1),
G2=G33= —exp(—N) (A +r(»'—N\)/2)/r24+1/72, (5)
Ge=exp(—N)(—v"/24+NvV'/4—v"2/4—V'[7),

2A. S. Eddington, The Mathematical Theory of Relativity
(Cambridge University Press, London, 1923), p. 85. Also R. C.

Tolman, Relativity Thermodynamics and Cosmology (Oxford
University Press, London, 1934), p. 203.
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and the Riemannian curvatures can be calculated
to be

M12=M13= -—exp(—)\))\'/Zr,
My=exp(—N("/242/4=sN/9), o
Myz= —(1—exp(—N))/7?,
M’24=M34=exp(——)\)v’/2r.

To relate (5) and (6), using (2), one must use for
directions along the three space-like axis, unit
vectors whose co- and contravariant components
are imaginary and of opposite sign. Thus e;= §;7g;?,
et=gie; This requirement is dictated by the use
of an indefinite metric, so that lowering or raising
subscripts changes signs along the first three axes,
but the magnitude of unit vectors must be positive.
(See reference 1, Eqgs. (24)-(27), p. 46.)

It is known that the solution of Eqgs. G#=0 for A,
and v is given by exp(v) =exp(—A)=1—2M/r, and
taking advantage of the fact that \ and » are small,
we have that

vVI=2u/r? V' =—v/r,

This shows at once that there are two different
orders of magnitude of terms which appear in (5)
and (6),

v/r?,

—N=p=—2M/r.

vi/r, (7)

or in c.g.s. units®
(GM/cr)(1/rY), (GM/cr)*(1/7?). (8)

Terms of order 1/7% also appear but always in
combinations of order (exp(v)—1)/r?~y/r%. That
there can be no terms 1/72 directly in the Riemann-
Christoffel tensor follows from the fact that for flat
space and any coordinate system R;;;=0. Equa-
tions (7) and (8) give the orders of magnitude by
which space, according to the general theory of
relativity, differs from flatness. All of the curvatures
in (6) are of the first order of magnitude. The
second order of magnitude also appears directly
iIl M14.

Evidently for a complete determination of the
curvature of space by triangulation, the curvature
of the space is completely determined only if the
error of observation is smaller than the second or
smaller order of magnitude. We understand by
‘“‘completely determined,” a determination to the
same accuracy as the defining differential equation
GF¥=0. Otherwise, the field will be incompletely
determined. The curvature of a space is an ob-
servable in the sense of quantum mechanics if the
errors, imposed by the uncertainty principle in-
volved in determining it by triangulation with a
test particle, are less than the smaller of the
quantities (8). Otherwise, the curvature is unob-
servable or perhaps incompletely an observable.

We consider first the case that the quantities (8)

3 See reference 2, p. 202.
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are in decreasing order of magnitude, as will be the
case so long as

(GM/c*r) <1, (9)

and we shall find that instructive information is
obtained by considering the restrictions imposed by
having the errors of observation separately less
than these two different orders of magnitude.

Consider the errors imposed by the uncertainty
principle on the measurement of curvature by
passing a particle around a geodesic triangle, and
measuring its angles and area. If the length of the
side of the triangle is ¢, the position of the test
particle will be uncertain within a band of width é¢
around the edges of the triangle. Hence, the uncer-
tainty of the angle measurements will be of order
dq/q. The curvature is

3
K= Z<p,-—1r) /area of triangle. (10)

i=1

If the area .S is ~g?, the uncertainty 65 in the area
~qdq. Therefore, the uncertainty in the curvature is

dk=[2(0¢i/ S+ (T ei—m)8S/S)* ]}

~3q/q>. (11)

This expression could also have been written
down almost from inspection, on observing that the
principal uncertainty in the curvature is due to the
angle measurements, if the area of the band of
uncertainty around the triangle is small compared
to the total area of the triangle.

In the case that the triangle lies in the xt plane,
the triangle is spanned by sending the test particle
otit along the axis and return (path AD4 in Fig. 1),
and measuring the time interval consumed. The
angles are determined by velocity component (cf.
momentum) measurements at the beginning and
end of each side and these converted to angle
measurements, using a cartesian-polar coordinate
transformation. Imaginary units for ¢ are used in
the case of triangulation in the x¢ plane.

For the x¢ plane one has to distinguish between
two cases, whether the velocity of the test particle
is very much less than, or of order of, the velocity
of light. For v<¢ the area of the triangle ABC,
Fig. 2, is of order gc¢t, the uncertainty in the angles
is ~dq/ct. This follows from the fact that all the
sides are of length ~ct. Then the uncertainty in the
curvature is ~dq/c**q. For v~c the area of the
triangle ADC is ~c%? and the uncertainty in angle
is ~4dq/ct, so that the uncertainty in curvature
~dq/c3ts.

We now have the following restrictions on the
measurements of the test particle:

(A) The restriction of the uncertainty principle,

5poqh. (12)
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F1G. 1. Geodesic tri-
angle to determine cur-
vature of space at a
distance 7 from a
Schwarzschild particle
of mass M.

(B) A restriction in virtue of the fact that the
basic measurements of relativity x and ¢ (rods and
clocks) and those of quantum theory (coordinate ¢
and momentum p) are not independent. For the
case that x and ¢ are the same, we have

g=pt/m. (13)

In the case that coordinates are deduced from
direct measurements of momentum and time (as
would be the case if one combined the momentum
measurements made at the vertices of the triangles
with time interval measurements, to determine
angles and lengths of sides), Eq. (13) gives

6q/q=>6p/p. (14)

When the inequality sign is used, (14) can be
roughly interpreted as a closure condition. This
means that when the test particle is projected on
the third side of the triangle, it will not return to
its starting point or even remain in the plane of the
first two sides within an error d¢, unless the uncer-
tainty in angle 8q/q is greater than the relative
uncertainty in the momentum &p/p. We say
“roughly” interpreted since p and 8p, g and dq are
not parallel but rather refer to average measure-
ments at the three vertices of the triangle.
(C) The restriction

e>h/p. (15)

This requires the triangle to be much more than one
de Broglie wave-length on a side. Otherwise, the
region of observation is not even defined to be a
triangle as opposed to any other geometrical figure.

(D) The condition g<. This requires that the
dimensions of the triangle must be small compared
to the distance to the particle whose field we are
measuring. Otherwise one cannot properly speak of
the measurement of the field G;* at a point (actually
average over a region of dimension q).

(E) The condition

mcr<K Mc?, (16)

where m is the fotal mass of the test particle. This
condition states that the gravitational effect of the
test particle including its kinetic energy must be
small compared to that of the Schwarzschild
particle of rest mass M being measured. This
condition, whether the test particle has a finite
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F1G. 2. Triangulation
in the x¢ plane.
rest mass or is a light quantum, implies
p<Me, (17)
since for
1Le, m<L<M, p=mv<Mec,
or, if
v~¢, pe~mcr<KMct

The form (16) will be useful for slow particles in
measuring in the x¢ plane, otherwise the form (17)
will be used.

Summarizing, we have that the error in measure-
ment of the Riemannian curvature is dx~dq/q® for
curvatures in a space-like plane, and 8g/c%?, or
dq/c*® for curvatures in a time-like plane as meas-
ured by slow (v<c) or fast (v~c) particles, respec-
tively.

We have the following restrictions on the meas-
urements

Sp6qTh, (a)
3g/q=>8p/p, (b)
>h/p, (c) (18)
g, (d)
m<<M, or pKMe. (e)

The first form of (e) implies the second, but not
conversely.

We now ask what is implied by the condition
that 6k be much less than the larger of the two
orders of magnitude (8) of the curvature itself.
This requires, for a space-like section,

8q/ PP (G M /c*r)(1/72). (19)
Using (18) to eliminate 8¢, 8p, g, p, 7 we find
(ch/GM?)k1. (20)

Putting in numerical values for the physical con-
stants, we find M>10-5 g. Thus 10~ g is a lower
limit for mass points, the space-like part of whose
metric is observably different from flatness. It is
also to be noted that once the critical mass is
exceeded, the curvatures of this order of magnitude
are everywhere defined. This is a consequence of
the fact that ¢ and r appear to the same power on
both sides of (19) so that 18 (d) can eliminate them
both at once. Physically, it means that the side of
the measurement triangle ¢, and 3¢ may be in-
creased in just such a way, as the curvature de-
creases with increasing 7, to make accurate observa-
tions always possible.
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Let us now examine the restriction imposed by
the second order of magnitude, for curvatures in
space-like section. In this case we have

3¢/ <G M /r)*(1/r), (21)
which, when combined with (18), eventually gives
(¢tr/GM)(ch/GM?) . (22)

When solved for 7, (22) states that only within a
sphere around the particle of the order of this
radius is the curvature of space, or its departure
from flatness, observable to the accuracy of the
defining Egs. G#=0. If we combine this re-
striction with accepted possible values for density
and ask for the limiting mass just outside of which
the departure of the metric from flatness is com-
pletely observable, we find a lower limit of mass
much greater than that obtained from the first
order of magnitude. Let p be the density and 7, a
characteristic dimension of the particle. Then
M=~pr¢®, and for the curvature to be just com-
pletely observable at the surface (r=r;) of the
particle, we must have

(M/p3<GM3/ch, M>107/pM% g, (23)

This is a quite severe restriction on the mass. As
the density varies from 10726 (density of inter-
stellar space) to 10'5 (density of nuclear matter)
the limiting mass which can be thought to bend
space definitively just outside itself varies from
100 to 10% g.

One obvious implication of the restrictions above
is that any relation between the metric of space
and the tensor of matter, such as Gy—gaG/2
= — KT must hold only in the statistical sense,
and fail for elementary particles. Thus one should
expect that in any unified field theory which at-
tempts to unite quantum theory with the general
theory of relativity, the curvature of space should
arise as a statistical concept valid only for very
large numbers of particles, since the above discus-
sion shows that the curvature is simply not defined
in the sense of measurements on elementary parti-
cles. A related viewpoint, which was perhaps first
suggested by Mach and has also been discussed by
Einstein,* is that the conception of mass requires
the presence of other very large masses. One can
have equivalence between inertial and gravitational
mass, but the latter conception is simply not defined
except in the presence of large masses.

Let us now consider the case where we carry out
the triangulation in an x¢ plane. We must then
have, in order to measure the curvature to first
order for v<e,

8q/c2q<(GM /c*r)(1/72). (24)

4 A. Einstein, The Meaning of Relativity (Princeton Uni-
versity Press, Princeton, 1945), p. 99 ff.
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Eliminating ¢ with (13), and using (18), one finds
B/GMr<1, (25)

or r>h?/GM?. In a time-like section, curvatures are
defined to the first order only outside a sphere of
this radius. If we express the inequality (25) in
terms of the density p, as in (23), we can find a
lower limit to the mass everywhere outside of which
the curvature of a time-like section is defined to
the first order. This is

M>(h%p/G)3o, (26)

or
M>10-14p300, (27)

Thus the lower limiting mass for this condition
increases with increasing density. However, it
should be noted that the restriction only applies for
test particles of v<c, and so is not a completely
binding one. In all cases the lower limit for the
mass is exceedingly small, but is again, either for
atomic or nuclear densities, much greater than the
mass of one elementary particle. This conclusion,
at first rather surprising, is still in keeping with
the statistical point of view mentioned above, since,
if the probability distribution (cf. p) of a particle
of any mass is distributed thinly enough (i.e. over
a large enough volume), everywhere outside this
distribution it has (as shown below) an observable
Newtonian gravitational field.

The inequality (25), which is independent of ¢,
can also be deduced from the problem of measuring
the classical gravitational attraction of a particle
of mass M with a test particle of mass m by meas-
uring the momentum change Ap, when m passes M
at a distance 7. If one assumes the force fo~GMm/r?
acts for a time t~rm/p and imposes the condition
(1), the change in momentum Ap,, due to gravita-
tional attraction, must be larger than the uncer-
tainty in momentum Ap, arising from the uncer-
tainty principle, (2) éq<r, (3) m<M, (4) §poqTh,
(5) ¥>h/p, exactly the inequality (25) is obtained.
Thus the measurement of curvature to first order
in the xt plane with slow particles is equivalent to
the measurement of a classical gravitational po-
tential.

While the above restriction is less severe than
that obtained for the curvatures in a space-like
plane, it does suggest that for elementary particles
(M=~10"%) even the classical gravitational field is,
in practice, not defined, since the distance and time
required for the measurement is greater than the
volume of the universe or its history can provide.

If we measure curvature in the x¢ plane with a
particle of v~c¢, we must have for first order accu-
racy, 0q/c<K(GM/c*r)(1/r?). Evidently this is
exactly the same condition (19) obtained previously
and leads to nothing new, since ct~q for the triangle
ADC in Fig. 2.



QUANTUM

For second order accuracy for slow particles in
an xt plane, we have

8q/ g (GM /c*r)*(1/r?), (28)

and using (13) and (18), we find ch/GM?*<1. This
is the same as (20) for first order accuracy in an
xy plane, so that this situation leads to nothing new.
Also, nothing new is obtained by considering second
order accuracy for particles with v~c¢ as we again
obtain (21).

We can summarize all of the above by showing
that they follow from the two basic inequalities
(9) and (22):

(GM/cr) <1, (29)
(¢tr/GM)(ch/GM?*) 1. (30)

Multiplying (30) by successive powers of (29) we
find a series of inequalities, (30) to (34), each of
which implies, with (29), or (30) all those that
follow it.

ch/GM*<1, (31)
h/Mcr<1, (32)
Gh/cr*<1. (33)

Equation (31) is the same as (20), as the condition
for measuring curvature to the first order. (32)
states that the field of a mass point is defined only
for distances greater than its Compton wave-length,
in practice not a very severe restriction. (33) gives
a lower limit to the distance of definition inde-
pendent of the mass, which is also exceedingly small.

Equations (29), (31) to (33) are respectively
independent of %, r, G, and M. A fifth inequality
independent of ¢ can be obtained by multiplying
(33) and (30).

B/ GrM3k1. (34)

This is the same as (25), for measuring Newtonian
potentials, or curvatures in the x¢ plane with slow
particles.

We can discuss here a question raised by Edding-
ton.? How shall we choose for the law of gravitation
between different tensors whose divergence vanishes
identically? Gy involves only the second derivatives
of the metric, hence, to measure it completely, only
second order accuracy is required. Other possible
tensors involve higher derivatives. For nth order
accuracy, in triangulating to obtain the curvature,
it follows from (7) and (8) that one must have

8q/¢* < (GM/c*r)™(1/7%), (35)
which leads to
(ct/GM)™"(ch/GM?) <1, (36)

n=1, 2 giving just (31) and (30).
§ See reference 2, pp. 141-143.
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For n=3, asrequired by Eddington's alternative,
and introducing the density from ri~M/p, we
find, for third order accuracy, in the curvature to
be measurable just outside a particle of mass M

(2M}/GMp¥)2(ch/G M) <1,

M>>104/pV5 g. (37)

From this, one can conclude that the distinction
between the different proposals of Eddington for
the gravitational law could not be measured, save
for extremely large masses.

All of the above discussion was predicated on the
assumption that GM/c*<1. For GM/cr>1 the
orders of magnitude are reversed. This only occurs
for extremely large masses and densities. Using
M~pr¢®, we find that for the orders of magnitude
to be reversed at the surface of a particle of mass M,

M>/Ghl,  M>2-10%/pk, (38)

Such a situation is realized, if ever, only in the
initial stages of an expanding universe.

In closing this discussion we may consider the
case where curvature is given, say that for some
very large mass, and we ask for the relation between
the size of the triangle and the properties -of the
test particle in order that this given curvature may
be measured. If 1/R? is the given Gauss curvature,
we must have

8/ <1/ R?, (39)

and using the first three of the inequalities (18)
(the remaining ones are not applicable), we find

h/pgr<1/R2. (40)

Evidently this inequality can always be satisfied by
making p and ¢ large, but it is instructive to con-
sider a few examples. Suppose we are triangulating
in the neighborhood of the sun with optical light
h/p=A~10"5 cm. For the first order, M =2-10% g,
r=7-10'° cm,

1/R~G M/ ~10-2" em—, (41)

It is essentially a curvature of this order of magni-
tude which is measured by an Einstein light deflec-
tion experiment. Equation (40) gives, with k/p
=10"5 cm,

¢>107 cm (42)

as the side of the measurement triangle.

For a particle of mass one gram moving with a
velocity of one centimeter per second, one finds
the side of the triangle must be ¢>1 cm.

As a further example, consider the measurement
of the radius of curvature of the universe. This is
certainly not less than 10?8 cm, so we have

h/pg <1/ Ri10-55, (43)
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For optical light A~10—% we find
(44)

The important conclusion from these examples
is not that a given curvature can always be meas-
ured somehow, but that (a) the curvature is defined
(in the sense of the limitations of quantum-theory
measurement) only in the large, and (b) the domain

¢>10" cm~0.1 light year.

BLATT

of largeness is fundamentally determined by the
momentum of the test particle with which the
curvature is measured. Here we are led again to
the idea that the conception of curvatures and,
when these are equated in the form Gy+3igaG to
the stress tensor KT, the conceptions of energy,
mass, and momentum, are only defined for quite
large masses and large volumes of space.
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The decoherence curve of large air showers is analyzed under the simplifying assumption of a
constant lateral structure function for all air showers. The following results emerge: (1) Contrary to
statements found in the literature, ordinary shower theory leads one to expect a rise in the deco-
herence curve at distances much less than the characteristic lateral distance 71. (2) The theoretical
decoherence curve calculated under the assumption of a constant structure function rises more sharply
near the origin than the experimental points. This indicates that the effective structure function is
less peaked than the one we used (due to Moliére). (3) The dependence of the structure function upon
the age of the shower tends to lessen this discrepancy. However, quantitative estimates make it
appear doubtful that one can get agreement between theory and experiment without assuming a
rather high multiplicity of the event which starts the shower.

(1) QUALITATIVE CONSIDERATIONS CONCERNING
THE LATERAL STRUCTURE OF AIR SHOWERS

HE experiments which are to be interpreted

here are connected with the so-called deco-
herence curve of large air showers. Two ionization
chambers are placed a distance 2a apart. The
chambers are biased so that they only respond if
more than a certain amount of ionization is pro-
duced in each chamber, the bias being the same
for both. chambers. If the dimensions of the
chambers can be neglected compared with their
separation, the bias can be interpreted as meaning
that each chamber responds only if the density of
shower electrons passing through it is greater than
a certain minimum amount, which we call p.

One then measures the coincidence counting rate
W as a function of this minimum density p and of
the half-distance a between the chambers. 4 curve
of W(p, a) vs. a (keeping the bias constant) is called
a decoherence curve. We shall call a curve of W(p, a)
vs. p (keeping the separation a constant) a density
response curve.

Historically, decoherence curves were measured first with
Geiger-Miiller counters.! It can be shown that a set of Geiger-

Miiller counter measurements giving the coincidence rate as
a function of the distance between the counter trays and of

* Assisted by the joint program of the ONR and the AEC.
1 Auger, Maze, Ehrenfest, and Freon, J. de phys. et rad.
1, 39 (1939).

the area of the counter trays (keeping the number of counters
in each tray constant) is mathematically equivalent to a set
of ionization chamber data, giving their coincidence rate as
a function of the distance between the chambers and of the
chamber bias. However, ionization chamber data are much
preferable for the following reasons:

(1) A single set of measurements, in which pulses of dif-
ferent sizes are recorded, is required instead of a large number
of measurements with counter trays of different areas.

(2) In Geiger-Miiller counter measurements, there often
exists the possibility of getting spurious counts from a single
particle traveling horizontally, since one particle can easily
produce a pulse. In ionization chamber measurements, ten to
twenty particles must pass through the chamber before a
pulse is recorded; hence, there are no spurious counts due to
that source.

(3) For the same reason, statistical fluctuations are much
less important in ionization chamber data.

(4) The mathematical analysis is incomparably simpler.

In discussing large air showers, we shall consider
only the electron-photon component, since this
component accounts for most of the ionizing
radiation observed without heavy shielding on top
of the detecting equipment. There seems to be
reason to believe? that there are on the average
about fifty electrons for every heavy ionizing par-
ticle in big air showers. (The word “electron’ is
used for both negatrons and positrons.)

We assume that the shower is started by an
“initiating electron” near the top of the atmosphere.

2G. Cocconi and K. Greisen, Phys. Rev. 74, 62 (1948);
J. E. Treat and K. Greisen, Phys. Rev. 74, 414 (1948).



