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The Fermi-Thomas model has been used to derive the equation of state of matter at high pressures
and at various temperatures. Calculations have been carried out both without and with the exchange
terms. Discussion of similarity transformations lead to the virial theorem and to correlation of
solutions for diferent Z values.

I. INTRODUCTION

'HE Fermi-Thomas statistical model of the
atom has been used by several investigators'

for approximate calculations of potential fields and
charge densities in metals as a function of lattice
spacing. The method has also served as a starting
point for the study of the behavior of matter under
extremely high pressures as found, for example, in
stars.

In its original form, the theory makes several
simplifying assumptions: the effect of exchange
forces is not taken into account, and the tempera-
ture of electrons and nuclei is taken as zero degrees
absolute, T=O. With these simplifications, a set of
universal potential functions may be found, ap-
plicable to all atomic numbers, Z, by a simple
change in scale of linear dimensions.

Dirac' has extended the theory to include the
eRects of exchange forces. However, the solutions of
the modified equation do not lend themselves to
the above mentioned similarity transformation and
it is necessary to obtain separate solutions for
each Z.

Marsh~ and Bethe' have carried through a
perturbation treatment of the simple Fermi-
Thomas equation to include temperatures cor-
responding to several electron volts.

In the following, we present first a set of solutions
for the simple Fermi-Thomas equation without
exchange forces and for T=0. Although these
numerical solutions are known, they have been
calculated again because they are the unperturbed
solutions in subsequent perturbation calculations.
Hence, rather precise values are needed. A set of
solutions was given for the case with exchange
eR'ects, but with T=0 as before, for several Z values

by Slater and Krutter and by Jensen. To make more
accurate interpolation possible we have obtained
further solutions for Z=6 and 92. The various
solutions for a given Z correspond to a series of
atomic volumes. The value of the potential at the
boundary is simply related to the pressure. Con-
sequently a pressure-volume (or -density) relation
can be obtained for that element. These new solu-
tions with previously calculated ones4 permit rather
reliable interpolation for I' —v relations correspond-
ing to any Z value. A set of numerical solutions is
also given for the perturbation problem corre-
sponding to non-zero temperatures. Finally solu-
tions are given for the case of very high tempera-
tures where the perturbation treatment is no longer
valid and the complete equation must be con-
sidered.

II. SIMPLE FERMI-THOMAS METHOD

We consider first the simple Fermi-Thomas equa-
tion without exchange effects and for temperature,
T=O,

d'y/dx- '= yl/x&. (1)

This equation is derived with the assumption that
at each point in coordinate space there exists a re-
lation between the electron density p, and the po-
tential U, namely

p, = 8w/3k'L2m (E—e U) ]"' (la)

where m is the electronic mass and 8 the total
energy. This relation is in turn obtained from the
postulate that the electron wave functions in a
small volume element behave like plane waves and
that the electrons satisfy the Pauli exclusion prin-
ciple. Spherical symmetry is assumed; x is the
distance from the nucleus measured in units of

where ao is the Bohr radius for hydrogen. p is essen-
tially the potential multiplied by r =px; more
precisely

* This document is based on work performed at Los Alamos p = a,p(9m'/128Z) & =0.88534ao/Z&, (1b)
Scientific Laboratory of the University of California under
Government Contract W-7405-Eng-36 and the information
contained therein will appear in the National Nuclear Energy
Series as part of the contribution of the Los Alamos Scientific
Laboratory.**Now at Cornell University, Ithaca, New York. Ze'@ = (Eo eU) r, — (2)*~*Now at the University of Chicago, Chicago, Illinois.

' J. C. Slater and H. M. Krutter, Phys. Rev. 47', 559 (1935); where Eo is the maximum total energy.
H. Jensen, Zeits. f. Physik 111, 373 (1938) and additional
references given there. 4 H. Jensen, G. Meyer-Gossler and H. Rohde, Zeits.

'P. A. M. Dirac, Proc. Cambridge Phil. Soc. 26, 376 (1930). Physik 110, 277 (1938); see also, J. C. Slater and H. M.' R. E. Marshak and H. A. Bethe, Ap. J. 91, 239 {1940). Krutter, reference 1.
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Tzax.E I. CoefFicients of the series solution for the Fermi-
Thomas equation. a& is the initial slope. See Eq. (4).
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dy/dx=y/x. (3a)

In an actual crystal, the solutions of spherical
symmetry are, of course, not strictly valid. It is
more appropriate to surround each nucleus with a
polyhedron containing an average number of elec-
trons sufficient to neutralize the nuclear charge.

In many cases, the polyhedron may be replaced
in good approximation by a sphere. Then condition
(3a) is valid on the surface of this sphere and the
radius R(=pxo) is defined as the atomic radius. It
is to be noted that use of this procedure need not
be restricted to crystals of pure elements.

p may be expanded about the origin in a semi-
convergent power series of the form

@= 1+Q2X+C~+6~ + (4)

Once a value is selected for the initial slope, i.e.,

e2, the remaining coefficients are determined. Ex-
pressions for the first few coefficients in terms of a~
are given in Table I. For a particular value of a2,

@ approaches the x-axis asymptotically. This solu-
tion corresponds to the free atom. For numerically
smaller initial slopes, solutions are obtained for
atoms of finite radius. Numerically greater initial
slopes yield solutions for ions.

For the numerical integration it is convenient to
introduce a change of independent variable,

x =w'/2.

This, in effect, makes the interval for each step of
the numerical integration conveniently smail near

The boundary conditions may be written

$(0) =1

and at the surface of the atom, since the potential
gradient is zero,

Pv= (e/15)(Z'e'/p)x oy'"(x )0 (6)

Thus, having chosen a Z value, one can substitute
values for xo and p(xo) from Table III and obtain
a series of points on a I' —v diagram in this approxi-
mation. We shall return to a more complete dis-
cussion of equations of state after we have discussed
the effects of exchange.

III. FERMI-THOMAS-DIRAC EQUATION

Dirac' has introduced modifications to the
original Fermi-Thomas theory to include effects of
exchange. Instead of Eq. (1) we have now to con-
sider

d'iI/dx' =x(a+ P&/x&) '

x has the same meaning as before,

e = (3/32v') &Z & =0.211873Z:.

(7)

The potential without exchange effects, denoted by
Va, is connected with f by the relation

e Vo Ep+2me'/h' Ze'——f/px. —

Equation (7) is obtained by including in the ex-
pressiqn for the average potential energy of an

' This is to be discussed in Section VI.

the origin where p changes appreciably, and auto-
matically increases the interval farther out where
the function changes more slowly. To initiate the
numerical integration routine, the series given by
(4) is rewritten in terms of w; it is evaluated at
two points m'=0. 88 and zv =0.92, hence the deriva-
tive is obtained at zv =0.90. This procedure is more
accurate than the eva1uation of the derivative from
the differentiation of the series. Intervals are taken
as Am=0. 04. The error in each step is (0.000025
in Q.

In Table II, numerical solutions are given cor-
responding to eight values of the initial slope. p is
given at intervals Am =0.08. These values are
frequent enough for most purposes; if values for
intermediate m values are desired, quadratic inter-
polation is adequate.

In Table III the values of a2 are given corre-
sponding to these solutions together with values
for the atomic radius xo and for p(xo). The last
two solutions, in which p reaches zero, correspond
to lons.

Finally one can obtain a pressure-volume relation
based on this model with the aid of the following
virial theorem, '

(—',)Pv= kinetic energy+(-, ')(potential energy), (5)

where P is pressure (dynes/cm') and

v = (4n./3) (px0) ' cm',

the volume. One can easily show that
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TABLE II. Numerical solutions of the Fermi-Thomas equation (without exchange eA'ects). The initial slope a& for the various
solutions is shown. The independent variable is m = (2x)&, where x is the conventional Fermi-Thomas variable.

0.92
1.00
1.08
1.16
1.24
1.32
1.40
1.48
1.56
1.64
1.72
1.80
1.88
1.96
2.04
2.12
2.20
2.28
2.36

2.52
2.60
2.68
2.76
2.84
2.92
3.00
3.08
3 ~ 16
3.24
3.32
3.40
3.48
3.56
3.64
3.72
3.80
3.88
,3.96
4.04
4.12
4.20
4.28
4.36
4 44
4.52
4.60
4.68
4.76
4.84
4.92
5.00
5.08
5.16
5.24
5.32
5.40
5.48
5.56
5.64
5.72
5.80
5.88
5.96
6.04
6.12

Case 1
-ag =1.58806

0.64693
0.60732
0.56886
0.53179
0.49628
0.46246
0,43039
0.40012
0.37165
0.34496
0.32002
0.29677
0.27517
0.25513
0.23659
0.21947
0.20371
0.18923
0.17596
0.16383
0.15279
0.14278
0.13374
0.12563
0.11842
0.11206
0.10652
0.10180
0.09786
0.09472
0.09236
0.09079
0.09004
0.09014
0.09111
0.09303
0.09595
0.09997

Case 2
1.58842

0.64676
0.60712
0.56862
0.53151
0.4959S
0.46207
0.42994
0.39959
0.37103
0.34424
0.31919
0.29581
0.27405
0.25384
0.23511
0.21777
0.20175
0.18697
0.17337
0.16086
0.14939
0.13888
0.12928
0.12054
0.11259
0.10541
0.09894
0.09316
0.08802
0.08351
0.07960
0.07629
0.07354
0.07137
0.06978
0.06876
O.Q6833
0.06851
0.06933
0.07083
0.07306
0.07608
0.07995

Case 3
1.58856

0.64670
0.60704
0.56853
0.53140
0.49582
0.46192
0.42976
0.39938
0.37079
Q.34397
0.31887
0.29544
0.27362
0.25335
0.23453
0.21711
0.20099
0'.18620
0.17237
0.15971
0.14807
0.13737
0.12756
0.11856
0.11034
0.10284
0.09601
0.08982
0.08423
0.07920
0.07470
0.07072
0.06723
0.06421
0.06165
0.059S5
0.05789
0.05669
0.05594
0.05565
0.05584
0.05653
0.05775
0.05953
0.06193
0.06500

Case 4
1.58865

0.64666
0.60699
0.56847
0.53133
0.49574
0.46182
0.42965
0.39925
0.37064
0.34379
0.31866
0.29520
0.27334
0.25302
0.23416
0.21668
0.20050
0.18554
0.17172
0.15897
0.14722
0.13640
0.12644
0.11729
0,10889
0.10118
0.09412
0.08767
0.08178
0.07642
0.07154
0.06714
0.06316
0.05961
0.05644
0.05365
0.05123
0.04195
Q.04742
0.04603
0.04497
0.04426
0.04388
0.04386
0.04420
0.04493
0.04606
0.04763
0.04967
0.05223

Case 5
1.58870

0.64665
0.60698
0.56845
0.53130
0.49571
0.46178
0.42960
0.39919
0.37057
0.34370
0.31856
0.29509
0.27321
0.25287
0.23399
0.21648
0.20027
0.18527
0.17142
0.15862
0.14681
0.13593
0.12591
0.11668
0.10820
0.10039
0.09323
0.08665
0.08062
0.07510
0.07005
0.06544
0.06124
0.05743
0.05398
0.05087
0.04808
0.04560
0.04342
0.04152
0.03989
0.03853
0.03743
0.03660
0.03603
0.03573
0.03570
0.03595
0.03650
0.03736
0.03856
0.04011
0.04206
0.04443

Case 6
1.58874

0.64663
0.60695
0.56842
0.53127
0.49567
0.46173
0.42954
0.39913
0.37049
0.34361
0.31845
0.29496
0.27307
0.25271
0.23380
0.21626
0.20001
0.18498
0.17108
0.15823
0.14637
0.13543
0.12533
0.11602
0.10744
0.09953
0.09225
0.08553
0.07935
0.07365
0.06842
0.06358
0.05914
0.05505
0.05129
0.04784
0.04466
0.04174
0.03907
0.03662
0.03438
0.03234
0.03048
0.02880
0.02727
0.02591
0.02469
0.02361
0.02267
0.02186
0.02118
0.02062
0.02020
0.01989
0.01972
0.01968
0.01977
0.01999
0.02037
0.02089
0.02158

Case 7
1.58884

0.64657
0.60689
0.56835
0.53118
0.49557
0.46162
0.42941
0.39898
0.37032
0.34341
0.31822
0.29470
0.27277
0.25236
0.23340
0.21580
0.19948
0.18437
0.17038
0.15743
0.14546
0.13438
0.12414
0.11466
0.10589
0.09776
0.09023
0.08324
0.07675
0.07Q70
0.065Q6
0.05979
0.05485
0.05020
0.04581
0.04165
0.03769
0.03390
0.03026
0.02673
0.02329
0.01991
0.01658
0.01327
0.00996
0.00663
0.00327

—0.00015

Case 8
1.58876

0.64661
0.60693
0.56840
0.53124
0.49564
0.46170
0.42915
0.39909
0.37045
0.34357
0.31840
0,29490
0.27300
0.25263
0.23371
0.21616
0.19990
0.18485
0.17093
0.15806
0.14618
0.13521
0.12508
0.11574
0.10711
0.09916
0.09182
0.08505
0.07880
0.07303
0.06771
0.06279
0.05824
0.05403
0.05014
0.04654
0.04319
0.04009
0.03721
0.03453
0.03204
0.02971
0.02753
0.02549
0.02357
0.02177
0.02007
0.01845
0.01692
0.01545
0.01405
0.01270
0.01139
Q.Q 1012
0.00886
0.00764
0.00643
0.00523
0.00403
0.00282
0.00160
0.00037

—0.00087
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TABLE III. Summary of the numerical integrations for the
Fermi-Thomas equation (without exchange effects and for
T=0). ag is the initial slope, xo is the radius of the atom, p(x0}
is the boundary value of the p function.

1.58806
1.58842
1.58856
1.58865
1.58870
1.58874
1.58884*
1.58876*

7.3851
8.5880

10.803s
11.9634
15.869s
10.935s
16.9824

0,0979g

0.07395
0.05990
0.04701
0.0381,
0.0208 s

0
0

electron an exchange term equal to 2e'pp/h, where
pp is the maximum momentum for the coordinate
point under consideration. The electron density is
now connected to the electrostatic potential by the
relation'

8+ 2e'm 4e4m'
p„= + +2m(Ep —e Vp)

3h' IE h'

4as=—
3

2 4,
a5 ———am+-~'5" 5

1 a26as= —+—+—
3 2 6

6 3 5
Q7 =—Q24.'~+—a@+—a

35 70 7

77
as ——:a2+—~'

15 120

2 1 11 1 10 16
Qg =———a2' +—-Q &c —~2 6 +—t. +—0

27 252 35 42 63 105

' See J. C. Slater and H. M. Krutter, reference 1.

In order to get the numerical integration of Eq.
(7) started, P is first expanded into a semicon-
vergent power series about the origin. The form of
this series is identical with that of Eq. (4). For
convenience, we list the corresponding coefficients
up to a9 in Table IV. Again we introduce a change
in independent variable x=w'/2 and use the same
numerical integration procedure beginning at
m =0.92.

Slater and Krutter' have carried through nu-
merical integrations for Z=3, 11, 29 and Jensen4
for Z= 18, 36, 54. We have obtained a family of six
solutions for Z=6 and of ten for Z=92. The initial
slopes and boundary values are shown in Tables V

TABLE IV. Coefficients of the series solution for the Fermi-
Thomas-Dirac equation. a2 is the initial slope and

f = (3j327r')'~sZ '~' =0.2 1 1873Z

where
P —Pf5/4

xp'p )P(xp)q '
q 't 5p/4

I+ I1-
3 E ( xp ) I I (P(xp)/xp)'+p

where

0.701

44prpxp) xp

is the variable aga, inst which we plot the function f.
In Fig. j. we have compiled the values given by

Jensen for Z=1S, 36, 54; rewritten data of Slater
and Krutter in this form; and added the new cal-
culations for Z = 6, 92. In this way we have obtained
sufficient data, so that satisfactory interpolation for
any Z value is possible. Finally we have graphed our
numerical values for the case without exchange.

' See H. Jensen, reference 1, Eqs. (4a, b, c) and (5).
"Explicitly, P =2/5(3/8~)'~'(h'/2m)(p)s~', where p is the

uniform density of electrons,

and VI for Z=6 and 92, respectively. Values for
the two sets of P functions are listed in Tables VII
and VIII at intervals of hz@=0.08. Here again
quadratic interpolation is adequate to obtain P for
intermediate m-values.

From these results one may obtain a relation
between pressure and density (or volume) for
various elements at T=O. The pressure depends
only on the minimum of the potential, Ze4p/r, which
is attained at the boundary of the atom. On that
boundary no average force acts on the electrons, and
the pressure is the same as would be caused by a
density of free electrons equal to the electron density
at the boundary. This electron density is in turn
determined by the potential at the boundary, and
one obtains for the pressure the formula

Ze'
p (P(xp)q &

q
' 54/4

I I
I+p I

1—— — (s)
104rp4& E xp 0 ) Q(xp)/xp)&+4

The relation just obtained is in effect a de-
pendence of the pressure on the atomic volume
since the value of f/x depends exclusively on the
atomic radius and hence on the atomic volume.

In this way the pressure-density relationship is
applicable to materials composed of several kinds
of elements. The volume at a given pressure is
obtained by adding the atomic volumes appropriate
for that pressure.

In order to express pressure-density relationships
for various Z values in a form which permits con-
venient interpolation for intermediate Z values, we
follow Jensen' and express the pressure in units of
the pressure P resulting from a uniform distribution
of all the electrons of the material throughout the
total available volume, ~' i.e. ,
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TABLE V. Summary of the numerical results (with exchange
eFfects) for carbon. The initial slope a2, and the boundary
values are given. ~

TABLE VI. Results of the numerical integration of the Fermi-
Thomas-Dirac equation for uranium. *

P(xo)

1.6740
1.6800
1.684Q
1.6858
1.6863
1.6867

a xo, =6.28.
P

Xp

3.2617
3.7153
4.3784
5.1678
5.7291
7.0084

P(xo)

Q.23194
Q.16946
Q. 1Q816
Q.Q6124
Q.03942
Q.Q1Q79

1.6Q394
1.6Q444
1.6Q484
1.6Q488
1.6049Q
1.6Q491
1.6Q491g
1.6Q492
1.6Q4924
1.6Q5QQ~ **

6.5139
7.4877

1Q.2143
11.3326
12.4Q37
13.3862
14.2941
15.6Q84
19.4301

0.1Q164
Q,07495
0.03507
Q.Q2623
Q.01991
0.01551
Q.Q1228
Q.Q0871
Q.QQ286

Q

The pressure-density relations so derived are
valid only at rather high pressures at which the
detailed inHuence of the outer shell structure of the
atoms has been obliterated. This usually happens
at pressures exceeding ten megabars.

7r-'k'T'-'
—.—'-(2m (E—e V)) i 1+— ——,(11)

. kg 8(E—e V)

w-' ~.ge mi ene tty and d is the Boitzmann
= =~leads to the corresponding dilferentiai~W tgte potential

d'4 4'
=—1+

dx-' x&
(12)

whaaa (~Ct/idx) =2—e V analogous to Eq. (2),
~pl/IZge', and id is given by Eq. (1b). The

haandrtetr sondidons are O(0) = i and dn/de=a/s.
'Daa ~it~ of this equation can be written

C =P+gT2$

P ks the unperturbed solution obtained in

g J. Aghggin, unpubhghed report.

IV. PERTURBATION TREATMENT OF
TEMPERATURE EFFECTS

If the value of the temperature is low compared
to the maximum kinetic energy of electrons near
the boundary between atoms, i.e., if

kT«(Zeg/id) [p(xo)/xone, (10)

the inHuence of the temperature can be treated by
perturbation methods. The inHuence of this per-
turbation on the Fermi-Thomas distribution will
now b4. dll+@zed and in this discussion we shall
disregard - effects of exchange. It has been shown
by ~' ' ahat the influence of the temperature
pet/Nhatdlh afid of exchange eSects are very nearly
adSRHre.

Qggshais ahead Bethe' have shown that the per-
tua~n jfagtggi temperature can be taken into
aceimat by'masdifying Eq. (1a), which connects the
clot =gtin ~ty and the electrostatic potential.~~e expression

+ xo, =16.47.
(p 19 P)~ Ion.

Section II and &1 satisfies the differential equation

d'41 34'41
+—.

dx' 2x&
(13)

TABLE VII. Solutions of the Fermi-Thomas-Dirac equation
for carbon. It is to be noted that the more convenient inde-
pendent variable zv is used here.

Case 1—aq =1.6740
'IO

0.92 0.62232
1.00 0.58007
1.08 0.53924
1.16 0.50013
1.24 0.46300
1.32 0.42803
1.40 0.39534
1.48 0.36507
1.56 0.33727
1.64 0.31201
1.72 0.28935
1.80 0.26933
1.88 0.25202
1.96 0.23747
2.04 0.22578
2.12 0.21707
2.20 0.21150
2.28 0.20927
2.36 0.21067
2.44 0.21605
2.52 0.22589
2.60 0.24080
2.68 0.26156
2.76 0.28920
2.84
2.92
3.00
3.08
3.16
3.24
3.32
3.40
3,48
3.56
3.64
3.72
3.80
3.88
3.96
4.04
4.12
4,20

Case 2
1 6800

0.61957
0.57676
0.53528
0.49543
0.45744
0.42146
0.38763
0.35602
0.32667
0.29962
0.27487
0.25242
0.23228
0.21442
0.19888
0.18565
0.17477
0.16630
0.16034
0.15701
0.15649
0.15903
0.16494
0.17465
0.18870

Case 3
1.6840

0.61774
0.57455
0.53264
0.49230
0.45373
0.41709
0.38249
0.34999
0.31962
0.29137
0.26524
0.24118
0.21916
0.19913
0.18104
0.16484
0.15050
0.13797
0.12725
0.11833
0.11121
0.10595
0.10261
0.10129
0.10214
0.10536
0.11123
0.12011
0.13247
0.14892

Case 4
1.6858

0.61691
0.57356
0.53145
0.49089
0.45206
0.41513
0.38018
0.34728
0.31644
0.28766
0.26091
0.23613
0.21327
0.19227
0.17304
0.15552
0.13964
0.12532
0.11251
0.10113
0.09114
0.08250
0.07518
0.06917
0.06447
0.06109
0.05909
0.05853
0.05953
0.06224
0.06688

Case 5
1.6863

0.61668
0.57328
0.53112
0.49049
0.45160
0.41458
0.37954
0.34653
0.31556
0.28663
0.25970
0.23472
0.21162
0.19033
0.17078
0.15288
0.13656
0.12172
0.10831
0.09623
0.08542
0.07582
0.06738
0.06005
0.05378
0.04857
0.04438
0.04123
0.03914
0.03814
0.03831
0,03975
0.04261

Case 6
1.6867

0.61650
0.57306
0.53086
0.49018
0.45123
0.41414
0.37903
0.34593
0.31486
0.28581
0.25874
0.23361
0.21033
0.18884
0.16905
0.15087
0.13422
0.11901
0.10514
0.09254
0.08112
0.07081
0.06153
0.05321
0.04579
0.03920
0.03340
0.02833
0.02396
0.02024
0,01714
0.01465
0.01275
0.01143
0.01072
0.01063
0.01123
0.01259

Expanding pi ——P C„x"" and using the series ex-
pansion for p given by Eq. (4), one finds, taking
C2=0, that

C3= C4= C5= C6=0,
Cr = (4/35); Cg =0; Cg = (4/63)ag ,

'

Cio ———(13/525); Cii ——0,

where a2 is the initial slope of p. Here again it is
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TABLE VIII. Solutions of the Fermi-Thomas-Dirac equation for uranium.

0.92
1.00
1.08
1.16
1.24
1.32
1.40
1.48
1.56
2.64
1.72
1.80
1.88
1.96
2.04
2.12
2.20
2.2g
2.36
2.44
2.S2
2.60
2.68
2.76
2.84
2.92
3.00
3.08
3.16
3.24
3.32
3.40
3.48
3.56
3.64
3.72
3.80
3.88
3.96
4.04
4.12
4.20
4.28
4.36
4 44
4.52
4.60
4.68
4.76
4.84
4.92
5.00
5.08
5.16
5.24
5.32
5.40
5.48
5.56
5.64
5.72
5.80
5.88
5.96
6.04
6.12
6.20
6.28

Case 1

-a~ 1.60394

0.64210
0.60189
0.56284
0.52521
0.48917
0.45485
0.42232
0.39164
0.36279
0.33578
0.31057
0.28710
0.26532
0.24517
0.22658
0.20947
0.19378
0.17946
0.16637
0.15452
0.14384
0.13427
0.12577
0.11831
0.11185
0.10637
0.10187
0.09834
0.09579
0.09424
0.09373
0.09430
0.09603
0.09900
0.10332

Case 2
1.60444

0.64187
0.60161
0.56251
0,52482
0.48871
0.45431
0.42169
0.39089
0.36192
0.33477
0.30939
0.28574
0.26375
0.24336
0.22448
0.20705
0.19099
0.17621
0.16266
0.15026
0.13894
0.12864
0.11931
0.110g9
0.10335
0.09663
0.09072
0.08557
0.08117
0.07750
0.07456
0.07235
0.07088
0.07017
0.07024
0.07114
0.07293
0.07567

Case 3
1.60484

0.64169
0.60139
0.56225
0,52451
0.48834
0.45387
0.42118
0.39030
0.36123
0.33396
0.30846
0.28465
0.26249
0.24190
0.22280
0.20512
0.18875
0.17364
0.15970
0.14686
0.13503
0.12416
0.11417
0.10500
0.09660
0.08891
0.08188
0.07547
0.06963
0.06432
0.05952
0.05519
0.05230
0.04783
0.04476
0.04207
0.03975
0.03779
0.03619
0.03493
0.03402
0.03347
0.03328
0.03347
0.03406
0.03507

Case 4
1.60488

0.64167
0.60137
O.S6222
0.52448
0.48830
0.45383
0.42123
0.39024
0.36126
0.33388
0.30836
0.28455
0.26237
0.24176
0.22264
0.20492
0.18853
0.17339
0.15941
0.14652
0.13464
0.12371
0.11366
0.10442
0.09593
0.08815
0.08202
0.07447
0.06849
0.06302
0.05804
0.05350
0.04938
0.04564
0.04227
0.03925
0.03655
0.03415
0.03205
0.03024
0.02870
0.02742
0.02642
0.02568
0.02521
0.02502
0.02511
0.02552
0.02622
0.02728

Case 5
1.60490

0.64166
0.60136
0.56221
0.52446
0.48828
0.45381
0.42110
0.39021
0.36113
0.33384
0.30832
0.28449
0.26231
0.24169
0.22255
0.20483
0.18842
0.17326
0.15926
0.14635
0.13445
0.12349
0.11340
0.10413
0.09560
0.08776
0.080S7
0.07397
0.06792
0.06238
0.05730
0.05266
0.04842
0.04456
0.04104
0.03785
0.03496
0.03235
0.03001
0.02792
0.02607
0.02445
0.02305
0.02286
0.02088
0.02012
0.01955
0.01920
0.01907
0.01916
0.01948
0.02005

Case 6
1.60491

0.64166
0.60135
O.S6220
0.52445
0.48828
0,45380
0.42109
0.39019
0.36112
0.33382
0.30829
0.28447
0.26228
0.24165
0.22252
0.20478
0.18837
0.17320
0.15919
0.14627
0.13436
0.12338
0.11328
0.10398
0.09543
0.08757
0.08035
0.07372
0.06764
0.06205
0.05693
0.05224
0.04794
0.04401
0.04042
0.03714
0.03416
0.03144
0.02898
0.02676
0.02475
0.02296
0.02136
0.01995
0.01873
0.01768
0.01680
0.01608
0.01554
0.01516
0.01495
0.01492
0.01507
0.01541
0.01596

Case 7
1.604915

0.64165
0.60135
0.56220
0.52445
0.48827
0.45379
0.42108
0.39018
0.36110
0.33381
0.30828
0.28445
0.26226
0.25163
0.22249
0.20475
0.18834
0.17316
0.15915
0.14622
0.13430
0.12332
0.11321
0.10390
0.09534
0.08747
0.08023
0.07359
0.06748
0.06187
0.05673
0.05201
0.04768
0.04371
0.04008
0.03676
0.03372
0.03095
0.02842
0.02612
0.02403
0.02214
0.02044
0.01891
0.01755
0.01634
0.01529
0.01438
0.01361
0.01298
0.01249
0.01214
0.01192
0.01185
0.01193
0.01216
0.01255

Case 8
1.60492

0.64165
0.60135
0.56220
0.52444
0.48827
0.45378
0.42108
0.39018
0.36109
0.33380
0.30827
0.28444
0.26225
0.24161
0.22247
0.20473
0.18831
0.17313
0.15912
0.14618
0.13426
0.12327
0.11325
0.10384
0.09527
0.08738
0.08014
0.07347
0.06735
0.06173
0.05656
0.05182
0.04747
0.04347
0.03981
0.03644
0.03336
0.03054
0.02796
0.02560
0.02344
0.02148
0,01969
0.01806
0.01659
0.01526
0.01407
0.01301
0.01206
0.01124
0.010S2
0.00992
0.00941
0.00901
0.00872
0.00853
0.00845
0.00848
0.00862
0.00889

Case 9
1.604924

0.64165
0.60134
0.56219
0.52444
0.48826
0.45378
0.42107
0.39017
0.36109
0.33380
0.30826
0.28443
0.26223
Q.24160
0.22245
0.20471
0.18829
0.17311
0.15909
0.14615
0.13422
0.12323
0.21310
0.10378
0.09520
0.08731
0.08003
0.07337
0.06724
0.06160
0.05642Q~~
OA~IR
0.8Am
0.~==
0.~~
0.@%5
O.WRR
O.NRS
0 f=
0.|M"-~.
O.t.=
0.9=
0.8i&:-
0.0'@
0.0~~
O.OI.

O.Ok~
0.01~
0.0~~
O.C~
O.C-
OLE

O.Deems
0.00~
0.00534
0.0048S
0.00442
0.00404
0.00371
0.00344
0.00324
0.00304
0.0029$
0.00288
0.00280
0.00282
0.00290

Case 10
1.60500

0.64161
0.60130
0.56214
0.52438
0.48819
0.45370
0.42097
0.39009
0.36095
0.33364
0.30808
0.28422
0.26199
0.24132
0.22213
0.20434
0.18786
0.17262
0.15852
0.14550
0.13347
0.12237
0.11212
0.10265
0.09391
0.08583
0.07836
0.07145
0.06504
0.05910
0.05357
NM42
M&359
~f907
:%80=377
—~94
KRR326
~973~29

993
~~62
== ~3

e$
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Fro. 1. A representation of the numerical solutions of the
Fermi-Thomas-Dirac equation in a form that permits inter-
polation for intermediate Z values. f is related to pressure and
P is proportional to density (see Eq. (9)).

' J. MacDougall and E. C. Stoner, Phil. Trans. Roy. Soc.
237, 67 (i938).

'o In the next section, this expression is discussed in more
detail.

convenient to make the change of independent
variable x =err'/2. The series solution for the per-
turbation function was evaluated at m=0.48 and
was extended by a numerical procedure similar to
those used above.

Three numerical 'solutions for p1 were obtained.
They are obtained by substituting three different
g functions from Part II into Eq. (13). These @
functions may be characterized by their initial
slopes ar = 1.58856, 1.58865, and 1.58874 (see Tables
II and III). In Table IX numerical solutions are
given corresponding to these three cases for the
range of m that is of interest. The derivatives are
also given as they are needed to satisfy the boundary
conditions.

With these solutions, a series of points on a
P —v —T diagram may be obtained in the following
manner. For a given Z, one assumes a temperature
T and determines xo, and hence atomic volume (or
density), from the boundary condition dC/dx =4/x.
The pressure may be obtained either by the approxi-
mate expression obtained by Marshak and Bethe
or by using tables of the complete expression worked
out by MacDougall and Stoner. ' Specihcally they
tabulate

I„(r(rr) = I x"'dx/(e* "+1). -
0

The expression for the pressure in dynes/cm' is"
8x

I' = (2m) r~'(k T)'~'I,(,( )rr
3h'

TABLE IX. Solutions of the temperature-perturbation equa-
tion. The unperturbed solutions associated with them may be
identified by the given values of a2. Only the interesting region
is tabulated.

{aa=1.58856)
dpi'
dw

{am =1.5S865)

dw

{am =1.58874)

2.60 19.211
2.64
2.68 24.712
2.72
2.76 31.594
2.80
2.84 40.160
2.88
2.92 50.768
2.96
3.00 63.844
3.04
3.08 79.888
3.12
3.16 99.488
3.20
3.24 123.33
3.28
3.32 152.22
3.36
3.40 187.10
3.44
3.48 229.04
3.52
3.56 279.30
3.60
3.64 339.33
3.68
3.72 410.79
3.76
3.80 495.59
3.84
3.88 595.94
3.92
3.96 714.38
4.00
4.04 853.82
4.08
4.12 1017.6
4.16
4.20 1209.7
4.24
4.28 1434.6
4.32
4.36 1697.6
4.40
4.44 2005.0
4.48
4.52 2364.1
4.56
4.60
4.64
4.68
4.72

6$.757

86,027

107.07

132.61

163.45

200.55

245.00

298.06

361.16

435.94

524.25

628.24

750.30

893.18

1060.0

1254.4

1480.5

1743.0

2047.6

2401.0

2811.1

3287.5

3842.0

4489.1

19.223

24.730

31.621

40.200

50.827

63.931

80.014

99.669

123.59

152.59

187.61

229.76

280.29

340.67

412.59

497.98

599.08

718.41

858.90

1023.9

1217.1

1443.0

1706.6

2013.5

2370.6

2785.4

3267.1

68.833

86.139

107.24

132.84

163.79

201.04

245.69

299.03

362.51

437.79

526.77

631.62

754.77

899.00

1067.4

1263.7

1491.7

1756.1

2062.1

2415.7

2823.8

3294.4

3837.0

4462.S

5185.4

6020.9

6989.3

3.60 310.28
3.64
3.68 376.66
3.72
3.76 455.67
3.80
3.84 549.42
3.88
3.92 660.35
3.96
4.00 791.23
4,04
4.08 945.23
4.12
4.16 1126.0
4.20
4.24 1337.5
4.28
4.32 1584.5
4.36
4.40 1872.2
4.44
4.48 2206.6
4.52
4.56 2594.4
4.60
4.64 3043.1
4.68
4.72 3561.2
4.76
4.80 4158.4
4.84
4.$S 4845.3
4.92
4.96 5634.1
5.00
5.04 6538.3
5.08
5.12 7573.4
5.16
5.20 8756.5
5.24
5.28 10107.0
5.32
5.36 11648.0
5.40
5.44 13403.0
5.48
5.52 15402.0
5.56
5.60 17678.0
5.64
5.68 20268.0
5.72
5.76 23216.0
5.80
5.84

829.73

987.60

1171.9

1386.6

1636.0

1925.0

2259.0

2644.3

3087.6

3596.6

4179.9

4847. 1

5608.7

6476.7

7464.3

8586.4

9859.8

11303.0

12938.0

14789.0

16884.0

19256.0

21942.0

24987.0

28443.0

32375.0

36856.0

41977.0

where

C (xo)
/(2T(2I. ) —:)

X0

V. EXACT TREATMENT OF TEMPERATURE EFFECTS

For the case of high temperatures the perturba-
tion treatment given in the preceding section is not
very accurate. In this section the effects of tem-
perature will be taken into account exactly. Inas-
much as the effects of exchange for this range of
temperature are relatively unimportant, we con-
sider only the approximation in which they are
neglected.

The effect of temperature is to alter the charge
distribution of electrons in the atom. The number
of states available to an electron of momentum p
at position r is 2L4rrp'dp7L4rrr'dr7/Ir'. The basis of
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2 4irp'dp/k'
P = (14')" o expL(p /'2m —e V/'kT)+ ri]+ I

Substituting this expression for the charge density
into Poisson's equation we obtain

1 d"- V 16m'-'
t
eI'

— e((2mk T) ') "I;
I

—ii I, (15)
r dr' h' (kT

where the function I;(g) is defined by

y "dyI.(n)= i

o exp(y —ii) + 1
(15a)

and arises for n= o from Eq. (14) if one replaces
p'/2mk T by y. It is Eq. (15) that we solve
numerically.

The equation can be simplified by a change of
variables. Let s = r/c where

k' 1.602)&10 "crn
c=f ——

(32or'e'm(2mk T) &) To„'

where T~ is the temperature measured in kilovolts.
The constant g in Eq. (15) can be removed by a
change in the zero of potential V. Setting

P/s = (e V/k T) ii, —

Eq. (15) becomes

the simple Fermi-Thomas model at T=O is to
consider that all of the states up to the maximum
available momentum are occupied and that the
rest are empty. If the temperature is raised, the
statistical analysis of Fermi and Dirac tells us that
the probability that a state of momentum p, and
hence of energy, p'/2m —e V, is filled is

1/[exp([(p'/2m —e V) /k T]+g) +1],
where k is Boltzmann's constant and g is a constant
which is determined by the condition that the total
number of electrons is given. Therefore the density
of electrons is

becomes,

(d/dw) (I/w) (dP/dw) = 2w'I;(2P/w'-). (20)

The equation was integrated from the outside
(w'=2g/c) inwards (to w=0) and no difficulties
arise as the origin is approached. The limiting value
of P as w —+0, i.e. , a is easily determined. The solu-
tion is started by choosing, arbitrarily, a value of b,
and of P at s= b and using Eq. (18) or its equivalent
(dP/dw) = 2P/w to get the initial value of the
derivative of p. It is only after the solution is
complete and the value of o. is determined that the
temperature (from Eq. (19)) and the density (from
a = bc where c is given by Eq. (16)) can be evaluated.
That these turn out to be in an interesting region
requires judicious choice of the initial values of b

and p, but this is not a real difficulty.
The numerical procedure is similar to that

described earlier. The values of I1(2P/w') are ob-
tained with the help of tables of the function I;(y)
given by MacDougall and Stoner. " The interval g
is so chosen that the error in 2P per step which is
approximately

g d [2P~ w d' (2P)
w":-I —I+—

6 d& EW2) 2 dX~ KGJ2)

is kept below 0.0001. This usually means that for
large m, the interval g can be 0.05 but as the origin
is approached it is frequently necessary (below
w=1.4) to reduce it to 0.025.

The values of P as a function of w for ~arious
cases are given in Table X.

After the potential distribution V is known, we
can calculate at a given temperature and density
values for the internal energy and pressure. The
internal energy Et,t is the sum of two terms, the
potential energy, E„.t, , and the kinetic energy, B~; .
We shall calculate these quantities in turn.

In calculating the potential energy we must be
careful to avoid adding the (infinite) self-energy of
the nucleus. We find, if 8 is some very small radius,

,a

d'P/ds'= sI;(P/s).
E», ——— p, V 4wr'dr+ ,'Z[V (Ze/r)]„o——=

2 ~y
(21)

The boundary condition is

dP/ds =P/s at s = b, (18)

where a=eh is the atomic radius. At the origin,
since V is to vary as Ze/r, P must approach a
constant value

a =Ze'/kTc =0 0899Z/T), „i. . (19)

Because of the singular behavior of Ii,(P/s) as s—+0
(it varies as s &) numerical integration from the
origin is laborious. To avoid this difhculty, another
procedure was used. Setting s=w'/2, Eq. (17)

The first term is the energy of the atomic electrons,
being their charge density times the potential in
which they find themselves, and the second term
is the energy of the nucleus of charge Ze because of
its interaction with the electrons, the potential of
this interaction being U —Ze/r, i.e. , the total poten-
tial less that due to the nucleus itself. (The factor

arises in the usual manner because calculating
this way we count each interaction twice. ) If for
p„ the expression given by Eq. (14) is used, the
lower limit of the integral can be put equal to zero.
For [V—(Ze/r)] at small r, we can write its equal,
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TAaLE X. Solutions of the temperature dependent Fermi-Thomas equation.

Case 1* Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10 Case 11

0.00
0.10
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.?
2.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3,0
3.1
3.2
3.3
3,4
3.5
3.6
3.7

3.8
3.9
4.0
4, f

4.2
4.3
4.4

4,5
4.6
4.7
4.8
4.9
5.0
5.1
5.2
5.3
5.4
5.5
5.6
5 ' 7
5,8
5.9
6.0

6.1
6.2
6.3
6.4

7.2021
7.1183
6.8914
6.5549
6.1386
5.6676
5.161S
4.6352
4.0985
3.5572
3.0132
2.4655

3.9774
3.9324
3.8071
3.6156
3.3698
3.0800
2.7536
2.3960
2.0100
1.5959
1.1527
0.6782
0.1702—0.3731—0.9528-1.5695—2.2234—2.9145—3.6426-4.4076—5.2088—6.0459—6.9182—7.8252—8.7664—9.7405—10.7467—11.7839—12,8509—13.9464—15.0684—16.2162—17.3877—18.5807—19.7930—21.0222—22.26S4—22.8912 '„

3.6S)

9.8260
9.692 2
9.3559
8.863 2

8.2594
7.5832
6.8648
6.1256
5.3798
4.6348
3.8924
3.1494
2.3992
1.6328
0.8413
0.0167—0.8466-1.7552-2.7084—3.7076—4.7536—5.8467—6.9870—8.1746—9.4093—10.6908—12.0190—13.3935—14.8138—16.2794—17.7898—19.3445—20.9428—22.5840—24.2673—25.9919—27.7568—29,5612

—31.4037—33.2834—35.1988—37.1488

—39.1317—41.1459—43.1897

—45.2612—47.3582—49.4786—51.6200

6.8602
6.7770
6.5510
6.2118
5.7872
5.3002
4.7679
4.2025
3.6112
2.9964
2.3567
f .6876
0.9828
0,2357-0.5584—1.4046—2.3030—3.2548—4.2602—5.3198—6.4337—7.601S—8.8241—10.1005—11.4308—12.8150—14.2528—15.7438—17.2880—18.8850—20.5345

-22.2361—23.9894—25.7940—27.6496—29.5554—31.5112—33.5162

—35.5698
-37.67 2 5—39.8204—42.0158

—44.2569
-46.5428
-48.8725

—5 2.2450
-53.6592—56.1189
-58.6128—61.1446—63.7128—66.315S—68.9S20

3.7659
3.7 f62
3.5762
3.3584
3.0736
2.7302
2.3338
1.8872
1.3906
0.8419
0.2377—0.4248-1.1481—1.9324—2.7782—3.6856—4.6548—5.6857—6.7783-7.9326—9.1486—10.4262-11.7654

-13.1660—14.6280
-16.1512
-17,7356—19.3812—21.0876—22.8547—24.6825—26.5708—28.5192—30.5278—32.5962—34.7242—36.9116
-39.1580

—41.4632—43.8269—46.2487—48.7283

—51.26S3—53.8592—56.5097

—59.2162—61.9782
-64.7952—67.6666—70,5918—73.570 2—76.6008—79.6831—82.82 62—85.9994—89.2316—92.5120

6.8918
6.8136
6.6016
6.2874
5.8992
5.4604
4.9902
4.5024
4.0074
3.5111
3.0162
2.5229
2.0294
1.5328
1.Q224
0.5028—0.02762—0.5698—1.1237—1.6887—2.2636—2.8470—3.4365-4.0298—4.6236—5.2146—5.7986—6.3704—6.9243—7.4536

0.31208
0.27857
0.17822
0.01115—0.2227—0.5232—0.8908—1.3250—1.8262—2.3940—3.0288—3.7302—4.4986—5.3336-6.2360—7.2046—8.2400—9.3422—10.5110- 2 1.7466—13.0490—14,4180—1S.8536—17.3558—18.9247—20.5601—22.2620—24.0304—25.8652

-2?.7663—29.7337—31.7673—33.8670—36.0328—38.2644—40,5619—42.9250
-45.3538

—47.8480—50.4074
-53.0320—55.7214

—58,4756—61.2944

5.8808
5.8127
5.6268
5.3472
4.9964
4.5922
4.1492
3.6773
3.1828
2.6684
2.1336
1.5756
0.9902
0.3731—0.2804—0.9732—1.7048—2.4766—3.2886—4.1410—5.0338—5.9666—6.9392—7.9511—9.0018—10.090S—11.2172—12.3805—13.5797

-14.8140—16.0822—17.3833—18.7161—20.0790—21.4706—22.8893—24.3332—25.8002

—27.2881—28.7945—30.3166
( —32.0828;

4.05)

2.3570
2.3156
2.1962
2.0044
1.7452
1.4217
1.0351
0.5849
0.0694—0.5130—1.2 631—1.8812—2.6674—3.5216—4.4440—5.4346—6.4933—7.6202—8.8150—10.0780—11.4090

-12.8081—14.2751—15.8100—17.42 29
-19.0836—20.8222—22.6284—24.5024—26.4439—28.4530—30.5295—32.6?34—34.8846—37.2629
-39.5082—41.9206—44.3996

—46.9453—49.5575—52.2360—54.9806

—57.792 2—60.6676
-63.6094

—66.6165—69.6886—72.S255—76.0268—79.2924—82.6218—86.0146—89.4706—92.9893—96.5704—100.2132—103.9176—107.6830—111.5086—115.3942
( —117.3593;

5.95)

5.2326
5.1661
4.9820
4.7006
4.3415
3.9179
3.4402
2.9148
2.3438
1.7262
2.0576
0.3328—0.4530—1.3036—2.2194-3.2014-4.2498—5.3648—6.5464—7.7947—9.2097—2 0.4914—11.9396—13.4546—15.0360—16.6840—18.3984—20.1790—22.0260—23.9392—25.9182—27.9634—30.0743—32.2509—34.4930—36.8006—39.2 734

-41.6212

—44.1240—46.6813—49.3131
-52.0092

—54.7692—57.5928—60.4800

—63.4368—66,4564—69.5388—72.6834—75.8899
-79.157S—82.4868—85.8764—89.3262—92.8355—96.4039—100.0308—103.7 2 56—107.4576—211.2563—115.1 208

-119.0205—122.9845—127.0020—131.0720

30.376S
29.8494
28,4774
26.5480
24.2840
21.8776
29.4648
17.1384
14.9552
12.9442
11.1144
9.4598
7.9651
6.6084
5.3642
4.2054
3.2052
2.0387
0.9857—0.06935—1.1370—2.2246—3.3389—4.4842-5.6582—6.8620—8.0961-9.3604-10.6544—21.9776—23.3292—14.7079—16.2 128—17.5422

-18.9946—20.4682
-21.9620—23.4706

—24.9946
-26.5302—28.0744—29.6236

—31.1740—32.7216
( —33.4928;

4.35)

* The first part of this integration was based on Eq. (17); it was completed in the form given by Eq. (20). Only the latter is given.

p /2m 2 47rp dp/h,3-
t p'/2m —eU

exp(
kT

E~;„——
~
4xr'dr.

0
I

(&P)&

Ep„—— ZjtT) (p —,')w'I:(2p/w"-)dw—. —(22)
0

k0

(23)
The integral is obtained numerically from the data
of the solution.

The kinetic energy of each electron of momentum
p is p'/2m. Multiplying by the density of electrons
and integrating over all space, we find for the

This expression can be simplified by a rather long
sequence of operations. If one integrates by parts
first by r, and then again by p, and then uses Eq.
(14) to replace one of the integrals on p one can

[d(Ur)/dr j 0 Changing then to. the coordinates P kinetic energy of all electrons
and s, we find
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T~BLF. XI. Summary of the numerical results for the temperature dependent Fermi-Thomas equation (see Table X). X arious
thermodynamics quantities are evaluated corresponding to these solutions for the case of iron.

CaSe Pb

1 —13.5000
2 —22.8914
3 —51.6200
4 —68.9520
5 —92.5120
6 —7.4536
7 —61.2944
8 —31.0828
9 —117.3593

10 —131.0720
11 —33.4928

5.4000
6.6612

11.5200
13,5200
15.6800
4.2050
9.2450
8.2012

17.7012
20.4800
9.4612

7.2021
3.9774
9.8160
6.8602
3.7659
6.8918
0.3121
5.8808
2.35?0
5,2326

30.3768

Fpot/kTZ

—13.5750—5.4520—20.2006—11.6576—4.2351—13.0006—0.0676—9.6867—1.7505-7.0961—97.300

Bein/
kTZ

Z.5715
3.780'

10.882
6.799'
3.360'
7.2902
0.7742
5.7792
2.2511
4.7536

49.0072

0.5227
O.Z028
0.5210
0.6470
0.8283
0.5266
0.5936
0.6239
0.9172
0.8037
0.2380

1.2210
1.6014
1.5976
1.9122
2.1681
1.1017
0.8165
1.6059
2.1298
2.3760
0.7632

2.336
2.278
3.066
2.924
2.618
2.092
1.654
2.574
2.322
2.956
3.207

1

Pv/kTZ U /kTZ y —1

1.428
1.439
1.326
1.342
1.382
1.578
1.605
1.389
1.431
1.338
1.313

Tkv =
(0.428~) 4»

0.2231
0.4926
0.1476
0.2381
0.5297
0.2366

14.660
0.2923
0.9892
0.3416
0.0326

1.602 X10 9b

Tkv&/4

1.259A
1.274
2.977
3.101
2.944
0.966
0.757
1.787
2.844
4.292
3.567

For Fe&s
A

4n.
v =—63

3

8.353A s

8.659
110.54
124.91
106.88

3.774
1.816

23.893
96.30

331.04
189.52

p g/cm3

11.874
11.455
0.8974
0.7644
0.9280

26.28
54.62
4.154
1.030
0.2996
Q.5235

Pmegsbars

581.5
1665.

28.97
51.40

170.9
1375.

1.66 X10'
3.179

392.4
34.54

1.703

show finally that

16~'-'

~kin

The total energy per atom is therefore most con-
veniently calculated from

~tot 2P~+ 2~pot&

t p "/2m —el-'.
expI —+& I+1

kT

where t', is the value of the potential at the surface
of the atom r =a. The integral is, of course, propor-
tional to Isq~I (e V,/kT) —v] (see Eq. (15a)).

We next compute the pressure. Since there is no
field at r=a, all of the momentum carried across
this surface (which in one second per cm' is P, the
pressure) must be carried by electrons crossing this
surface. This is the reason why computing the
pressure at r=o, is particularly simple. At this
point pressure simply appears as the pressure of a
free electron gas. One obtains

—',p (p/m) 47rp'dp/k'
(25)

& 0 [exp[(p-'/2m —e V,/kT)+vj+1]

The value of Pv per atom where v = (4/3)va, ' is the
atomic volume, is therefore

32K' 8 )eV
(2mk T) '(k T)13~2I

9k' EkT )
2 b' pP&p= -(Zk T) ' —I~~-I —

I
(26)

9 ~ Eb&

where p~ is the value of p on the boundary s = b.
Comparison of Eqs. (24) and (25) shows that we
can express the kinetic energy as

This equation will be obtained more directly by
consideration of similarity transformation in Section
VI.

U =Eg,g+ (k TZ) 0.6809(2a'/3) &. (28)

In this way P'v and U have been calculated for
the various conditions for which the diA'erential
equation was solved. The conditions p& and b are
given in the first two columns of Table XI. The
value of a which results is given in the third column.
In the next four columns the potential, kinetic, Pv
and net internal energy are given in units of kTZ
so that they are applicable for any Z. The ratio of
the net internal energy to Pv, which we have called
1/(y —1) is given, as well as the value of y to which
this corresponds. The ratio is written in this form
in analogy to the perfect gas formulae but it is
not to be assumed that in our case y is actually the
ratio of specific heats, nor the exponent in the
isentropic equation Pv~ =constant. We define
only through the equation U=Pv/(y 1). —

The above quantities are independent of the
value of Z. But to obtain actual numerical values

"See Slater and Krutter, reference 1, and Section VI.

where Pv is computed from Eq. (26) and the poten-
tial energy E„& from Eq. (22).

Actually the total energy is not interesting. What
we should like to know is the excess of this energy
over what the energy would be if the material were
at zero temperature and pressure. That is, to find
the net internal energy U we must subtract from
Et,t the energy of a single atom at zero temperature
and pressure. This energy is given by"

(3/&) (Z'e'/I )4'(0),

where p, is given by Eq. (1b) and g'(0) has been
calculated to be —1.58875 (see Section Il). ln
terms of our present quantities,

Z'e'/p = k TZ(2a'/3) ',

so we have
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VI. SIMILARITY CONSIDERATIONS

We shall summarize in this section a few simple
relations which apply to the electron distributions
obtained above.

The first of these relations is the virial theorem,
connecting pressure P, volume v, with kinetic
energy 8&;„and potential energy Ep

We shall show below that in the Fermi-Thomas
approximation this virial theorem is exactly satis-
fied. This fact has indeed been proved in the
literature for some special cases."The proof given
here is more general.

We consider first a similarity transformation in
which all charges (including the elementary charge
e) are changed by the factor (1+&), all distances
by the factor (1+p) and all energies by (1+i7).The
quantities e, p, g are assumed small compared to
unity. The quantum of action h and the electron
mass m are assumed to be unchanged.

From the expression for potential energy, the
following relation obtains

1+rl = (1+c)'/(1+ p) or g =2& —p.

The deBroglie wave-length X, as all lengths, must
change as (1+p); thus momenta change as 1/(1+ p)
and kinetic energies as 1/(1+p)'. However, these
energies, like potential energies, must change as
(1+g), hence we obtain

g= —2p

and with the above relation

2t= p.

(30)

(31)
'~ V. Fock, Physik. Zeits. Sowjetunion 1, 747 (1932).

for the temperature, atomic volume, density, and
pressure one must assume a definite substance.

The numerical values for these quantities for Fe56
(unit of density is 1 g/cm') are given in columns 10
to 14 of Table XI. For any other atom of atomic
number Z, atomic weight A, these values should be
multiplied by various factors:

(i} temperature T by (Z/26}4l'
{ii}atomic volume v by (26/Z}

(iii) density p by (Z/26)(A/56)
(iv) pressure P by (Z/26)'oI3

The above calculations from the Fermi-Thomas
model can be scaled, as was indicated, to apply to
a substance with arbitrary Z. For any definite Z
there is, however, an effect it is worth while to take
into account. To the internal energy per atom, Fe,
one should add 3kT/2 to account for the kinetic
energy of motion of the nuclei. For the same reason,
kT should be added to Pv to account for the extra
pressure developed by this motion.

Equations (30) and (31) give the change in potential
distribution and in energy due to a change of the
charges.

If 1&0, the two similar systems to be compared
must be such that the temperature should change
proportionally to the energy of an electron. Hence,
the entropy which changes as the heat transfer
divided by temperature will remain unaltered.

We shall now treat the eAect of the change of
charges by a perturbation treatment. Consider
first the effect of the change in all charges by the
factor (1+e), without altering the electron dis-
tribution. This we can consider accomplished with
the aid of imaginary rigid and infinitely thin walls
which subdivide the system and which prevent any
change in electron densities. (It is consistent with
the assumptions of the Fermi-Thomas model to
localize sharply electrons even though their mo-
mentum distribution is given. Introduction of such
walls is therefore permissible. ) Thus densities a,nd
hence kinetic energies will remain unaltered and the
change of total energy will be given by the change
in potential energy, namely, 2eE„,&.

As a second step we now permit the imaginary
walls to readjust themselves, but we shall keep in
this step the total volume unchanged. The com-
pression and dilatation of the volume elements will
introduce temperature changes which we allow to
be equalized by heat conduction. Since any energy
conducted away from one element must go into
another, the total energy change by conduction is
zero. The work done by the motion of the walls does
not vanish exactly. However, the displacement of
the walls is proportional to the electron density
differences; since the pressure differences are also
infinitesimal, the actual work performed is quadrati-
cally small. Thus the energy change introduced by
changing the charge distribution remains, to the
first order, 2eEp $ We also observe that the entropy
change due to heat conduction described above is
infinitesimal to second order, since both the amount
of heat conducted and the temperature differences
are infinitesimals of the first order.

In order to arrive at the same configuration
reached by the similarity transformation, the
volume must now be readjusted. This is done by a
volume increase (1+p)'. In this process, the entropy
will be kept constant. At the same time, however,
the energy of the system will decrease by an amount
equal to the pressure multiplied by the volume
change, i.e. , by P(3pv). Thus the total energy
change is 2'„,&

—3 tv. Equating this with g times
the original total energy we obtain

2&+pot 3pP~ 'g(@pot++kin)

Using Eqs. (30) and (31) to express q and p in terms
of e we finally have

2eEp, i+6ePv=4&(Ep, i+Ei, ; )
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@poi+2+min =3». (29)
or

(34)
The reasoning which has just been described can

be applied equally to calculations with or without
exchange effects. The reason is that the exchange
energy, as all other potential energies, is propor-
tional to e'/r. The characteristic distance entering
into the exchange energy happens to be the
deBroglie wave-length of the fastest electron.

It is well known that the virial theorem is exactly
valid for a quantum mechanical system (as well as
for a classical system) when the exact equations of
motion of the electrons and nuclei are taken into
account. The above simple argument merely shows
that the virial theorem is not invalidated by the
simplifying assumptions introduced in the Fermi-
Thomas method.

It is of interest to study a second similarity trans-
formation which consists of increasing the nuclear
charge and simultaneously increasing the number
of electrons so that the system remains neutral. This
similarity transformation describes correlations
between solutions for various nuclear charges; it
also leads to a further relation between the various
forms of energy in the Fermi-Thomas model. The
procedure to be described and the relations following
from it hold only for the case where exchange forces
are neglected.

It is to be noted that in this similarity trans-
formation X does not change like other lengths. In
fact, the Fermi-Thomas equation remains un-
changed, but we do not retain the detailed micro-
scopic relations from which it is derived. The
transformation consists of the following changes:

Z-+Z(1+ 1'), r~r(l+ p), E +E(1+g). —

Here E represents any form of energy per electron,
and also stands for the temperature T. At the same
time electron densities are changed by the factor
(1+i).
Ke shall consider

j, p, g, v&&1.

It follows directly from the charge balance that

(1+v) (1+p)' = 1+1 (32)

~+3p = C.

Since the potential energy of an electron must
change as (1+g), we have

(1+0/1+v) =1+v
or

If we assume that the temperature T has changed
by the factor (1+g), it is easily seen that the kinetic
energy per electron will transform as (1+i7).

Eliminating v from Eqs. (32), (33), (34), we
obtain

~=--:l., ~=(4/3)f
If we now continue to apply such similarity trans-
formations until there is a finite change of the
nuclear charge and of the other quantities involved,
we find that solutions of the Fermi-Thomas equa-
tion for different Z values are correlated by the
statements that the radius changes proportionally
to Z &; energy per electron E and temperature both
change as Z4". For the case T=0, these statements
follow directly from the well-known form of the
Fermi-Thomas equation. Ke should also note that
the total energy per atom changes as Z'". Thus in
an infinitesimal similarity transformation the total
energy per atom is multiplied by 1+7|'/3.

Ke shall now treat the same problem by a per-
turbation method in the following steps.

(i) First we shall multiply the nuclear charge of
a single nucleus by (1+&) and apply a perturbation
calculation. In this step we shall keep the number
of electrons, the volume, and the temperature
unchanged. Due to the complete shielding of a
nucleus by its electrons, assumed throughout this
paper, the interaction of nuclei with each other and
with electrons of other atoms need not be con-
sidered. Thus one obtains a change in energy gE., ~,
where E,, & is the electrostatic interaction energy of
electrons of an atom with its nucleus.

(ii) Second we add fZ electrons to re-establish
the charge balance. This addition gives the energy—gZE, where E„is the work function of the solid,
i.e., the energy needed to extract an electron from
the solid. If one wants to apply this argument to
an isolated ion, then E must be replaced by the
ionization energy of the outermost electron.

(iii) As a third step the solid is expanded. This
expansion gives rise to a change in energy of —3pPv,
where v is the atomic volume.

(iv) As a final step the temperature is raised by
gT which gives the added energy ETC., where C.
is the specific heat per atom at constant volume.

The sum of these energy contributions is equal
to the total energy change (71/3)(Z„&+Ez;,) ob-
tained from the infinitesimal similarity transforma-
tion. We have, therefore,

Since the kinetic energy is proportional to the
two-thirds power of the electron density, for T=0,
we are lead to postulate

(1+i) & = 1+g

(7/3) f(F-,"+&.'-) = l.&. ' l-«. 3~». +-~&&. —

Using the relations between q, g, p we obtain

(7/3)(&~.i+&~' ) =&., ~ —Z& +»+ (4/3) &&.
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Using the virial theorem and introducing the rela-
tion

Ep, t ——E...+E., ~
where E, , is the potential energy due to the
interaction of electrons within an atom, we get

(5/2) Pv+ (7/6) E. .+ (1/6) E,, m

= —ZE +(4/3) TC,.

In the special case of T=0 and of isolated atoms,
this relation becomes particularly simple. In fact

in this case I'=0 and the ionization energy E„ is
also set to zero, so that

E,, ~= —7E...,
This relation had been derived by Fermi for the
Fermi- Thomas equation.
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The determination of the Eigenmerte, and the normalization
of the Eigenfunktionen of the one-dimensional wave equation,
with a potential energy that has a single minimum, is custom-
arily based on the use of the so-called phase integral and
W.K.B.formulas. These formulas are asymptotic in character.
As they have usually been applied„ they accordingly lead to
conclusions which can be regarded as established only when
the respective quantum numbers are suSciently large. This
restriction has been both unfortunate and puzzling. For on
the one hand, the cases of small or moderate quantum numbers
are often peculiarly interesting while, on the other hand, the
phase integral formulas have been found by trial, at least in
a variety of simple cases, to give surprisingly good results
even in the lower quantum number range.

It is shown in this paper how the asymptotic method should
be applied when small or moderate quantum numbers are in
question. In the case of the Eigenmerte, the characteristic
equation appropriate to the lower range is derived, and a

comparison of this new equation with the familiar one based
on the phase integral is made. It is thus theoretically estab-
lished that under certain very liberal conditions upon the
potential energy the older method does give good approxima-
tions. In the special case of the harmonic oscillator the two
equations are, in fact, identical. For the normalization of the
Eigenflnktionen a method which has been used in principle
by VJ. H. Furry is applied. It is, however, framed in. a manner
appropriate to the smaller quantum number range. Formulas
are given for the normalized Eigenfunktionen over the several
intervals of the variable, over the critical interval which
includes the minimum of the potential energy and the turning
points, as well as over the intervals remote from the turning
points.

In the special case of the harmonic oscillator, the method
here used gives certain exact—not merely asymptotic—
results. These, therefore, supply a basis for the appraisal of
the corresponding results that are obtainable by other means.

u„'dx = 1. (1.2)

1. INTRODUCTION

HE subject of this discussion is the one-dimen-
sional wave equation

(d'I,/dx')+V {E—V(x) }u=0, (1.1)
in which

X' =8x'm'/k'

and in which V(x), the potential energy, is defined
over the entire x axis and has a single minimum say
at a point xp. The characteristic values E„(Eigen
uerte) are the values of E for which this equation
admits of a solution that is bounded for all x. A solu-
tion u„corresponding to such a characteristic value
is a characteristic solution (Eigenfunktiom) and is
said to be normalized when its constant factors—
which are not determined by the equation —are so
adjusted that

A familiar procedure for the determination of the
Eigenmerte is based upon the phase integral and
W.K.B. methods. Elementary analytical forms are
used in this to represent the solutions of the diEer-
ential equation asymptotically with respect to 'A,

in intervals which lie on opposite sides of, and are
sufficiently remote from, the turning points. To
account for the Stokes' phenomenon, "connection
formulas" are invoked to identify the forms which
represent one and the same solution in diferent
intervals. From the fact that two such forms dif-
ferently arrived at, but valid in the same interval,
must be equivalent, the characteristic equation,
whose roots are the Eigenwerte, is deduced. Quan-
titatively, the procedure is in brief the following.

For values of E that are larger than V(xo) but
which are nevertheless exceeded by V(x) for some
positive and some negative x, the equation

E—V(x) =0


