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Magnetic Domain Patterns on Single Crystals of Silicon Iron
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(Received August 30, 1948)

Magnetic powder patterns have been obtained on elec-
trolytically polished surfaces of single crystals of iron
containing 3.8 weight percent silicon. Domains are easily
visible, outlined by accumulations of colloidal magnetic
particles. Several techniques have been developed that
enable the direction of magnetization in each domain to be
determined. Many types of domain patterns are observed,
depending on the orientation of the surface with respect
to the crystal axes. The simpler patterns can now be
interpreted in some detail, and support the idea that the
internal domain structure is relatively simple and is

usually composed of a series of plates or slabs magnetized
at 45' or 90' to the plate length. In one case it is verified
that the plate thickness depends on plate length in ap-
proximate accordance with theory; and, for the more com-
plicated "tree" patterns, comparison of theory with experi-
rnent shows that good agreement can be obtained using
theoretical values of the wall energy. Further verification
of the theory of Bloch walls is obtained by determining
from experiment the change in spin orientation on travers-
ing the wall.

INTRODUCTION

LTHOUGH the domain theory of ferro-
magnetism has been found to be adequate

in many respects, many details of domain struc-
ture, in particular the geometrical forms of the
domains and their change with magnetization,
have been lacking. It is generally recognized that
the domains in an unmagnetized material are
small regions, each saturated in a direction deter-
mined by the crystal axes or the local stresses.
The change in magnetization, caused by the
application of a magnetic field, takes place by
movement of the boundaries between domains
(in weak fields) or by rotation of the direction of
magnetization (in strong fields). However, the
shapes of the domains, and the ways in which the
boundaries form and move with field and stress,
have not heretofore been established experi-
mentally.

In attempts to obtain visual evidence of
domain structure, von Hamos and Thiessen' and
Hitter'- proposed independently that fine mag-
netic particles be spread over the surface of
material to be investigated, in the hope that the
inhomogeneities in the magnetization would be
seen under the microscope in the same way that
cracks and Aaws in large pieces of iron have been
detected for many years by sprinkling relatively
coarse powder over the surface of the magnetized
piece. This technique was developed by a number

L. v. Hamos and P. A. Thiessen, Zeits. f. Physik 71,
442 (1931).

~ F. Bitter, Phys. Rev. 38, 1903 (1931).

of investigators, and a considerable advance in
knowledge and technique was made by Elmore
and McKeehan' who applied a colloidal suspen-
sion of iron oxide to carefully polished specimens
and observed the so-called "maze" patterns (see
Fig. 2) in unmagnetized specimens of iron.

Later, Elmore4 showed that the maze pattern
is characteristic of the polished surface and not
of the interior. He then removed the eAects of
mechanical polishing by electrolytic means and
observed patterns on crystals magnetized at right
angles to the surface. In our work we have used
Elmore's method of electrolytic polishing and
observed patterns on many crystal surfaces when
the specimen is demagnetized and when it is
magnetized to various extents parallel to the
surface.

The basic theory of domains has been de-
veloped and extended by many writers. It is
commonly assumed that in zero and low fields
the magnetization in each domain is parallel to
one or another of the directions of easy mag-
netization in the crystal ((100) directions in
iron). Recent progress in domain theory, par-
ticularly in domain geometry, has been made by
Nee15 using the assumption that there is a
minimum number of magnetic poles at external
and internal domain boundaries; this requires
that the normal component of magnetization is

3 W. C. Elmore and L'. W. McKeehan, Trans. A. I. Min.
Met. Engrs. 120, 236 (1936).

4 W. C. Elmore, Phys. Rev. 51, 982 (1937) and 53, 757
(1938).

~ L. Noel, J. de phys. L8j 5, 241 (1944).
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MAGNETIC DOMAIN PATTERNS

330 diameters. Ultropak dark field vertical
illumination was used. Photographs were made
with a Zeiss Ikon camera and Kodak Super XX
520 pack film.

When the usual colloidal suspension is used,
the colloidal particles commonly form into lines,
the rest of the area being almost free. On sur-
faces of certain crystallographic orientations,
however, large portions of the field are covered
with particles, other smaller portions being quite
free. A pattern changes with application of field
or stress, provided the solution has been freshly
applied; but if it has remained undisturbed for
some time —perhaps 10 minutes —it becomes
"frozen" and immobile, each particle adhering to
the same part of the surface in spite of change in
magnetization. Before this occurs, Brownian
motion of some of the particles can be observed.

Magnetization of the specimen in the plane of
the surface was usually accomplished with the
aid of the electromagnet sketched in Fig. 1a.
Magnetization at right angles to the surface was
carried out by placing the specimen on top of the
iron core of an electromagnet having a vertical
axis, Fig. ib.

TECHNIQUES FOR DETERMINING DIRECTIONS
OF MAGNETIZATION IN DOMAINS

A relatively simple pattern, and one having
several features that we have been able to
interpret, is formed on a surface almost parallel
to the crystallographic planes (100). After the
specimen has been polished mechanically, using
conventional metallographic technique, but not
yet polished electrolytically, the usual maze
pattern of Fig. 2a, reported first by McKeehan
and Elmore, ' is obtained. After electrolytic
polishing of the same area the pattern of Fig. 2b is
observed, and repeated treatments do not change
its character. The pattern resembles the outline
of a tree with the branches pointing in two of the
four directions that lie in the plane of the surface
and are inclined 45' to the crystal axes. A similar
"tree" pattern, but less well defined, was ob-
tained on a surface prepared with a special wax-
lap technique to be described in a forthcoming
article by E. E. Thomas, of the Bell Telephone
Laboratories.

L. %' McKeehan and %. C. Elmore, Phys. Rev 46,
a26 (~934).
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MAGNETIZATION NORMAL TO SCRATCH

(a)

MAGNETIZATION PARALLEL TO SCRATCH

(b)

FIG. 3. (a) Illustrates how flux emerges from the metal
while crossing a scratch which is normal to the magneti-
zation in a domain; (b) shows that no flux emerges from
the metal when the scratch is paralle1 to the magnetization
in a domain.

It may be concluded that conventional me-
chanical polishing produces surface strains that
acct the powder patterns, which cannot then
be used to interpret domain structure in the
interior. On the contrary, patterns on electro-
lytically polished surfaces are useful in obtaining
information about the internal structure. This
has been especially important in advancing our
knowledge of domain geometry. Powder patterns
can often be used to detect small surface strains.

The directions of magnetization in the various
domains shown in the tree pattern have been
determined by a technique involving (1) scratch-
ing the surface, and have been confirmed by (2)
experiments on the effect of mechanical stress,
and by (3) observation of peculiarities in the
pattern obtained with the use of heavy colloid.
The techniques which establish the nature of the
magnetization pattern are described in the fol-
lowing sections, after which the theoretical ex-
planation of the pattern is given.

Scratch Technique

If a scratch crosses a domain in which the mag-
netization is not parallel to the scratch, magnetic
poles are formed when the flux emerges into the
air where it crosses the scratch (Fig. 3a) and
colloidal particles are attracted and enhance the
visibility of the scratch. If the scratch is parallel
to the magnetization, no disturbance of the flux
occurs (Fig. 3b) and the scratch is almost or
quite invisible. In practice it was found that the
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fourth part of the figure is a diagram showing
the domain boundaries and directions of mag-
netization in the third pattern, deduced from
the behavior of the colloid around the scratches.
In the diagram the sense of the magnetization
vector is chosen so that there is almost no change
in the normal component of magnetization across
a boundary, a condition* '" equivalent to the
practical absence of magnetic poles at the bound-
ary, and one which can be applied consistently
throughout the whole pattern.

cRYSTAI„APES +0 ~ MM I

FIG. 4. (a) Typical "tree" pattern; (b) pattern on a
surface having a series of parallel scratches made with a
ruling engine; (c) pattern on a surface having vertical and
horizontal scratches made with a brush of fine glass fibers;
(d) directions of magnetization in pattern (c), as deter-
mined by the scratches.

scratch must not be so deep as to strain the
surrounding material. After some experimenting,
scratches were made in two ways: (i) by using a
ruling engine with a conical sapphire stylus, the
weight of which was carefully balanced to make
a light scratch, and then polishing electrolytically
to reduce the scratch still further, and (ii) by
using a small brush made of fine glass fibers and

passing it lightly over the surface. Scratches were

always made approximately parallel to the
known directions of easy magnetization, the
L100]directions parallel to the sides of the figure.
The results of the experiment are shown in Fig. 4.
Here the first pattern is of the tree type and
contains no scratches. The second was formed
after vertical scratches had been made with a
ruling engine. The third pattern shows two
mutually perpendicular sets of scratches made
with a brush having fine glass fibers, and the
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FIG. 5. Powder pattern showing regions of reversed mag-
netization induced by a permanent magnet probe, (a)
before and (b) after moving the probe to the right so that
it is above the adjacent domain. In (b) the regions of
reversed magnetization are above the probe, in (a} they are
below.

* The importance of this condition has been mentioned
by Landau and Lifshitz (reference 9) and others, cf.
references 7 and 10.

9 L. Landau and E. Lifshitz, Physik Zeits. Sowjetunion
8, 153 (1935).

'II L. Noel, J. de Phys. L8j, 5, 241 (1944),

Striations of Colloid

lt will be noted on many of the patterns (e.g. ,

Figs. 6 and 10a) that between the domain bound-
aries there are irregular elongated masses or
striations of colloidal particles which are larger
and more numerous when the colloidal suspen-
sion is more concentrated. Such striations were
observed repeatedly to be elongated in a direc-
tion at right angles to the direction of mag-
netization, as determined independently by
other means, and so came themselves to be
reliable indicators of direction of magnetization.

The reason for the orientation of the striations
is not known with certainty, but a possible



Crystal axes + 0.1 mm
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Tension &~ Increasing (a) to (d)
Decreasing (d) to (f)

FIG. 6. (a) to (d), patterns all observed on the same area
of a crystal, with tension increasing from zero to a maxi-
mum value. In (d) to (f) tension is decreasing from
maximum value to zero.

explanation is as follows. The surface is not per-
fectly plane but has some irregularities that may
be represented, for convenience, as a series of
circular mounds. When the magnetization of the
domain lies in the direction of the line connecting
two mound centers, there will be magnetic poles
produced in the valley between the mounds and
the powder mill collect in this region which will
be elongated at right angles to the direction of
magnetization ("transverse" striation). When
the line between mounds lies at right angles to
the direction of magnetization, no poles mill lie
in the valley between them and so no "longi-
tudinal" striations will form. It is in a somewhat
similar way that the colloid collects on me-
chanical scratches (see above) and is always
elongated at right angles to the magnetization.
The mound picture is supported by microscopic
observation of a surface subjected to repeated
electrolytic etching —the surface finally acquires
an uneven appearance not unlike that of an
orange peel. It is also supported by the fact that
the striations form in the same places after suc-
cessive demagnetizations. Imperfections in the
structure completely below the surface might
have a similar effect in producing striations.

Probe Technique

The direction and sense of the magnetization
in a domain was determined with the aid of a

IIII & ' . ~~
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Compression
&

Increasing (a) to (f )

Crystal axes + 0.1 mm
-I

FIG. 7. Series of patterns, all observed on the same area
of a crystal, as the compression was increased from zero to
a maximum value.

long, thin probe consisting of a 0.015-cm wire of
a permanent magnet material (Vicalloy), mag-
netized and placed on the surface to be examined
while the colloid mas present. The pole at the
end of the probe produces a field in the under-
lying domain. If this field is in the same direction
as the magnetization of the domain, this mag-
netization v ill not be affected. If it is in the
opposite direction, it will cause a local reversal
of magnetization within the domain, and one
observes a number of pointed regions as depicted
in Fig. Sa, immediately below the end of the
probe. In Fig. Sb the probe has been moved to
the right so that the end lies on the next domain;
here it is noted that the pointed regions lie above
the probe. These photographs (of cobalt) show
that the domains mentioned are magnetized in
antiparallel directions, and the sign of the pole
on the probe (positive) proves that the first
domain is magnetized toward the top and the
second toward the bottom of the figure as indi-
cated in the diagram.

Effect of Stress

Tension was applied to the upper surface of a
thin single crystal, in a device that held the ends
of the crystal fixed while a screw underneath the
middle of the crystal pressed upwards. A series
of patterns, obtained as the tension was first
increased and then decreased in successive stages,
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Crystai axes + 0.1 mm

FIG. 8. Powder pattern on a surface having the lower half
accurately parallel to a (100) plane, and the upper half
inclined at an angle of 3' by rotation about a horizontal
axis at the intersection of the two surfaces.

are reproduced in Fig. 6. According to domain
theory, tension applied to a material having
positive magnetostriction will increase the volume
of the domains aligned parallel to the axis of the
tension and decrease the volume of those making
an angle of 90' with the axis. In the figure the
areas of the tapered regions or "branches" are
decreased and the areas having 180' boundaries
are increased. In accordance with theory and

SUAFACE WlTH
CHANGING iNCL) NAT

TQ ATOM!C PLANES

with other considerations mentioned above, it is
concluded that the tapered regions are mag-
netized at 90' to the (vertical) axis of tension
and that for the highest tension (Fig. 6d) these
regions practically vanish so that the material
is then composed of domains oriented in the two
senses of the tension axis. Thus the directions of
magnetization deduced from the tension experi-
ment agree with those determined by means of
scratches and the striations of colloid.

Compression was applied to the upper surface
of the same specimen by clamping one end and
forcing the other end upward with a screw.
Results are shown in Fig. 7, with the compression
axis now vertical (toward the top of the figure).
One expects the pattern obtained with high
elastic compression to be made of horizontal
lines, 180 boundaries between domains pointing
to the right and to the left. Since there are no
horizontal boundaries in the pattern of the un-

strained crystal in the portion of the specimen
chosen for examination, these may be expected
to form when a small compression is applied and
to grow with increased compression until they
constitute the whole pattern. These changes
actually do occur, but not in a smooth way.
Whole portions of the pattern change suddenly,
even when the compression is increased slowly,
in a way that cannot be followed by eye. With
increasing compression the vertical 180' bound-
aries disappear, horizontal 180' boundaries form,
and the 90' boundaries eventually disappear
as expected (Fig. 7f).

Fir. 9, Diagram shying the domains on a curved
surface having a gradually varying inclination with respect
to a (I00) platie.

SURFACES SLIGHTLY INCLINED TO (100)

The conditions under which the "tree" pattern
forms, and the reasons for the formation of this
particular kind of pattern, are fairly we11 under-
stood and will now be described.

In a preliminary experiment a specimen was
selected that had rounded edges, and colloid
was deposited near these edges. The tree pattern
appeared only when there was a slight inclination
of the surface to (100) planes, and the branches
were always oriented so that they pointed at
&45' to the "downhill" direction, the (100)
planes being regarded as level.

On another specimen two plane surfaces were
ground, one accurately parallel to (100) and the
other inclined 3' thereto. Powder patterns were
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then photographed over the ridge where the two
surfaces join as shown in Fig. 8. Here again it
was apparent that the tree pattern is charac-
teristic of a surface inclined to (100) and that the
branches point "down-hill. "

In a more systematic experiment a curved
surface was cut on a single crystal, as indicated
schematically in Fig. 9. The pattern of Fig. 10(b)
corresponds to the surface parallel to (100), (a) to
a slope in one direction and (c) to (h) to in-

creasing slope in the other direction. When the
inclination between surface and crystal planes
becomes relatively large the "branches" of the
tree pattern become thick and are close together,
until Anally only the outlines of the end portions
of the branches remain. At this stage most of the
surface is magnetized transversely to the "tree
trunks, " and the remainder, on which most of
the colloid collects, has the appearance of trees
inverted from their original positions, as shown

schematically in Fig. 9.
These observations can all be correlated on

the basis of domain theory and, as is shown in

detail in the appendix, the principal features can
be understood semiquantitatively. The patterns
represent minimum energy configuration in the
form of a compromise between magnetostatic
(pole) and domain wall energy.

Figure 11 shows the crystal 'surface which is
tilted by an angle 8 in respect to the crystal axes,
XVZ. The underlying domains, which are mag-
netized parallel to [010] and [010), produce a
density of magnetic poles of ~I, sin8 on the
surfaces of alternating strips of width W; This
gives rise to a magnetostatic energy, discussed
in the Appendix, proportional to W sin'tII per unit
area. %hen 8 is larger than 1', it is possible to
reduce this energy by forming the tree patterns
even though domain wall energy is added.
Figures 12 and 13 show how this occurs. The
branches are actually shallow domains about yp

as thick as they are wide. They transport flux

across the trunks of the trees and as they taper
this flux is distributed as magnetic poles over the
domain wall separating the branch from the
underlying domain. The net result is to change
the regions, on which there are poles, from strips
of width lV to strips approximately as wide as
the branches, and so to reduce the magnetpstatic
energy about tenfold for the trees of Fig. 12. It

would be reduced still more if the branches were
narrower; however, to use narrower branches
would require more domain wall surface. Using
constants based on large-scale measured proper-
ties of the material, a minimum energy theory
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FIG. 10. Series of patterns observed at successive posi-
tions, (a) to (f), on a curved surface. Note correspondence
to Fig. 9. Patterns in (g) and (h) were obtained with lower
magnification, on surfaces corresponding to (b) to (d) and
(d) to (f), respectively.
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F&G. 12. Domain structure of the tree patterns.

FIG. 11.Diagram showing the domain structure and dis-
tribution of poles as they would be if superhcial domains
("branches" ) were absent.

has been worked out in the Appendix, and values
for the dimensions a and b have been predicted.
The computed values for a and b are about twice
too large; considering the approximations in-

volved in the theory, this may be regarded as a
satisfactory confirmation of the model proposed.

The patterns at steeper slopes represent a con-
tinuous progression from the open tree patterns.
From a theoretical viewpoint, however, it is
simpler to regard them as modifications of the
Aux closure pattern of Fig. 14. In this pattern
domains magnetized along L100] and I 100]
directions (the axes being as for Figs. 11 and 12)
completely transport the Aux which would other-
wise emerge from the underlying domains.
Figure j.4a shows the arrangement of these
domains with one of them removed and inverted
at (b) to show its shape. It may be shown by
calculation (i) that these domains can be con-
structed so that the geometrical pattern will be
as indicated and (ii) that they do close flux cor-
rectly between $010j and L010] domains. If the
surface is tilted by 8 in respect to the crystal
axes, then the unit normal to the domain wall
has direction cosines along X, Y, Z of &sin8/
(1+sin'8) &, sin8/(1+sin'8) &, cos8/(1+sin'8) &. The
The flux closure is indicated in (c) which is a
view parallel to the surface of the specimen.
Theory shows that this perfectly closed pattern
is less stable than that shown in (d) for which
the wall energy is somewhat less but, since mag-
netic poles are present as shown, there is some

magnetostatic energy. The quantitative theory
given in the appendix shows the same degree of
agreement as for the tree patterns, the computed
width of S which corresponds to the bright
strips in Fig. 10(h) being about —, of the observed
width. The dense deposit of colloid in Fig. 10(f)
and (h) is readily understood on the basis of this
model, since the pole density on the strips S and,
consequently, the magnetic field are proportional
to sin8.

ESect of Vertical Field

A more direct confirmation of the pole density
distribution of Fig. 13 has been obtained by

0

b

Fro. 13. Distribution of the magnetic poles on a tree pat-
tern. Poles on branches are below surface level.
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(C I} (C2) (d &) (dz)

the domain walls to capture colloid. The polarity
of the poles, and hence the predicted course of
spin orientation, can be verified by the vertical
field experiments. The prediction from Fig. 17(b)
can be summarized by saying that where the
angle between the branch and the trunk is acute.
the domain wall will have poles like those on the
"sky" and where the angle is obtuse the domain
wall will have poles like those on the branch.
Inspection of Fig. 18 (an enlargement from Fig.
15(c)) shows that this prediction is born out in

detail. ** Considering that the domain wall is
only about 500 to 1000A thick, it is especially
gratifying that information on its internal struc-
ture can be obtained so directly.

Fio. 17. The course of spin orientation during traversal
of a domain wall in the tree pattern (see text).

edges are parallel to the crystal axes. The theory
of domain walls requires that the component of
magnetization along the normal to the wall
remain substantially constant; thus attention
can be concentrated on the component in the
plane of the wall. The course of the spin orienta-
tion for the location (b1) is shown in (c2); here
the magnetization vector is represented at the
top, bottom and two intermediate points of the
domain wall. The course of the component in the
plane of the wall can thus be represented by' a
helical trace on a cylinder (c1); this convention
is similarly employed in (b2) and (b3). It should
be noted that this trace has the sense of a left-
hand screw in all cases. This prediction is based
on a consideration of the situation at (b1); if
the screw were right-handed, the total angle
turned through would be 270 as indicated in

(d) rather than 90' as in (c). The right-hand
screw would require about three times as much

energy, and for that reason the left-hand screw
is predicted for locations like (b1) near the
bottom of the branch domain. Furthermore, if
some parts of the wall have a left-handed course
and others right-handed, lines of poles will be
produced at boundaries between these parts and
will add to the energy. Thus it is predicted that
the entire wall wi11 have a left-handed form.
Within the wall itself there is a net Aux from
left to right in (b) which produces lines of poles
where the wall strikes the surface of the speci-
men, and it is these lines of poles which cause

Crystal axes + 0.1 mm
t-

H normal to surface

FIG. 18. Tree pattern with field applied normal to the
surrace, showing redistribution of colloid over the domains,
intensification of some domain boundaries and disap-
pearance of others, as compared with pattern obtained
with no normal field (cf. Fig. 15).

**Except: for some irregularities resulting from varia-
tions in illumination, focus, and uneven colloid distribution.

EFFECT OF FIELD ON (100) PATTERNS

A specimen of a single crystal, 2.3X0.6&(0.25
cm', with edges approximately parallel to the
cubic axes, was magnetized to various degrees
with the electromagnet of Fig. 1(a).The direction
of magnetization, $001], lay parallel to the long
edge, and its intensity was determined with the
use of a search coil and ballistic galvanometer.
The patterns on one of the 2.3 X0.6 cm' faces are
shown in Fig. 19. The specimen was initially
demagnetized, and the field then increased in

steps to a high value ((a) to (f)), then again to
zero (remanence). The tree pattern observed in

the demagnetized state is consistent with the
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slight inclination, 1.5', of the surface to the
(100) plane.

In a preliminary experiment the specimen was
demagnetized repeatedly and the pattern ob-
served after each demagnetization. The general
features of the patterns were always the same—that is, the pattern was of the tree type —but
the details were never the same. In none of our
experiments on electrolytically polished surfaces
have we been able to reproduce a pattern of
lines after a substantial change in magnetization.
Careful observation shows that the lines do not
tend to reform at the same place on the surface.
This is in contrast to the maze patterns obtained
after mechanical polishing; these can be repro-
duced accurately, and one concludes that they
are determined by the mechanical condition of
the surface, and not primarily by magnetic
forces.

In Figs. 19(c) and (d) the character of the

pattern is seen to be definitely different from
that of (a); of the two sets of almost-parallel
lines one set of lines is now predominant. When
the magnetization is above 12,000 they have

'e:.

Crystal axes + O. l mm
I-

H f Increasing (a} to (f )
Decreasing (f) to (i)

FI('. 19. Patterns on a surface inclined slightly to a {100)
plane, with applied field and length of the crystal parallel
to the L001j direction: (a) 8 =0, (b) 8= 7000, (c)
8=10,000, (d) 8=11,600, (e) 8=15,000, (f} 8=18,600,
(g) 8=17,600, (h) 8 =17,400, {i) 8 =15,400.

(0) DEMAGNETIZED

(b) F IELD APPLIED) B = Bs/3

FIG, 20. Diagrams of the tree pattern showing the eEect
of applying a held.

become so long that the whole field of view is
crossed by only one set of lines.

Patterns of this kind were observed under lower
magnification in order to be able to see a larger
portion of the surface at once. It was then
noticed that the whole tree pattern shifts with
application of a field, the "trunks" moving
sideways in one direction or the other so that the
areas magnetized parallel to the field become
larger and those antiparallel become smaller, and
so more Aux is permitted to travel in the direction
of the field. This is shown schematically in Fig.
20. The "branches" of the trees extend to the
middle of the domain, whatever its width, and
when the specimen is magnetized the trees have
branches that are usually longer on one side than
on the other.

Experiments were carried out on a different
specimen with the field applied parallel to a t 011]
direction lying in the specimen surface, a (100)
plane. The patterns are reproduced in Fig. 21.
%hen the magnetization is relatively low one
notices some branch-like markings that are
similar to those shown in Fig. 16 and, like them,
may be attributed to a slight deviation of the
surface from the (100) plane. The diagonal lines
of Figs. 21(a) and (b) are 180' boundaries, similar
to those shown in the pattern and diagram of
Fig. 27 and referred to below in connection with



K I LL IA MS, BOZORTH, AN 0 SHOC KLE Y

v

Crysta1 axes 0.1 mm
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K ~ increasing (a) to {g)

Fio. 21. Patterns on a (100) surface, with length of
crystal and applied field parallel to the L011j direction.
{a) 8=0, (b) 8=9000, (c) 8=14,500, (d) 8=15,500,
(e) 8= 15,900, (f ) 8= 18,500, (g) 8=20,000.

that figure. Above these boundaries the mag-
netization goes in a zigzag manner from left to
right with a component parallel to the direction
of the applied field, whereas below these bound-
aries the net magnetization is from right to left.
When the applied field is increased, the bound-
aries move toward the bottom of the figure (b)
and finally out of the field of view (c), so that
there is an increase in the areas magnetized more
nearly parallel to the field at the expense of
areas less favorably magnetized.

When the magnetization is relatively high
(8 H=: 16,000)—the pattern is simply a series of
parallel lines, approximately equally spaced, and
readily interpretable. When the field is so high

(g) that the magnetization vectors are rotated
out of the direction of easy magnetization and
the angle between the local magnetization and
the field is less than 45', it is still true that there
are no poles at domain boundaries and that the
normal component of magnetization of the whole
specimen is zero.

The decreasing distance between lines with
increasing magnetization is in agreement with
the reports of Kaya" and of Sixtus, " and with
the theoretical work of Noel, as discussed below.

PATTERNS ON (110) AND (111) SURFACES

More complicated patterns have been observed
on (110) and (111) surfaces. Figure 22 shows

"S.Kaya, Zeits. f. Physik 89, 796 {1932}and 90, 551
(1934)."K.J. Sixtus, Phys. Rev. 51, 870 (1937).

patterns taken with increasing magnetization on
a surface parallel to (110), the field being applied
in the L110jdirection in the plane of the surface.
These patterns will be discussed in the next
section.

Patterns obtained on surfaces parallel to (111)
planes are even more complicated than those on
(110) surfaces. This may be expected, since no
direction of easy magnetization lies in the surface.
The effect of increasing field, applied in the [110]
direction (lying parallel to the surface) is shown
in Figs. 23(a) to (f). Figure 23(g) is a second
pattern of material in the unmagnetized condi-
tion; it covers an area different from that of the
other patterns and is chosen to show three sets
of the stronger lines, each set making an angle
of 120' with the others. This corresponds to the
threefold symmetry of the crystal plane. The
detail of the pattern is believed to be charac-
teristic not of the interior but only of the surface,
which probably has many poles and domains of
closure of the kind discussed by Landau and
Lifshitz. ' No explanation of its detailed form
has been given.

It appears that internal domain structures in

an unmagnetized material are generally simple,

3
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[OD1] ] [110]
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FI ~ increasing {a) to {1)

FiG. 22. Patterns on a (110) surface, with length of
crystal and applied field parallel to the L1IOj direction.
(a) 8=0, (b) 8=14,800, (c) B=15,000, (d} 8=15,200,
(e) B=15,700, (f) 8=16,400, (g) 8=17,100, (h}8=18,200,
(i) B=20,000, {j)B= 20,200, (k) 8=20,300, {l)B=20,500.
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and that near the surface a more complicated
structure is likely to occur. Domains of closure
may form, or a fine-grained pattern may appear
and give a distribution of poles with which a
lower energy is associated. Only when a simple
crystallographic plane and directions of easy
magnetization are parallel to the surface has a
simple structure, apparently representative of the
interior, been observed.

Re1ation to NeeVs Theory

Following the work of Landau and Lifshitz, '
Neel" has investigated theoretically the domain
structure of specimens of single crystals of
various geometrical forms, oriented in diferent
ways with respect to the crystallographic axes.
He considers the energies associated with domain
boundaries, crystal anisotropy, and magnetiza-
tion, and selects the domain structure that has
the lowest energy consistent with the assumption
that there are no poles at internal domain bound-
aries.

A comparison of his theory with our experi-
ments can be made when the specimen is a slab
having its long dimension and magnetization
parallel to a L011] direction, its large surface
parallel to a (100) plane, and its sides parallel to
(011).Figure 24(a) and (b) show the orientation
with respect to the crystal axes, and the theo-
retical domain structure near remanence (a)
when all of the domains are magnetized in direc-

+ t"Q)l

(iii) o&one [OiT] I
H t' increasing (a) to (f)

Fic. 23. Patterns on a (111) surface. (a) 8=0, (b}
B=4000, {c) 8=4800, (d) 8=15,000, (e) 8 =15,500,
(f) &=19,800, (g) pattern on another area (8=0).

"L.Noel, J. de Phys. L8] S, 265 i1944l.

[01lgl

FiG. 24. Domain structure proposed by Neel; (a) without
applied field, (b) with applied field.

tions making 90' or less with the direction of the
applied field. The structures of (a) and (b) are
composed primarily of domain sheets, S, oriented
at right angles to the direction of the field. At
the edges are domains I' and Q, having a geom-
etry that reduces the number of poles that would
be present on the surface if the domain sheets
constituted the whole of the specimen. Domains
S and Q are magnetized parallel to directions of
easy magnetization. Domains I', on the contrary,
are directed about 45' from the nearest direction
of easy magnetization and consequently possess
some energy of anisotropy.

The powder patterns observed on the top (100)
surface of a specimen (see Fig. 21(c)), when the
magnetic induction is above 14,000, correspond
to the diagram of Fig. 24. The principal domain
boundaries make an angle of 90', and the direc-
tions of magnetization +45', to the direction of
the field, and the absence of colloidal particles
between lines suggests that there are no poles on
this surface.

The patterns on the (011) surface (Fig. 22)
also correspond in many of their features to the
theoretical pattern. When the induction is less
than about 15,000, the domains are magnetized
at right angles to the direction of the field, and
these regions may be identified with the Q
domains of Fig. 24. At higher inductions the
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FIG. 25. Pattern obtained with a concentrated colloid on

a (110) surface with striations of colloid indicating direc-
tions of magnetization (perpendicular to striations).
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FrG. 26. Patterns obtained on the side and top surfaces
of a crystal such as that shown by the drawing of Fig. 24:
(a), (011) surface; (b), (100) surface. The lower part of
the (b) pattern shows accumulations of colloid extending
beyond the edge of the crystal.

In order to check some of the conclusions
derived from the patterns on (100) and (011)
surfaces (Figs. 21 and 22), additional 'patterns
were made with heavy colloid. Figure 25 cor-
responds to Fig. 21(e) in all respects except that
the colloid was more concentrated, and the
character of the striations of colloid con6rms the
previous conclusion that the directions of mag-
netization are inclined +45' to the direction of
the field. Figure 26(a) corresponds to Fig. 22(c)
and shows plainly that the Q regions are mag-
netized at 90' to the direction of the held. In
Fig 26(.b) the edge of the crystal is in plain
view, and the collection of particles at equally
spaced regions shows that the poles here are
quite strong; this is in agreement with Fig.
24(b).

Figure 27 is a pattern observed with low mag-
nihcation on the (100) plane with zero mag-
netization. It is the same as Fig. 21(a), except
that a larger area is visible. It corresponds in

general features to the large top surface of
Fig. 24(a) by having a prominent series of
parallel lines at right angles to the long dimen-

sion, and having domains of closure near the

boundaries seem to become wide (Fig. 22(c)),
and new domains appear with complicated
structure. These are the I' domains of Fig. 24.
As the induction increases the P domains grow
at the expense of the Q domains, and at 8= 18,000
they cover practically the whole surface. This is
in agreement with theory.

The fact that the I' domains collect colloidal
particles unevenly indicates that poles are present
and that the surface has a complicated domain
structure. The situation is then more complex
than Noel's picture suggests. Apparently the
magnetization in the I' domains is not drawn
out of the direction of easy magnetization and
entirely into the t 011/ direction, but some flux

penetrates the surface to form poles. These
facilitate the formation of small domains of
reversed magnetization, " and effect a compli-
cated pattern. Also, at high inductions the
domain boundaries are not straight lines but are
irregular in form.

14 E. Lifshitz, J. Phys. U.S.S.R. 8, 337 (1944).
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Frc. 27. Pattern on a {100)surface, and its interpretation.
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edges. In addition it has, near the middle, some
180' boundaries inclined at 45' to the long
dimension. Near the lower edge some tree-like
patterns are formed. These have been previously
commented on and are shov n enlarged in Fig. 16.

Neel has related the distance between the
lines of the pattern on the (100) surface, when
the material as a v hole is magnetized parallel to
[011$ (Fig. 21 (d) to (g)), to the intensity of
magnetization, v hen this is more than 0.7 of
saturation. The theoretical prediction of de-
creasing distance vTith increasing magnetization
is confirmed by our experiments, as well as by
those of Kax a and of' Sixtus. According to theory
this distance, 5', is independent of the thickness
and length of the specimen and is calculable if
one knov s the intensity of magnetization and the
v, idth, L, of the specimens —in our experiment
0.20 cm. Keel has calculated H" for a- specimen of
iron having a width of 1 cm and an anisotrop~
constant, A. , of 420,000, and has obtained a value
of 50 microns for high magnetization (~ of
saturation). in adapting this order-of-magnitude
calculation, . to a crystal containing 3.8 percent
silicon, the change in values of A. and I., can be
disreg~ardecl. t. sing Keel's relation

it appears that lV should be about 20 microns for
8=15,000. This is somewhat smaller than that
observed, 100 microns, but it is close enough to
suggest that the assumptions underlying the cal-
culations are essentially correct.

A change of domain thickness with domain
width has been observed near the corner of a
cr~stal in v hich the domains are magnetized at
45' to the specimen edges, which are of the form
(110).This is shown in Fig. 28.

Although this pattern is not understood in

complete detail, certain general features appear
suScientlx well established to permit a com-
parison between theory and experiment. The
domains consist of long slabs magnetized parallel
to the domain boundaries as indicated by the
striations, the direction of magnetization alter-
nating from slab to slab. Where the slabs meet
the [110]edges, there must be sma11 domains of
closure, magnetized in part vertically where they
meet the surface and in part horizontally at
right angles to the main domains so as to close

CIT~tal a,xe

Fro. 28. Pattern on the corner of a crystal showing the
increase in width of the domains as the length increases.

the flux pattern. Several possible domain struc-
tures have been devised to accomplish this
closure using only easy directions and developing
no poles; hov;ever, none of these has been verified
directly from experiment. For all such patterns
the closure domains extend inwards from the
surface of the specimen to a depth roughly equal
to the width W of the domains. Since the closure
domains are magnetized at right. angles to the
main domains, they have magnetostrictive
energy "s," (see Section 6 in the Appendix),
giving each domain a magnetostrictive energy of
about W's per unit depth. Each domain has a
wall energy of yL per unit depth where y is the
wall energy per unit area and L the long dimen-
sion of the domain as seen in Fig. 29. Minimizing
the total energy per unit volume of the specimen
yields, in the usual way ""the result

0.02

0.0 I—

0, 1 0 2 03
~L IN CV

04 0, 5

» C. Kittel, Phys. Rev. VO, 965 (1946).

Fro, 29. Domain width as a function of the square root of
the length for the pattern in Fig. 28.
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Crystal axes + —+, 0.1 mm ii+—

Fir. 30. Domain structure around holes in a crystal:
(a) and (b), patterns observed; (ci) diagram showing a
square hole with magnetic poles on opposite sides; (c2)
diagram showing domains formed on opposite sides of a
hole, as in (b), with consequent distribution of poles over
tapered domains.

which is only approximate, since no detailed
model of the domains of closure is employed. In
order to test this relationship„values of 8" have
been plotted against (I.) & as measured from
Fig. 28. The straight line corresponds to y s
=3&10 4 cm which may be considered in fair
agreement with 1 = 1.5 ergs/cm' and s = 10'
ergs jcm' in the absence of a detailed theory of
the domains of closure. Large deviations from
the straight line occur at (1.)i greater than 0.35;
at this point the measured domain pattern inter-
sects another and deviations from the simple
formula might be expected.

DOMAIN STRUCTURE AROUND CAVITIES

Kersten's work" on the effect of cavities and
nonmagnetic inclusions on the coercive force,
and Noel's theoretical investigations" of the
domain structure around them, prompted a
search for powder patterns in such areas. Ob-
servation of a number of crystal surfaces under
the microscope showed the presence of an
occasional hole that had formed accidentally
during the freezing or the etching or polishing
of the crystal. The patterns around two holes in

(100) surfaces are reproduced in Fig. 30. Careful
examination of the character of the striations of
colloidal particles indicates that the magnetiza-
tion inside the long slender regions is oriented at
90' to that outside that is, the lines are 90'
boundaries. Many other patterns of similar form
were observed.

"M. Kersten, Physik. Zeits. 44, 63 (1943}."L.N@1, Cahiers de Physique No. 25, 21 (1944).

Patterns of this type have been predicted by
Neel on purely theoretical grounds and our
patterns are a striking conhrmation of his theory,
which may be described as follows. Imagine a
cubic or spherical hole in the middle of a domain,
as indicated at (1) of Fig. 30(c). Then magnetic
poles will exist on the surfaces normal to the
direction of magnetization, and to these can be
attributed a demagnetization energy,

Xo is the demagnetizing factor, Vo the volume of
the hole, and I, the saturation intensity of mag-
netization of the material around the cavity. Jf
domain boundaries are formed as at (2), poles
will not be present at the edges of the cavity,
but will be distributed along the domain bound-
aries as indicated by plus and minus signs. In this
case there will be energy associated both with
the demagnetization (a volume effect) and with
the boundaries (an area effect):

Eg ——XI,'-' t', E, = yA.

Here X is the demagnetizing factor of the volunie,
V, enclosed by the domain boundaries and mag-
netized at right angles to the surrounding
material, y is the energy per unit area of
boundary, and A the total area of the bounding
surface or Bloch wall. According to theory, the
size of the domain structure is dehned by mini-

mizing the sum of these two energies.
A rough calculation can easily be made of the

size of domain to be expected around a hole of
given size. Let the diameter of the hole (assumed
spherical) be d, and let the shape of the domain
be a rotational ellipsoid having minor axes d

I ~

0.1 mm t~~ Crustal av.es + I~—~t 0.1 I'III11

Fro. 31. (a) Pattern formed by air-blown carbonyl iron
powder, after settling on a crystal; (b) pattern obtained by
placing a drop of colloidal suspension on previously formed
pattern of type (a}.
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and major axis l. %hen /&&d, the demagnetizing
factor of this ellipsoid is

N =4sd'[fn(2l/d) —1$/ P

and the volume and surface are easily calculable.
In estimating the magnetostatic energy, allow-

ance should he made for the permeability of the
domains themselves, resulting from the finite
value of the anisotropy. This introduces a cor-
rection factor of about 1/25 as shown in Sec-
tion 4 of the Appendix. Including this factor,
the energies of the boundaries and the surface
poles are

F„=167r"I, 'rJ'[1n(2l, ''-d) —1]/75l,
F.= m-'yd/, ''4.

Using t-he numerical values d =0.001 cm, I,
= 1580, y = 1.5 ergs/cm', the value of l for which
A&q+I+, is a minimum is 0.1.0 cm and the ratio
l/d is approximately 100. The observed ratio of
l/d for the domain of Fig. 30(b) is about 50,
smaller by a factor of two —satisfactory agree-
ment in view, of the simplifications employed.

PATTERNS WITH DRY POWDER

Some patterns were formed by a different
method. A fine grade of carbonyl iron pov der,
containing an appreciable number of particles
less than 1p, in diameter, was placed under a bell

jar and blown with a jet of high pressure air. This
was allowed to settle for several minutes, the
polished specimen was then placed under the
hell jar and the finer particles allowed to settle on
the specimen for several minutes more. The
patterns so obtained are immobile and cannot be
changed by changing magnetization or stress,
and a separate pattern must be formed for each
condition of the specimen. Figure 31(a) shows
one pattern so obtained. In forming the pattern
of Fig. 31(b) the powder was first allowed to
settle as described and then colloidal solution
was applied in the usual manner. The fine lines

of colloidal magnetic particles are observed to
coincide with the lines of coarser particles of
carbonyl iron.

PLASTIC DEFORMATION OF CRYSTAL

In studying the effect of tension on domain pat-
terns of crystals of iron containing some silicon, it

Permalloy. 76 percent nickel
Crystal axes X (~ 0.1 mm ~)

Tension .-
Frc. 32. Pattern on crystal of permalloy strained

beyond elastic limit.

was observed that the original "tree" type of
pattern for zero stress could be obtained repeat-
edly after removal of the stress as long as it was
within the elastic limit.

An attempt was made to find a domain pattern,
with or without tension, on a single crystal con-
taining 76 percent nickel and the remainder iron.
iso distinct pattern could be observed until
rather high stress was applied, whereupon a
series of parallel lines appeared as indicated in

Fig. 32. These remained after repeated mag-
netization and demagnetization, and even after
electrolytic polishing and re-application of col-
loid, always in the same place in the crystal.
without the presence of colloid they could not
be detected under the microscope. The specimen
had been stretched in a [1107 direction. The
lines are parallel to [110j,in the surface parallel
to (001). Observation over the edge of the
specimen, on the (110) plane, showed two sets of
lines making angles of +55 to 56' with the dege.
There can be little doubt that the lines are .

caused by slip or incipient cleavage on (111)
planes, for which the calculated angle is
54.7'.

This powder technique may be useful in

observing plastic deformation or dislocations in
the early stages, before their presence can be
detected by other means.

AVe are indebted to Dr. C. Kittel for helpful
discussions regarding domain theory, to Mr. J. G.
Walker for valuable assistance with the pho-
tography and especially in the preparation of the
specimens, and to Messrs. F. W. Ryan, R. A.
Ehrhardt, and G. Bittrich for preparing the
solution for electrolytic polishing and the fer-
romagnetic colloid.
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APPENDIX

1. Remarks

In this appendix we shall give an approximate
treatment of the energies involved for surfaces
almost parallel to (100). In all cases we shall

suppose that the underlying domains are mag-
netized along the [010] and [0107 directions
while the outward normal to the surface is
parallel to the direction [0, sin8, cos8].

Several steps are necessary in evaluating the
magnetostatic energy. %hen magnetic helds are
present, the magnetization is deHected slightly
from the easy directions in the underlying
domains. This eR'ect is taken account of in

Section 2 by assigning an effective permeability
tensor to the underlying domains. For each
assumed pattern the distribution of magnetic
poles is estimated (Section 3). In most cases this
distribution consists of one part ~here the [0107
and [010] domains strike the surface of the
specimen plus another part where superhcial
[1007and [1007 domains, like the tree branches,
join the underlying domains. This latter part
does not lie on the surface of the specimen but
on the curved domain wall. However, since the
super6cial domains on the surface are relatively
shallow, it is assumed for purposes of calculation
that the pole lies on the surface also and that the
effect of the super6cial domain that lies over it
can be neglected. (A rough estimate indicates
that this approximation may lead to overesti-
mating the energy by about 25 percent. ) Finally
all the pole distributions considered are approxi-
mated by infinite parallel strips. The energies
for three such cases are worked out in Section 4:
here Case I corresponds to the underlying domain
pattern with no superficial domains, II to the
tree pattern, and III to the steep slope pattern
for which the strips are narrow compared to their
spacing.

The areas of the domain walls present a simpler
problem and are estimated on the basis of
hypotheses on the shapes of the domains.

It may be worth pointing out that the mathe-
inatical problems involved in predicting the
shapes of domain walls from first principles are
of very considerable difficulty. This arises from
the fact that the energy of the wall per unit area
depends on the direction of its normal; the poles

on the wall surface depend on its normal and on
the field arising from other walls and surface
poles. In this treatment, shapes observed in
experiment have been used as a guide; it can be
seen on the basis of general principles that these
shapes are reasonable. Energy estimates are then
based on the observed shapes and the sizes are
determined by minimizing the energy in Sections
5 and 6; this leads to a set of predicted dimen-
sions for the domains which compare within a
factor of 2 to 3 with those observed.

A list of the principal symbols used in the
equations is as follows (constants refer to 3.8
weight percent silicon iron):

I,=1580 gauss {saturation magnetization),
X= 280,000 ergs/cm3 (anistropy constant'J,

y = 1.5 ergs/cm2 (Bloch EVall Energy), f
C11=2.37)&10' C12=1.41)&10'~ ergs/cm (elastic

constants),
h1 ——3.2)&10 magnetostrictive strain (taken the

same as for iron),
p*=effective permeability of a domain (see Section

2),
y~=eA'ective susceptibility of a domain,

s = magnetostrictive energy density (see Section
6),

P=rnagnetostatic potential for finite X,
p= magnesostatic potential for infinite A. ,

IV=spacing between parallel strips in Cases I, II,
I I I (see Section 4),

5=width of strip {carrying poles) in Case III,
a, b, c=dinsensions in tree patterns (Fig. 12),

e1, e2, e3 ——nxagnetostatic energies in ergs/cm' of surface
(Eqs. of Section 4),

8= tilt of surface with respect to crystal axes,
e~=energy per unit area of tree patterns {Section

5),
e6 = energy per unit area for steep slope pa tterns

(Section 6),
xy=. =coordinates with respect to the surface of the

specimen,
X VZ = coordinates wi th respect to crystal axes.

2. The p* Method for Magnetostatic Energies

When the magnetization is nearly parallel to
an easy direction, the dependence of magnetiza-
tion, I, upon field strength, II, v ithin a domain
may be taken into account by assigning a per-
meability tensor p* which takes a diagonal form
when the easy directions are chosen for the axes.
Parallel to the easy direction nearest the direction

)This value is a rough average for several crystallo-
graphic directions, based on the formulae of L. Keel,
Cahiers de phys. 25, 1 {1944),using the ronstants for iron
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of magnetization, p = 1 since the saturation mag-
netization is practically independent of the field.
The magnetization will be rotated slightly for II
perpendicular to the easy direction, the equilib-
rium angle being given by minimizing the energy
density

F= ELQ.'p (xP+(xp cubi +(xi Np ] III~(xi,

where A is the anistropy constant, O.i, 0.2, n3 are
the direction cosines of the domain magnetization
in respect to the XYZ crystal axes, I, is the mag-
netization in the domain and II the field, taken
as parallel to the X axis. If the domain is initially
polarized parallel to z (i.e. , np= 1, n& ——n& ——0) and
if its direction is specified by conventional polar
angles H and y, we have for small angles

a& ——sinH cosy, 0,2=sinH sing,

F-= %Leos'0 sin'tt+sin'8 sin'y cos'pp]
—III, sinH cosy

=E.H' —III,H cosy,

giving a minimum for q =0 and 0=HI, /2K. The
corresponding magnetization is thus I,=III, /2E. ,

I„=O,I,=I,. This leads (by symmetry) to the
conclusion that the tensor p is diagonal for axes
XYZ with components

ii"= 1+47rI,'/2K

for X and Y and unity for Z. The values of p,
*

and y*=I,'/2Z for silicon iron are estimated as
y' = (1580)"-/2 X280,000 =4.5 and @*=57.

In order to discuss the energies in terms of p,
*

and the surface poles, we introduce two sets of
coordinates XYZ in respect to the crystal axes
and xys in respect to the surface of the specimen.
We have

x =X, y = Y cosH —Z sinH,

s = Y sinH+Z cosH.

The domains are assumed to be magnetized
nearly parallel to the + F axis so that the axes
of the permeability tensor p, are along XFZ with
values p*, 1, p,~. However, for small angles H, no
important error will be introduced by taking the
axes of the p,

* tensor as along x,y,s.
An outline of the method of evaluating the

magnetostatic p1us anisotropy energy by the y*
methodf f is as follows (the mathematical details

tt For earlier treatments of similar problems see refer-
ences 9, 11, and 17,

are given later): We first find the density of
surface poles pi(x, y) which would exist because
of the tilt of the surface and the joining of super-
ficial domains. Next we solve the magnetostatic
problem which arises from placing oi(x,y) on a
block of material characterized by the p,

* tensor;
this leads to a magnetostatic potential P, (x,y,z).
Next we consider what internal magnetization I
would result from the field corresponding to
Pi(x,y, z) and how this would change the net
surface pole density from oi(x,y) to 0&(x,y) and
also produce a volume pole density equal to
—V' I. Finally, we verify that these poles on the
surface and throughout the volume simply give
Pi(x,y, z) so that fi(x,y, z) is a self-consistent
potential distribution. The total magnetostatic
energy distribution can be calculated either from

t

o i(x,y) P&(x,y, O)dxdy

or by adding the stored anisotropy energy and
J'(IIP/8+)dxdydz, the two giving identical results.

Proof: Pi as derived from &ri must satisfy the
equations

V'i/i ——0, s&0,
~*L(~Vi/»') + (~V i/~z') ]

+L8'P i/By'] = 0, z &0,

&*L(ay,/az), = p] —P(8&,/Bz), =+p]=4+a i, z=0.

For all cases of interest, the total number of
poles on the surface, i.e. , J'n&d xyd, is equal to
zero. Hence these equations determine uniquely
a P& which vanishes at z=+ ~. Now this Pi
will alter the magnetization inside the underlying
domains from Ip = (0, &I, cose, +I, sin&), which
corresponds to E= ~, by a vector amount

"pI= [ x*(8&i/-Bx), 0, —y*(B&i/Bz)]

I his gives rise to an internal volume pole of

—7' (Ip+6I) = —7' 6I
= + ir.*DR'P&/Bx') + (O'P&/Bz') ],

since the domains corresponding to the X= ~
distribution give V'. Io = 0 and an added surface
pole of

op(x, y) = —x*(8$~/Bz) =z component of pI

The net volume pole —7' I and surface pole
g. = o-~+ a3 now give rise to a magnetostatic
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potential $2 which must satisfy theorem relating to the poles appearing on the
wall. If e is the unit normal drawn from a domain

~ = —4ir V' —I
with magnetization Ii into a domain of magne-
tization I2, then the net surface pole density is

L(~6/») *=-0—(~A/»). =+01
=4s (o i —x*(8/i/»),

lt is readily verified by substitution that these
equations are satisfied by letting P2 equal Pi. In
other words, Pi is the self-consistent solution
desired. In addition, it may be verified by letting
B=II+4xbI (in keeping with the oi,p,

* model)
and noting that stored anisotropy energy is
8I2/2x", that the following three expressions for
E~ are equivalent:

Ev =
2 ~ ni(x, y)fi(x, y, 0)dxdy
J

1
IJ. Bdxdyds

8~~

=
~I DII2/8x)+ SI'/2x" jdxdydz.

%'e shall refer to this result as the p,
~ method

of calculating magnetostatic energies. It is ob-
viously limited to cases for which 8 and the
deviations of magnetization from easy directions
are all small.

3. Pole Density for X= ~

When the magnetization is everywhere parallel
to easy directions, the pole density on the surface
or the domain walls is easily found. The density
vari on the surface of the L010j and L010j domains
is simply &I, sin8; this covers Case I and is
one way of considering III.

For Case II, the tree patterns, the branches
are t100$ and L100j domains inserted in L010$
and L010j domains. The change in magnetiza-
tion when L1001 is inserted in L010j is equivalent
to superimposing a new magnetization with com-
ponents I„—I„o.Thus, if the walls of the
branches are parallel to L110j, no poles will be
developed on the walls since they are parallel
to the added magnetization; however, if they
taper to a point, all of the fiux entering the
branch at the trunk eventually leaves through
the mall. This is a particular example of a vector

4. Magnetostatic Energies for Special Cases

Case I
As shown in Fig. 11, the domains of width TV

are polarized approximately along & Y so that
the pole density for K= ~ is o = ~I, sin8. For
this structure, fi cannot depend on y so that the
field H lies in the xs plane, in which the domains
have permeability ii*. Hence the potential
(omitting the subscript "1") needed in the ex-
pression for E~ (Section 2) must satisfy

V'P(x, z) = 0,

~S z=+.0

=4m. o (x).

This solution is simply related to q(x, z), the
solution of the simpler problem for p,*=i. It is
readily verified that if y(x, z) is known, then the
desired solution is

4'(»z) = 2e(»z)/(1+v*).

The energy B~ is then

2 f8 ir — p(x, 0)0 (—x—)dxdy

The integral has been evaluated by expanding
y(x, z) in a series, expL(nor/W)(&z&ix)g, this

a=n (Ii —I,).
Hence, if n is perpendicular to I& —I2, i.e. , if
I~ —I~ lies in the plane of the wall, the pole
density is zero. For the case of the tree patterns
the branches represent strips of varying width,
having varying pole density cutting across a sky
of uniform pole density (Fig. 13).This is approxi-
mated in Case II, treated below, by a pattern of
strips of uniform pole density of equal width and
alternating sign cutting at 45' across the speci-
men. This approximation tends to under-
estimate the actual energy and thus offsets the
effect of neglecting the material in the branches
lying above the wall surface as discussed in the
introduction to the appendix.
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leading to

eg ——1.70I,2 (sin'8) W/(1+ p*)

This gives —2 Inz/2W for the potential at the
origin. The self-energy of the strip of unit pole
density and width S at the origin is

for the average energy per unit area, which in the
limit @~=1 agrees with a result obtained by
Kittel. "

Case II
For the case of the tree patterns we estimate

the magnetostatic energy by replacing the
branches and sky by parallel strips, each of
width W having pole density I, sin0 running at
45' to x and y on the surface. For this case the
surface pole density and potential may be taken
to be 0(x+y) and rp(x+y, z) for Z= ~. For
finite K we try the solution

P(x+y, z) =Az(x+y, z), z)0,
P(x+y, z) =A z (x+y,az), z(0.

The constant "a" is evaluated from 7' B=O
which gives

I *(~VI»')+(~V/~y')+I *(~V/~z'-)
= (1+p*)A (8'p/Bx') +y*a'A (8'z/Bz') =0,

a = ((I+~*)/2~*) ',

since Pp=0. A is then evaluated from the con-
dition of surface poles and is found to be

A = 2/(1+ (p*(1+p~)/2) ') = 2/(1+40. 7) = 1/20. 8,

so that the energy per unit area of surface in
this case

e..= L 70I,2 (sin'-'8) W/(1+ (g*(1+p*)/2) ) l.

Case III
For the case of patterns on steeply sloping sur-

faces, v e shall initially neglect the jagged edges
of the patterns and consider strips of uniform

pole density 0 and width S spaced with period W
(when S= W we have Case I). This case may be
calculated by Fourier series or by an approxi-
mate method. According to the approximate
method, v e calculate rp at the center of one strip
(at the origin of x and s) assuming that all the
other strips are infinitely narrow. Taking the
additive constant in the potential so that two
unit lines of poles have potential —21nr, the
potential at one strip due to all the others may
be evaluated from

—2Re(ln tanz (x+iz)/2 W) +2 Inr.

ps ~s
(1/2S'-') —2 In

~
x —y ~

dxdy = —', —l n S.
p

To get the total self-energy per strip, to its own
self-energy we add one-half its energy of inter-
action with all the other strips and obtain

—,
' —lnS+-', ( —2 Inn/2 W) = -', +ln2W/z S.

For the case under consideration, the pole
density on each strip is not unity but SI, sin8
and the length of strip per unit area is 1,/W so
the total energy per unit area is

e3 ——(3+2 ln2 W/z-S) S'I '(sin'8)/ W(1+p,*).

This expression should be quite accurate for
lV&&S. As S approaches W an appreciable error
will occur because the interaction between
adjoining strips will dilfer from +2 lnW. How-
ever, even when W= S the error is not great and
the equation gives 2.16 instead of 1.70 for the
numerical factor. (Introducing the correct energy
for nearest neighbors reduces the error to less
than 1 percent. )

5. Size Estimates for Patterns on Sloping
Surface

In order to check the theory against experi-
ment, a series of patterns was photographed on
a uniformly curving surface varying in slope
from 8= —5' to 8=+5'. The patterns observed,
which were similar to those of Fig. 10 but not as
good photographically, could be classified as
follows:

Simple parallel slabs: less than 0.5'; no branches.
Transition: 0.5' to 0.65', trees form and branches grow

to about W/2 in length.
Tree patterns: 0.65' to 1.30', branches fill more of

pattern finally eliminating trunk of tree.
Transition: 1.30' to 1.9', branches begin to squeeze out

skv.
Steep slope patterns: 1.9' to 3.9', branches, cover all but

a narrow strip of sky.

Except for the transition regions, it is possible to
make rough estimates for the minimum energy
configurations and check the dimensions with
those obtained experimentally. The width W of
the underlying domains is determined by the
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TABLE I. Comparison of measured and calculated dimen-
sions of tree pattern (Fig. 12).

Measured

8 (degrees)
a (mm)
b (mm)
S (mm)

Computed

1.0
0.071
0.067

1.3
0.067
0.067

2.0

0.025 0.14 0.08

c/b 0.05
a (mm) 0.197
b (mm} 0.115
5 (mm)

0.07
0.152
0.115

0.73 0.43 0.28

overall dimensions of the specimen and is con-
sidered a specified quantity. The dimensions
measured for several angles are given in Table I.
The quantities a, b, c are defined in Figs. 21 and
13 and S in Fig. 14. The value of lV is 0.6 mm
throughout.

In treating the tree patterns we assume that
the branches of the trees nearly neutralize the
net Hux. This is reasonable since lack of neu-
tralization is much more important for the wide
strips between trunks (W='0. 2 mm) compared to
the branch width and spacing (W='0.02 mm).
Starting with this assumption and assuming,
furthermore, that the branches are elliptical
cones, as indicated in Fig. 12, it is possible to
determine the ratio of depth c to width b from
the experimental data as follows. The Hux carried
by one branch is I,irbc/2. Each branch neu-
tralizes an area of a W/2 with pole density I, sin8.
This gives

I,abc/2 =a WI, (sin8)/2,
c/b =a W(sin8)/m. b'-'.

From these, the values of c/b have been com-
puted and are tabulated in Table I. These indi-
cate that taking c/b as 1/20 will be a satisfactory
approximation. This gives

b = (20a W(sin 8) /ir) I.

YVe next start with the estimated values for 8,
W and c/b and try to calculate a and b by
minimizing the energy. The magnetostatic energy
is estimated from Case II taking W=ir/2V2;
this introduces q8 into the denominator in e4

(see below). Replacing the branch and sky
pattern by parallel strips of equal width is
obviously a crude approximation; also Case I I
corresponds to strips all lying in the xy plane,
whereas the poles on the branches lie below the
plane and are actually underneath permeable
material. For these reasons we should regard the
use of e2 as being only a first approximation to
the correct magnetostatic energy. If the cones
~vere infinitely thin (c/b =0) and the sides were
straight, then the domain wall surface per unit
area of the xy plane would be b/2a Actually. the
branches have depth and are also slightly bulged,
this increases the fraction; on the other hand
they do not run to the center. KVe therefore
compromise by using domain wall area per unit
surface areas equal to

b/2a= (20W(sin8)/4sa) I.

The total energy for this case is, therefore,

1.70aI, "- sin"-8

(1+(I *(1+I')/2) ) '(8) '

+yt 20W(sin8)/4ira]&

=Au sin'8+8(W sin8/a) l,

(a)

(b)

I

I

I

I
I

where

1.70I, '-

=3 60X104,

1.70(1580) '-

A=
(1+()*(1+I*)/2) '(8) ' (41 7) (2 83)

I

I(c)
IB:.

8 = y (20/4s ) ' = 1.5 (5/ir) )= 1.89,

the units being c.g.s. The value of a which gives
the least energy is readily found to be

FIG. 33. Closure patterns for steeply sloping surface:
(a) complete closure, (b) pattern with strips of alternating
sign, (c) pattern with strip with no net pole density.

a = (8/2A) *W~/sin8 = 8.83 && 10 ' X (0.06) &/sin8

=3.45X10 '/sin8
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from which the computed values of e in Table I

are obtained. Combining these with the formula

b=(20aW)L(sin8)/s j&=1.15X10 ' cm gives the
value for b. The agreement between observation
and calculation is fair, the calculated a and b

being about 2.5 and 1.7 times the observed. The
value for a depends upon (b/c)& power and is,
therefore, insensitive to the assumed value.
However, the agreement indicates the essential
correctness of the physical picture.

The total energy per unit area is

e~ = -3(2AB')1WI sin8.

This formula should be fairly good for the range
in which b—a/2, say from b=a to b=a/3, cor-
responding to 8=0.6 to 1.7'.

6. Size Estimates for Steeper Slopes

Two models of the domain structure beneath
the surface have been investigated. These are
illustrated in Fig. 33: (a) represents the Aux

closure case, (b) shows the case discussed above
for which there is a net pole density at the center
of each I 010j domain surface, (c) has no net pole
density (since the transverse domains are deep
enough to carry the required flux from each L010j
to $010] domain as in (a)); however, the walls

have been pulled back to produce the type of
pattern shown.

Calculations based on model (b) (but omitted
from this appendix) lead to strip width 10 to
20 times narrower than observed, the reason
being that the magnetostatic energy (see Section
4) of widely separated strips, on which lie poles,
is high. Model (c) leads to widths about one
third. of the experimental values. On the basis of
the interpretation of (c), the energy will be less

for the staggered distribution c~ than for c2, since
the former tends to move like poles farther
apart; this is in agreement with the appearance
of the patterns of Fig. 10(d), (e), and (f).

For slopes of 3' and widths of IV=0.6 mm,
the magnetostrictive energy in the transverse
domains is comparable to the wall energy. The
transversely magnetized domains are forced to
ht the large underlying domains. This means the
transverse domain is strained out of its equi-
librium (i.e. , zero stress) shape of strains of
e« ———~„„———h~, ~,.——~,„——~„,=e„=0,where hj

is the fractional increase in length in the X direc-

3
X
LU

z

2
IJJ
Z

0
0

IN DEGREES

FIG. 34. Comparison of energies for simple parallel slabs
(e1}, tree patterns (eb}, and various approximations for
steep slope patterns (p, e6(S=O). e6).

tion in an unstressed domain when the mag-

netization is rotated from Y to X."The energy
density is thus

gcyg(t~~ +Eyy )"+c&26"g~cyy = (cll ~12)bl".

The values of these constants for iron are"

('11 = 2.37 )( 10 "
(, = 1..41 g 10'-' ergs /cm',

h) ——3.2)(10 '

giving a magnetostrictive energy density of

s =0.96X 10'-' X (3.2)
'-' X 10 ' 0 = 0.98 X 10'ergs/cm'.

The volume having this energy is sin8(W —S)2/4

per unit length along y and width 8', hence the

energy per unit area of surface is

s sinII( W —5)-'/4W.

For 8=3' and W=0.6 mm this gives 0.75 erg/
cm-' which is comparable with the wall energy of
about 1.5 ergs/cm'-'.

ln model (c), we treat each strip S as a pattern
of alternating strips at 45'. This leads to using

Case II with S'2=S/'4 as an estimate from the

pattern of Fig. 10 (f). A fraction 5/W of the

surface is covered with the strips. The reduction

of wall surface per unit length of strips is about
1/25 based on the projected area and is perhaps
0.3S considering the fact that the wa11 boundary
is curved. The average energy~ per unit area is

' F. Bitter, Introduction to Ferronusgnetisrn (McGraw-
Hill Book Company, Inc. , Net York, 1937), p. 248.

'9 Reference 18, p. 254.
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eg ——s(sin8) W/4+y(1 —0.35/ W)
+1.70&I,'(sin'8) /4 W(1+ (y*(1+p*)/2)) ~.

This leads to a minimum energy for

S;„=0.3~/L1. 701.'/2(1+( *(1+~')/2)) j sin S

=0.3y/&22 sin'8

where A =3.60X10' as defined in Section 5. The
energy is then

e6 ——s(sin8) W/4+y(1 —0.15S„;„/W)

(neglecting the small correction to the mag-
netostatic energy). Values of 5; so calculated
are given in Table I and are about 3 times the
measured values.

'7. Comyarison of Total Energies

In Fig. 34, the three energy expressions are
plotted as functions of 8. The e1 curve is valid

over the range of validity of the p* method; since
the latter is limited by the condition that 8 is
small, this curve is certainly accurate to 8&2'.
The e5 approximation, however, depends on
having b—a/2; the range of b=a to b=a/3 is
shown as heavy and represents an extension of e5

somewhat beyond its range of validity. Three
approximations to the steep slope patterns are
shown: y corresponds to placing 5=0 and ne-

glecting magnetostriction; e6 for S=O adds the
effect of magnetostriction; e6 shows the best
approximation with S=S,„;„.Figure 34 is seen
to explain the general trend of one type of pattern
to another satisfactorily, the incidence of tree
patterns at 8—0.5' being given correctly. The
weakest feature is the e~ curve which has not
been treated accurately enough to give properly
the transition from tree to steep slope patterns.
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A Simple Domain Structure in an Iron Crystal Showing a
Direct Correlation with the Magnetization

H. J. WILLIAMS AND W. SHocKLEY
BelL Telephone Jaboratories, Murray Hill, Rem Jersey

{Received August 30, 1948)

A hollow rectangle cut from a single crystal of 3.8 percent silicon iron has been studied with
the aid of powder patterns and flux measurements. The edges and surfaces were all cut accur-
ately parallel to {100), the directions of easy magnetization. The domain pattern consists of
8 domains, four forming an inner rectangle magnetized in one direction and the others forming
an oppositely magnetized outer rectangle. Changes in magnetization occur by the growth of one
set of domains at the expense of the other. In the saturated condition, each leg of the rectangle
is one domain about 1.5&0.1&0.1 cm in size. Implications of these results in connection with
Barkhausen effect are discussed, and a method of measuring the energy of the Bloch wall is
proposed.

HE theory of magnetic domains has been
developed over a period of years to explain

the gross magnetic properties of matter in terms
of the behavior of sma11er regions of substantially
uniform magnetization. However, except for cer-
tain artificially simplified cases such as fine

stressed wires or very small particles, it has not
been possible to obtain a complete picture of the
domain structure in any actual specimen and to
show how it explains the state of magnetization

and variations thereof. The experiments de-
scribed below furnish an example of correlation
between domain structure and magnetization for
a specimen having a dimension of the order of one
centimeter.

This specimen was in the form of a hollow
rectangle (or "picture frame") of 3.8 weight
percent silicon iron cut from a single crystal so as
to have all edges and surfaces substantially paral-
lel to L100j or equivalent directions. It had origi-












































