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The second-order interaction between nucleons in the pseudoscalar and vector meson theory is
calculated, all terms being taken into account. It is shown that in both cases the exact expression for
the interaction caused by virtual exchange of mesons involves contact interaction terms which
cancel the well-known direct coupling terms of the Hamiltonian. The remaining interaction is
essentially di6'erent from the expressions given by usual derivations. Its singularity for small sepa-
rations r of the nucleons, usually obtained to be in r 3 for pseudoscalar and vector fields, is reduced for
the former and not for the latter, so that no singularity can be removed by a mixture of the mentioned
fields. For pseudoscalar mesons, all interaction terms are proportional to some power of the nucleon
velocity, whereas for vector mesons there is a non-vanishing static approximation in r '. It seems
impossible from the present treatment to draw precise and reliable conclusions about the deuteron.

I. INTRODUCTION

'HE forces between nucleons resulting from
meson fields are usually calculated either by

neglecting all velocity-dependent variables of the
nuclear particles (static interaction), ' or by neg-
lecting only recoil energies of the nucleons in
emission and absorption of virtual mesons. ' In the
latter case the perturbation method is used and
the first non-vanishing part of the interaction is of
second order in the coupling constants. Our purpose
is the investigation of the second-order interaction,
all terms being taken into account. We treat here
the cases of pseudoscalar and vector meson fields;
for both types of mesons the consideration of all
terms make it possible to separate from the inter-
action caused by virtual exchange of mesons expres-
sions pro'portional to h(r), where r is the relative
position vector of two nucleons. Such expressions
are usually called contact interaction terms. When
the Lagrange function describing interacting nu-
cleon and meson fields contains only coupling terms
between nucleons and mesons and no term of direct
coupling between nucleons, it is a well-known fact
that the derived Hamiltonian contains direct
coupling terms. These give rise to contact inter-
actions between nucleons, and, as we shall see,
cancel exactly the contact interaction terms men-
tioned above. The remaining second-order inter-
action turns out to be essentially diferent from
the usual expressions. Its singularity for small
values of the nucleon separation r, which was found
to be in r ' for both pseudoscalar and vector fields,
is reduced for the former but not for the latter.
Hence no singularity is removed in the relativistic

region by mixing both fields, as was done for the
static approximation by Mufller and Rosenfeld. '

Our treatment of the second-order interaction is
completely independent of the neutral or charged
character of the mesons and of the corresponding
charge dependence of nuclear forces. For the sake
of simplicity we shall consider neutral mesons, and
consequently the meson field will be described by
real wave functions. The isotopic spin of the
nucleons will play no part, and we may consider
nucleons of definite charge which, we assume,
obey the Dirac equation.

II. PSEUDOSCALAR MESON FIELD. EMISSION AND
ABSORPTION MATRIX ELEMENTS

The Lagrange function of interacting nucleon and
pseudoscalar meson fields is the sum of two terms
for the free particles and a coupling term in which
we take both types of coupling, pseudoscalar and
pseudovector:

L free nucl. +~free mes. +L'lt

Lf„,,„,L ———(1/2i) I LP*(n grad/)

—(grad/* e)P+P*(8&/Bt)
—(8$~/Bt)p+2iMf*pp5d3x, (2)

Lt„,„„,.———
2~ L(grad U grad U)

—(8 U/Bt) '+ «' U 5d3'-x (3)

Ll
J

O' If&pmU+ Lfm/«5

*This work was performed during a stay in Copenhagen
while the author was on leave from the University of Brussels, X P(o grad U) +pi(8 U/Bt) 5 }fd«x. (4)
Belgium.

C. Mgller and L. Rosenfeld, Kgl. Danske Vid. %ls. The pseudoscalar U and the spinor ' are the waveMath. -Fys. Medd. lV', 8 (1940).
~ N. Kemmer, Proc. Roy. Soc. A166, 127 (1938). functions for mesons and nucleons; ~ and M denote
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their respective masses in natural units (k=c=1);
e, p=pk, pi, pk, e=pin=api are the usual Dirac
matrices; the coupling constants fi and f~ have no
dimension in our units; the integrals are taken
over three-dimensional space.

With the variable II = 8I /8(8 U/Bt) canonically
conjugage to U, the Hamiltonian is

successively

ix-'(~ It —pidk)x-

=&Xe Pl (ik ' Pm) Xm &Xn (a ' Pe) P1Xm ZdkXn P1Xm

= ix *pi(E —~P)x —ix.*(E.—~P) pix

—&~kg~ P~gm
IIfree nucl. +IIfree mes. +IIl +IIdir. ~ (5) = i(E-—E-—dk) X-*piX-—2~X-*pkXm, r

and the matrix elements becomeHi„. ..i. = (I/2i)~' LP*(n grad/) —(grad/* e)iP

II„...„„.= —,
'

~
L(grad U.grad U)

with fk
=fk+ (2M/ii) fk

+II'+ i~' U']d kx, (7)

+2q~ymyy]d~ (6) (Hi)n+k~ ——(Hl)m~e+k ——
I 1/(2dk) ]Xn*

xI fkpk —~(f,/k)(E E.—dk) p—i]xm, (12)

P I fi pk U+ I fk/&]

X L(s grad U)+ pilI] }pdkz, (8)

Hd;. =k(f. k/~)' ~(4'*pi4')'dkx.

Apart from the meson-nucleon interaction expressed
by Hj, it contains a direct coupling Hd;, . between
nucleons.

We use momentum representation and take all
wave functions periodical with unit period in
spatial coordinates. The plane wave states of the
mesons will be denoted by their momentum k, the
corresponding energy being dk

——(a'+ 0') &. The
nucleon plane wave states are written

III. SECOND-ORDER INTERACTION IN
PSEUDOSCALAR THEORY

In the Hamiltonian (5), the term Hi of first order
in the coupling constants is carried over to higher
order by the canonical transformation exp(iS),
defined in momentum representation by

S„,= i(Hi)„~,/(E„E„). — (13)

E„E„arethe eigenvalues of the (diagonal) matrix

Jg f i,+Hf, Apart from terms of order

three and more in fi and f2, the new Hamiltonian is

exp(iS)H exp( iS)—
=Hfree nnel. +Hfree mee. +H2+Hdir. r (14')

P„=x„exp(ip .x).

p is the momentum of state m, and y a matrix of
four rows and one column satisfying Dirac equation

where H2 is found to be
(10)

(H2)"-=-' ZKI/(E. —Er ]+II/(E"—Er )]}
r I I

X (Hi), ,"(Hk),",. (15)

(I p +0~)x-=E x

where 8 is the energy of the state.
The operator II~ accounts for emission and

absorption of a meson by a nucleon. The matrix
elements for these processes are obtained in the
usual way by expansion of U and P in plane wa~es
and use of the production and annihilation opera-
tors for mesons and nucleons. This gives the known
expressions

(Hi)-+k- = (Hk)=~k* = L'I/(2dk)']x. *

XLfip2 —i(fk/~)(~ It —pidk)]xm-r,

The matrix elements (Hi)„~ „and (H, )rr
given by (12), and the energy difference multiplying
pi in this expression becomes equal (apart possibly
from the sign) to the denominators E„E„"—
E„—E„of (15), respectively. The formal simplifi-
cation thus introduced results in the appearance in
II~ of a contact interaction term. To see it, let us
consider the simple case of a two-nucleon system
with center of gravity at rest, and write down the
matrix element of II2 for an arbitrary transition
C-+0' of the system. We expand 4 and 4' in plane
wave states (10):

+ = (I/V2) P C'mym2fmk i&gm2&"
r

where the meson momentum k is equal to the
momentum change p —p„of the emitting or
absorbing nucleon. By means of k=p —p„, e= ep&

=pie, Eq. (11), and pg= —Ppk= ipk, we —have

+= (I/~2) Q lrninkfnki iPnki i,
(16)

where the upper suffixes refer to the two particles.
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The non-vanishing terms of the sums (1|&) satisfy

0 s/%2 — 0 %2?lg?48l $???Q
— C??t 285 g?

(17)
I&~1+p~2 pnl+1&n2 E~l E~2 Eni E'nl

(H2) 2~S = —(f2/&()' Q +nln2'Xnl "&*Xnl('&*

Introducing (12) into (15) and using (17) one gets,
after some calculation,

representation, by a formula similar to (13):

S"- ' = i(H&')"-./(E. —E"), (22)

Hl' {p*——{—(2M/&()f2 p2U
J

+(f2/&(){ (a grad U)+ p&II] I&d2x

where H~' divers from H~ by the constant of
pseudoscalar coupling:

X pg py ~+my Xm2 4mjm2

+(Wl+W2)2 2,

(Wl)2~y = fl p—4'nln2 xnl xn2

X [pl ' pl /L22 —(E18& Enl)']j

(18)
As a consequence of (12), the matrix elements (22)
reduce to the simple form

(S )n+&&~ (S )mmn+N { II (2&/') ]Lf2/&(]X np&X n.

The transformed Hamiltonian up to second-order
terms is

(W2)2~2, 2(f2f——2/&() Q 4'nln2*xn&'"*xn2"'*

X [(Em& —En&)/{ 222 —(Em& En—l)']j

X (pl 1 p2(2)+ p2(1) pl(2))x~1( ))(~2(2&4mlm2 (20)

exp(iS')H exp( —iS') =H( &, +Hf„,
+H1"+H2'+Hg;, ., (23)

where H&" involves pseudoscalar coupling only:

with It=pm& —pni. The first term of (H2)~ q in
(18) does not depend explicitly on pm& and pn&.

Therefore, it gives an interaction energy propor-
tional to h(r), r being the relative position vector
of the two nucleons. As can be seen immediately,
that term is equal to ( Hd;, .)2 q—and the complete
second-order interaction is

W=H2+Hg;, .= Wi+ W2. (21)

For large relative momentum &&& or small relative
distance r, the expectation value (Wl) becomes
proportional to p or r ' and (W2) becomes propor-
tional to p2 or r ' For any. real transition of the
two-nucleon system, occurring with conservation
of energy, the matrix element of 8'~ vanishes. In
particular, it has no diagonal elements in momen-
tum representation and hence can be carried over
to fourth order by canonical transformation. One
will also observe that, according to (19) and (20),
the second-order interaction vanishes for fl f, ——
+ (2M/K) fl ——0. A slightly longer calculation shows
that all these features are still valid in an arbitrary
system of reference, where the center of gravity
of the particles is not at rest.

IV. AN ALTERNATIVE METHOD

Dyson' has shown that the pseudovector coupling
term in (8) can be transformed into a pseudoscalar
coupling term by a canonical transformation. This
transformation exp(iS') is defined, in momentum

'F. J. Dyson, Phys. Rev. 73, 929 (1948). The author is
greatly indebted to Dr. Luttinger who called his attention to
Dyson's method and pointed out to him that it gives IV&

instead of 8'1+W'2 as second-order interaction. Dyson
investigates the case f1 =0. The generalization to f1WO which
we give here is quite immediate.

H&" =f2) Q*p2&f) Udlx, f2= f1+(2M/&() f„
and H2'+H~;, . gives a vanishing contribution to the
second-order interaction between nucleons. Starting
now with (23), the procedure of Section III gives
the second-order interaction by means of canonical
transformation exp(iS") with S"= S—S', S and S'
being defined in (13) and (22), respectively. Instead
of (21), one gets

lV'= lVj,

given by (19).The discrepancy between W and W'
is, of course, formally due to the di8'erence between
the transformation exp(iS) used in the preceding
section and the product exp(iS") exp(iS') used
here. In fact, the transformation U defined by

exp(iS") exp(iS') = U exp(iS)

removes the 8'2 term from IV and carries it over
to fourth-order interaction.

One should expect the two methods to have the
same physical consequences in second-order ap-
proximation; this is in agreement with the men-
tioned vanishing of all diagonal elements of tV2 and
of its elements corresponding to real transitions.
The deuteron problem will be discussed in the last
section. '

'This explains why 5 can be written in closed form in
coordinate space as is done by Dyson.

'The conclusion of Dyson's treatment that pseudovector
coupling has the same second-order e8ects as pseudoscalar
coupling was previously reached by E. C. Nelson, Phys. Rev.
60, 830 (1941), who transforms the Lagrange function (1) by
means of the equations of motion deduced from it. This
procedure seems not convincing to the present author, because
the equations of motion deduced from the new Lagrange
function are not equivalent to the previous ones.
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V. VECTOR MESON FIELD

The Lggrange function of interacting nucleon and
vector meson fields is again of form (1), but Li„,
and I j have to be replaced by

Ll,.. ...' = —-', [(curlU curlU)

—( {(~U/~t) —grad Uo }

{((&U/&)t) —grad U&) })
+32(U U —Uo2)]d3X

L,"'= — P*{gl(a U+ Uo)

last terms being now

H&,.. ..."= 2 [(curlU curlU)+ )&2(U U)
~J

+(I/~2)(diva)2+ (B n)]d3x,

p' {gi(22 U —(I/)&2) divn)

+ (g2/K)[(P&2 curlU) —(y U)] }i)}d3x,

IIdi. ."=
2 (g 1/)&)' ((I*&P)'«

+2(g2/3)' ~((4'V4) (PA))d~.

+ [g2/3][(p(2 curlU)

The four wave functions U, Uo describe the mesons,
gi and g~ are dimensionless coupling constants, and

y is defined as usually: y = —2p&2 =2&2p Intr. oduction
of

a = SL/S(aU/a&)

and elimination of Uo by means of the field equa-
tions give the Hamiltonian of form (5), the three

Instead of transforming the matrix elements of
Hl" by means of (11), as was done in Section II for
H~, it seems more convenient to deduce 6rst the
second-order interaction between two nucleons
with center of gravity at rest. A canonical trans-
formation defined by the formula analogous to (13)
gives to the Hamiltonian the form (14), Hl„,
H&;,., and H2 being replaced, respectively, by
Hf . Hd' .", and a matrix H&' which is easily
deduced. ' For an arbitrary transition C —++ of the
two-nucleon system, using (16) and (17), one gets

(H2") 2, 3, = —Q %&nl»2*X»1&'&nX»2&2&*[1/[332 —(Eml —En&)2]] {g&2[(&2&" &2&2&)+ (I/)&2) {&2+ (&2&'& .k) ((2&» k) }]

+ (g /K)2[3 2(P 1) 'g(2 ) (g 1 'k) (g 2 'k)+ (P 1 ' g 2 )(&2(» 'k) (&2(2) ' k)+$2P(1)P(2)]

+ (g2g /l2)[2((y&' &/& &) k)(l —(&2&» ~ &2&»)) —jp&'&(&2&2& k)/2p&»(&2&» k)]}Xm &»Xm2&»lglmlm2 (24)

k is defined as pml —pnl. By means of (11) and of the properties of Dirac matrices, the expression (24)
can be transformed. The main points of the calculation can be found in the appendix. The 6npl result is

(H2 )0'»-4 ( Hdir. +Wi + W2 +W3 )2~4'i

g 2[(+(1 . &2(2)) 1 P(1)P(2)]+ (g 2
g 2)P(1)P(2)

(Wi") 3 e= —2 +.1.2'X 1"'"X.2"" Xt@g Xm2 C mim2)
332 —(Eml —Enl)'

(23)

(26)

(Eml —Enl) (&2&'& &2&2&) —2(Em&+En, )
(W2 )2'+-2' (g2g3/)&) 2 pnl»2 Xnl X»2

23 —(Eml —En 1)

X (P +P( ))Xml( &Xm2&"&C'mlm2, (27)

8E~gEni
(W3 )2' dt = (g2/)&) 2 pnl»2 Xnl X»2 1 „pp Xml Xm2 Cmlm2~

332 —(Eml —Enl)'
(28)

with g2 ——gl+(2M/3)g2, and the total second-order
interaction is given by t/V' = $V~"+6'2'+ S'3'.

For large relative momentum p or small relative
distance r, the expectation values (Wl"), (W2"),
and (W3') behave, respectively, as P r ', P' r ',
and p3~r ' All three .expressions have non-
vanishing diagonal terms and consequently are of
physical importance in second-order approximation.

VI. DISCUSSION OF THE RESULTS

Although obviously the second-order interactions
5' and S"deduced in the foregoing sections differ
from the usual expressions" only by some contact
interaction terms and by quantities negligible in the
approximations involved in the usual derivations,
the expressions we have obtained look very different

6 H. J. Bhabha, Proc. Roy. Soc. A166, 501 (1938).
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from the usual ones. Starting with our expressions,
which are exact in second order, it is possible to
get the static part of the interaction between
nucleons, by making from Eqs. (19) and (20) for
the pseudoscalar field and (26) to (28) for the
vector field:

Zmy~Zn ~iM, pi~0, pm~0, a~0, P~1. (29)

For the pseudoscalar field, the second-order inter-
action vanishes completely in this static approxi-
mation, whereas for the vector field one gets the
pure Yukawa potential e "'/r and a contact inter-
action, i.e. , an expression essentially different from
the usual one. This shows how much the expression
of the static interaction depends on the way of
deriving it, although, of course, the difference,
apart from some contact interaction terms, must
vanish for vanishing nucleon velocities. By think-
ing, for example, of Kemmer's derivation of the
usual static interaction, ' one could perhaps say
that it corresponds to the static approximation for
infinitely heavy nucleons: 3f&)~, whereas when
putting (29) in our Eqs. (19), (20), and (26) to (28),
we assume a given and finite ~alue for M/~ (this
ratio comes in the coupling constants f& and g~).

As regards the deuteron problem, a first question
is whether one can get reliable information about
the ground state of the deuteron by putting the
interactions t/V or I/V" derived above in a two-
p'article Dirac equation. This seems doubtful, for,
as shown in Sections I I I and IV for the pseudoscalar
case, the non-diagonal elements of second-order
interaction are not uniquely defined in the treat-
ment using canonical transformations (W can be
made equal to Wi+W2 or to Wi), and these ele-
ments strongly influence the eigenvalues of the
wave equation. By instance, in the pseudoscalar
case, the r ' singularity of 8'~ is low enough to
account for the existence of a ground state, ' whereas
8'&+ 8'2, with its r ' singularity, excludes the
possibility of any ground state with finite binding
energy. The procedure, so successful in electro-
dynamics, of putting the static interaction in the
wave equation and treating non-static effects as
perturbations, here also meets with difticulties: one
has to choose a definite expression for the static
interaction, and the latter may happen to vanish,
as we have observed for the pseudoscalar case.
Accordingly, for a satisfactory discussion of the
deuteron problem, a new line of approach seems
desirable s

Nevertheless, a few general conclusions can be
attained. For the pseudoscalar meson, apart from

'This does not mean that an acceptable ground state
effectively exists for the 8'1 interaction.

8 The author is indebted to Professor N. Bohr, Dr. A.
Bohr, and also to Dr. J. M. Luttinger for an illuminating
discussion of this rather delicate point.

the W2 term given in (20) and deprived of physical
effects of second order, both types of coupling (in fi
and f2) give the same second-order interaction. This
is in agreement with Nelson' and Dyson's' conclu-
sion. For the vector meson, g~ and g2 couplings give
essentially diferent interactions. For small separa-
tions r of the nucleons, the second-order interaction
has a r ' singularity for the vector meson, whereas
for the pseudoscalar field the singularity is not
higher than r—' and probably in r '. This makes it
hopeless to discard the inadmissible singularities in
the relativistic region by mixing vector and pseudo-
scalar fields, as was done by Mpller and Rosenfeld'
for the static interaction as usually defined. The
same conclusion was reached by Hu' for the
approximate expressions obtained when neglecting
recoil energies and disregarding contact interaction
terms.
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APPENDIX

The following equations connect quantities which may be
replaced by each other in the curly bracket of (24). The
quantities are equal only when introduced into (24). The
deduction uses Eqs. (11) and (17) and relation k=pml —pnl,
and runs exactly as the deduction of (12).
(e(') k) =Eml —Enl, (e(') k) =Enl —Eml,

(y( ) k) = 2z3E —i(Eml+Enl)P( ) '

(y(» 'k) = —2i3I+i(Eml+Enl)P( ) '

(y(1) .y (2)) (e(1) .k) (e(2) ' k)—{y(I),y(2)) p(e(1) .pml) (e(2) .pml) + (e(1) .pn ) (e(2) .pn )-( "' )( '" )-( "' )( "' )3
(y(1) .y(2)) (e(» .pm 1){e(2).pm 1)

(y(» y(»){e(» pnl)(e(» pnl) =(e(» pnl)(e(2) pnl)(y(» y(»)
(Enl ~p ) (Enl ~p(2)) (y(l) .y(2)) ~

-(y"'y'»)L{e" p )(e»'p )+(e"'p )(e"'p 1)j
= (e(».e(')) p

—(e(') pn )(E —1lfp('))
+(eo) pnl) (Eml ~p(2)) jp(»p(2)

= IL —2(e(').pnl}+{e(2)- pnl) (e(') -e(-))](Eml —MP( ))
+L2(e'» 'pn )—(e'» pnl) (e"'e"')](E 1

—~P"')IP"'P"'
I L2 (~p(1) Enl) +(~p(2) Enl) (e(1) e(2)) j(Eml ~p(1))

+ I 2(MP(2) —Enl) +(3fp(') —Enl) (e(') - e('))j
(E 1 ~p(2)) I p(»p(2)

whence

(~y'(1) y(2)) (e(1) k) (e(2) k) (Eml Enl)2(y(1) y(2))
lEnlp(» p(2) +2MI (En 1 Em 1)(e(1) .e(2))

+(Eml+Enl) j(p(1)+p(2)) +4Jplf(e(1) .e(2)) p(l) p(2) j
Introducing into (24), one readily obtains Eqs. (25) to (28).

9 Ning Hu, Phys. Rev. 67', 339 (1945).


