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The cross section for the production of x-mesons in nucleon-nucleon collisions is calculated at
energies just above the threshold. The process is treated in complete analogy with photonic brems-
strahlung; the m.-meson field is coupled to the nucleon and an empirical potential between the two
nucleons ensures momentum and energy conservation. The nuclear potential is taken from the
Berkeley experiments on neutron-proton scattering at 90 Mev. In this treatment the symmetric
scalar theory yields zero cross section if the recoil of the nucleons is neglected. The symmetric pseudo-
scalar theory (with pseudovector coupling) leads to the results given in Tables I-III. The cross
section obtained is several orders of magnitude smaller than the cross section obtained by Morette
and Peng on the basis of a thoroughgoing field-theoretic approach.

1. INTRODUCTION

N connection with the construction of the large
~ - synchro-cyclotrons, a theoretical prediction of
the cross section for the production of x-mesons in
nucleon-nucleon collisions is desirable. A com-
parison with experiment of the predicted angular
distribution and energy spectrum of the ~-mesons
will throw light on certain properties of the x-meson
and the nature of its coupling with nucleons.

Although it is now apparent that the funda-
mental idea of the two-meson hypothesis is correct'
(in accordance with which only the s.-meson is
produced in a nucleon-nucleon collision whereas the
p,-meson has a negligible interaction with nucleons
and arises solely as a decay product of the s -meson),
a reliable meson theory of nuclear forces still does
not exist. The possibility of using one kind of meson
to explain the tensor character of nuclear forces
while at the same time avoiding the inevitable 1/r'
singularity has not yet been demonstrated. More-
over, it is possible that several kinds of mesons are
strongly coupled to nucleons and the resulting field
theory of nuclear forces may become quite com-
plicated.

In view of the uncertain status of meson field
theories, we have adopted a diR'erent approach to
the problem of meson production. We have not
treated meson production as a third-order process
in which one real meson is created and one virtual
meson is created and destroyed, as Morette and
Peng' have done. Instead, we have regarded meson
production as a second-order process in which one
step consists of the creation of a meson by one of
the nucleons, and the other step consists of the
scattering of the resulting nucleon by the second

' R. E. Marshak, Phys. Rev. 75, '700 (1949).
s C. Morette and H. W. Peng, Proc. Roy. Irish Acad. 51A,

217 (1948).

nucleon via the nuclear potential between them.
The advantage of our approach is twofold: (1) the
nuclear potential may be chosen so as to give the
best fit to those scattering experiments which
involve momenta transfers coming into play in
the meson problem (e.g. the Berkeley neutron-
proton experiments at 90 Mev, ' and (2) the cross
section only depends on the square of the coupling
constant rather than the sixth power so that the
correct value of the coupling constant is not as
crucial.

It might be objected that our method of calcula-
tion neglects the "exchange" terms taken into
account in the consistent third-order held-theoretic
calculation. These "exchange" terms arise from the
creation of the real meson in the second step (in
the scheme of perturbation theory) while the virtual
meson is created in the first step and destroyed in
the third. The "ordinary" terms in which the
virtual meson is created and destroyed in the first
two steps or the last two steps comprise the terms
which are essentially taken into account by our
method. Fortunately, it can be shown4 that the
"exchange" terms are of order (pjM) (p is the
mass of the s-meson, M is the nucleonic mass)
compared to the "ordinary" terms in the energy
region with which we are concerned —directly above
the threshold —so that the error incurred is small.
Of course, if the non-relativistic approximation for
the nucleons, in which the recoil momenta of the
nucleons are neglected, leads to a vanishing cross
section for a particular type of coupling, the "ex-

3Hadley, Kelly, Leith, Segre, Kiegand, and York, Phys.
Rev. 73, 1114 (1948); Brueckner, Hartsough, Hayward, and
Powell, Phys. Rev. 75, 555 (1949).

4 This can be shown by writing out the diferent types of
perturbation-theoretic terms or by means of a more direct
method developed by R. P. Feynman; we are indebted to
Professor Feynman for performing the calculation at our
request.
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change" terms will be as important, possibly more
important, then the ordinary terms, in determining
the final result. '
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2. METHOD OF CALCULATION

We consider the production of m-mesons by the
collision of two nucleons when the nucleons possess
energies just above the threshold for production (i.e.
2&&c' or 290 Mev'). Although, even at these energies,
the velocities of the nucleons are not small com-
pared to the velocity of light„we employ the non-
relativistic approximation for the nucleons. This is
consistent with the neglect of the "exchange"
terms referred to in the introduction. For the inter-
action of the two nucleons with each other we use
a symmetrical potential of the most general type
which does not contain tensor forces. It is possible
to include convergent tensor forces in the theory
but we have not done so because the best fit with
the neutron-proton scattering cross section at 90
Mev, from which we shall take our potential, is
obtained by neglecting tensor forces. ' The most
general charge-independent central-force interaction
can be written in the form:

0
0 1

0 0
,0 0

0 0 '

0 (3)

0 —1

(Vf,*) (VP,)+-', [s,'+(7P;)'+p'y ]
2M

These operators satisfy the relations:

o.;o.,+o;o.;=28;;; r;r, + r;r;=25;,',
o;r; —r;o-; =0. (4)

Any operator in the ordinary spin-isotopic spin
space may be expressed as a linear combination of
the sixteen linearly independent matrices: 1, ~;, r;,
a„r;, in. c. luding the operators in (1). The total
Hamiltonian for symmetric pseudoscalar mesons
may then be written in second quantized form as
follows (we set k=c=1 and use the summation
convention throughout):

V(r) = V&"(r)+a& &r~V&'&(r)+r&'rmV&"(r)
+(&r&.&r2)(r& rg) V"'(r), (1)

where the V(" may all be distinct and contain the
radial dependence of the forces. For the coupling of
the x-meson with the nucleon, we first treat the
case of a symmetric pseudoscalar field with pseudo-
vector coupling. We then consider the case of a sym-
metric scalar field with scalar coupling. Other types
of coupling can be investigated in a similar fashion,
but the symmetric scalar and pseudoscalar fields
will serve as illustrations.

Since the nucleon may be a proton or neutron
and may have either direction of spin, we use a
four-component wave function for the nucleon,
namely, P, =(P&, P&, Pz, P4) and four-component
representations of the ordinary spin operators and
the. isotopic spin operators, namely:

+ (4~)'W. '(r-) '(~" ~4*)4.

+ t f,*( )Px.'(x') J,„J.„
X U& '(x —x')P„(x)P„(x')dx' . (5)

In (5), g is the meson wave function, s. the canoni-
cally conjugate momentum, g the meson-nucleon
coupling constant and J represents the operators
for a = 1, 2, 3, 4, respectively (i.e. V= Jq Jm V& &)

The commutation rules for the P and &&& are

[P,*(x),y.(x') ]+———A,.S(x—x'),

[f,(x), f,(x') ]~= [P,*(x),f.*(x')]~=0, (6)

[s.;(x), y;(x')] = —ib,,b(x —x'),
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na'
up up = ~m~'p u

The u's may conveniently be taken to be

all other quantities commuting.
We expand the wave functions in Fourier series

in a box of volume O. For the nucleon, we have

p, (x) = a-~A "u "s*'*

P '(x) =0—&A ™u"'e
where

' W. Horning and M. Weinstein, Phys. Rev. V2, 251 (1947).' Private communication from R. Serber.
R. Serber and R. Christian, private communication; see,

however, the note added in proof at the end of this paper.
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with

and where
cp p

——(u'+k') &

gfv *v =8;;, v *v

It is convenient to choose
'

1/W2
'

v'= +i/N
0

' 1/v2 ' '0
v'= —i/v2, v'= 0, (10)

0

where the superscripts 1, 2, 3 represent positive,
negative and neutral mesons, respectively.

The operators satisfy the commutation rules:

[An"', A. "')+=&-&,p,

[A„"',A„"'*]+=[A„,A„"')~=0,
[ap', ap "']=&-&pa,

all other quantities commuting.

where the superscripts 1, 2, 3, 4 represent proton
spin up, proton spin down, neutron spin up, neutron
spin down, respectively.

For the meson, we have

y, (x) = Q-p(2p&„) &(ap-'v'+a p'*v,'*)e'"',
m. ;(x) =iQ &( ', cp p-) &(ap'*v," a—p'v, ')e

The Harniltonian now takes the form

H =A „™Ap~E~+(az'ap" +a p"ap') p&p/2

i(4&r)&g
+ (u"'I r;(cr k) lu"')A, ""A,"'

uQ&(2p&p) &

X (a;v,'+a, "v; *)b(p p' —k)—

+g eaeg, ea'sg „m"g „,harp"' P' „(a)
(u"

I
J lu ") (u"

I
J lu" )

X~(P+P'-P"-P"'), (12)

1
Vp&~& =— I V' &(x)e'~ *dx.

Q&

We shall calculate to first order in V and g the
transition probability from a state in which we have
two nucleons with momenta pp and —pp and in
spin states m~ and m2, respectively, to a state in
which we have two nucleons with momenta p —~pk

and —p —~k and in spin states m~' and m2', re-
spectively, and a meson with momentum k and
isotopic spin state s. The transition scheme is

~(p ——',k, mi')( —p+-', k, m")g
g (—p ——,'k, mp')(p+-,'k, m") g

)(-Ppc, m*) (P ——,'k, mi')( —P —-', k, mp')(k, s).
4(pp, mi)( —pp —k, m")(k, s) 8

(—pp, mp) (pp —k, m") (k, s)+
(13)

The transition scheme (13)would yield eight distinct
matrix elements if we did not take advantage of the
assumption that po((M. Making this assumption,
we may neglect —,'k compared with p&pp so that
P'=PpP —M~p and we may replace Vv~vp+ip' ' by
Vp+po( ). Kith this approximation, neglecting the
nucleonic recoil energies and summing over m".
the transition matrix element reduces to

J' and J' are vectors, while J' is a tensor. We may
adopt a uniform notation if we use two tensor
indices as follows:

Jl ~

J2 ~

J3 ~

J4 ~

i(4&r)&gH— I Vv vp& &[(m,
l
J Im, ')

uQ&cp p(2cpg, ) &

(mpl& lmp')+(m&l& lmi') (mpl J lmp'))

+ Vp~pp& &[(m, l
J lm, ') (mplZ lmi')

+(m, lX-lm, ') (m, l
J-lm, ')]}, (14)

Then,

ig(4pr) &

H'=— {V& —ppc &[(mil J;&, I
m, ')

&cQ&cpg, (2cp p) &

X(mplX;p lmp')

+(m, lZ;.-Im, ')(m,
l J,,-lm, ')]

where

X '= J (r,e;")(cr k) —(r,v;")(cr k)J . (14a)

+ Vv+vp' '[(mcl J'p Imp')(mpIK' Imi')

+(m&IX;p lmp')(mpl Jcp lmi')) }. (16)

Before proceeding, we must make our notation
a little more specific. The quantity J' is a scalar,

Taking the absolute square of H' and summing over
the final spin states of the nucleons, we get (since
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=J'a ) and average over the initial spin states, we find

{II'/2 =—

X {tVp vo —Vv vo —v'+Vv+vo~ Vv+33's ]
y{ (m»J J;a J;4o(m»)(mo[K;I, K,z~'Jmo)

+(m, (
J.».K, 4V [m,)(mo[K, »-J;4S{m2)

+(m, ]K4» K;3s'{ma)(m2[ J,» J;4~{m2)

+(m»{K a J4sfm»)(mof J,a K,3'{m2)]

+2Vv .3"-V.+.3"'C(m»
I
J'a K43'I m2)

X(m2IK;a J34slm&)+(m»l J»J '&Slmo)

X(mo[K;:K;4& {m,)+(m, {K,, K;3&*[mo)

x(m2(J;a J,4s{m»)+(m»(K» J;r'im2)

&&(m2I J'"K.3'Im3)] } (1&)

If we now introduce the projection operators:

2(1+r,) if the particle is a proton
~2(1 —r.) if the particle is a neutron

2P OMIT

{t Vo uo"-Vn-3 o'S'+ V3+oo" Van+no'S']

X [Sp(J;a~J;3sA3) Sp(K,»~K; 4s'A2)

+Sp(J,» J,4sA2)Sp(K;a K;4s"A»)

+Sp(J;a K;&&A»)Sp(K, » J;4sA2)

+Sp(J;a K,4P'A2)Sp(K, »~J, 3~A»)]

+2 Vv —po Vy+po4O {SP(J,» K, 4O"A2K, » J,4OA»)

+Sp(J,» J,4sA2K;»~K;3s'Aa)

+Sp(K» K;3'*A2J,» J33'A»)

+Sp(K» J;3'A2J;a K;4s*A»)] I . (19)

The subscripts 1 and 2 on h. refer to the nucleons
with momenta po and —po, respectively. The
evaluation of the spurs in (19) is straightforward
and yields the results (we have written A = 2(1+br.)
where b =+1 for proton and b = —1 for neutron
and o' = —i(V&"V2' —V2"V»')):

P, ~(A„A„s)=SP(J;»~J;—3OA»)SP(K a K;4f4*A2)

= —16k2 '0 0
0 2(1+4'b2)
0 0

P 24

0
0

L2(1-b b.(')')
+4 (bl+b2) ]

0

0
2b3b2(v3')2

0

[2(2 —b»b2(vo')')
+o'(b2+3b3)],

(20a)

P~2(sA»A2, s) —=Sp(J,» J; 3oA)2Sp( K, »K;3~*A3) =P» ~(A2, A», s), (20b)

P, ~(A&, A2, s) =Sp(J4»'K, 4o'A—») Sp(K;a J,4oA2) = —16k' '0
0
0
0

0
P 24

0
pl22

0 0
0 —P 22

—Pa33 '

P 33 P 24

(20c)

= —16k2 0 0 0
0 0 [1+o*bo—b&b2(vo')']
o Q" -Lbb. (1-(")')

+ (4*/2) (»+b2) ]
Q

340 Q24

P, ~(A„A„s)=SP(J,» K,4s'A2—)SP(K,» J,43A, ) =Po s(A„A3, s),

Q, ~(A3A2, s)—=Sp(J4» K;3 A2K;a J;4 A»)

0
Q 23

—L1+b 3b2(1 —2 (vo')')
+ (o'/2) (3b»+ b2) ]

L2 —b»bo(1+ (v;)')
+ ("/2) (3b» —b2)],

(20cl)

Q, ~=—Sp(J;a ; J4oA2,KK»;3o*A») = —16k' '0
0
0
0

0 0 0
0 Q23 Q 24

23 23 23 24

Q»24 —Q»23+ Q»24 L2+b»bo(1 —3(vo')')
+;e(b,+b,)]

(21b)
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0 0
0 $1+2*81

-bib2(V3')']
Q

33

Q3"
0 Q23

0 Q24

Q, &=Sp—(E;8 E;42"A2J;2 J,ipA1) = —16k' '0
0 Q

23

—L1+ (2'/2) (81—82) —8182]
„44
2

(21c)

Q, p= Sp—(E;2 J;ipA2J;3 E;3p*A,) = —16k' '0
0
0

,0

0 0 0
Q

24

Q
23

Q
23

Q 23+Q 33

Q
24

Q 23+Q 33
Q 33+2Q 23

(21d)

If we now sum the I"s and Q's, and use the nota- mesons of type s becomes
tlon

we get

4 4

S as Q P as S aji Q Q aP
n=l

)v2g3Aq ' pkpq
d~*(A„A2) =]

( ]
—)A (A„A,)( 42r2y4d2& (pp)

S, ~= —32k''(Ai A2) 0
0
0

, 0

S2at'= —32k2A*(A1, A2) '0
0
0
,0

where

0 0
0 1
1 0

—1

0
—1
—1
—2

0 0 0
0 —1

0 1
—1 —1 2,

J
dip IL(vp-p3"')'+(Vp+po"')']

+2(vp po"'Up+-po"'+ Vp+po"'Vp »"')-
—( Vp —p8"'+ Upyp8&") 2 —( Vp —p8&" + Up+po"') '

+L(v,-„)+(v,+„)]
—( Vp-p8"'+ V8+p8"') ' —( Vp- p2"'+ Up+ p8"') '

+2(Vp »«&+Up+»«-) IdnA, . (23)

(Ai, A2) =2+8 (81+82) 281b2(v3 ) ~ (22a)

The quantity A'(Ai, A2) characterizes the relative
probabilities for the production of the various types
of charged mesons in the different nucleon-nucleon
collisions and Table I lists its values.

Our theory (which is a weak coupling theory)
correct1y gives zero probability for the production
of negative and positive mesons in proton-proton
and neutron-neutron collisions, respectively. The
equality of the number of neutral mesons and the
number of charged mesons produced in a neutron-
proton collision follows naturally, whereas the
unexpected zero probability for the production of
neutral mesons in like-particle collisions is a con-
sequence of a subtle cancellation of matrix elements.

Since the density of final states is

QAIpdQp Qk4p3dQ2d442

16m' 8+
the differential cross section for the production of

TABLE I. Values of A'
t,
'A, h. ).

Fquation (23) is the general expression for the
differential cross section for the production of
pseudoscalar mesons of type s in a collision of two
nucleons of types A1 and A2, respectively. That the
angular distribution of the mesons is uniform in
the center of mass system, independent of any
particular assumption about the V's is evident, and
follows directly from our approximation of neglect-
ing -', k compared with P&P8.

The method of calculation which has just been
used for symmetric pseudoscalar mesons with
pseudovector coupling can easily be extended to the
case of symmetric scalar mesons with scalar coup-
ling. The total Hamiltonian (5) is replaced by

1
(~4.*).('V.)+2L~'+(~4 )'+4 '+ -'j2'

+(4~)'f4,*(r-)8 4"+JI d&'&.*(28)& *(")

X(~,.'A. ) U" (z —~')4.(~)4.(&') (24)

pos. meson I,
's = 1)

net. meson (s=2)
neutral meson (s=3)

~-p collision
p-P collision g-n collision (A& = +1,
(At =A2 =1) {Ag =A2 = —1) As =W 1)

Proceeding in exactly the same fashion as for the
pseudoscalar case, we obtain an expression for
~H'~2 identical with (19) except that f' replaces
(g/44)2 and E * is defined by PJ (r;p4") —(r;s ")J ]
instead of (14a). Evaluation of the spurs then leads
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TABLE II. Values of total cross section for Yukawa potential. TABLE III. Values of total cross section for square well
potential.

(Zo/Bc) 1.25 1.50 2.00
i.25 1.50

4.4 10 "cm~ 4.4 10 '~cm' 2.0 10~'cm' ~&(x, a,} 8.4 10 "cm~ 9.6.10 "cm' 1.7 10 "cm'

to the following values for the P's
Eqs. (20a)—(21d)):

Pi ~(Ai, Ag, s) = —16A'(Ai, Ag) 0 0
0 0
0 0

,0 0

Pg ~(hi, &2, s) =Pi~~(&2, i1i, s),

and Q's (see

0 0
0 00, (25a)

0 3,

(25b)

of the four V's: a Yukawa potential for all four V's
and a square-well potential for all four V's. These
two assumptions are taken from the work of Serber
and Christian' who have obtained the best fit of
the experimental angular distribution for neutron-
proton scattering at 90 Mev. Serber and Christian
hnd for the best Yukawa potential:

P, e(Ai, A2, s) = Pi e(h—i, Ag, s),. (25c)

P, ~(Ai, A2, s) =Pa~~(hm, Ai, s).

Qi ~(Ai, Ag, s) = —88'(Ai, Am)
'0 0
0 0
0 0
,0 0

(25d)

0 0
0 0

(26a)

3 —3

Q2~e(Ai, A2, s) = 88'(hi, Ag)— .

0 0
0 0
0 0
,0 0

Qa &(Ai, Ag, s) = Qm ~(Ai, Ag, s),

0 0

(26b)

3 3

(26c)

(26d)Q4 ~(Ai, A2, s) =Qi &(h.i, Am, s),

where A'(Ai, A2) is defined by (22a) and

3'(Ai, A2) = 2bib2( —1+(oa*)') —o'(bi+ bm).

If we now sum the P's and Q's, we find Sioe=—0
and 52 &=—0. Hence, in the present approximation,
the symmetric scalar theory yields zero cross
section. This result was discovered independently
by %'. S. MacAfee. ' This means, of course, that
one must take account of the recoil of the nucleons
in order to get a non-vanishing cross section on the
symmetrical scalar theory. ' However, if this is
done, it is no longer self-consistent to neglect the
"exchange" terms compared to the "ordinary"
terms (see Introduction). We have, therefore, not
calculated the meson production cross section on
the basis of the symmetric scalar theory. '

3. RESULTS AND DISCUSSION

We apply formula (23) to calculate the s-'meson

production cross section on the basis of two dif-
ferent assumptions regarding the spatial behavior

' Cornell doctoral dissertation under H. A. Bethe; we are
indebted to Professor Bethe for informing us of Mr. MacAfee's
result.' See L. %.Nordheim and G. Nordheim, Phys. Rev. 54, 254
(1938) and reference 5.

V(r) = —,'(1+Psr)( g)'(e ~"/r), (27)

where E=0.87ii ('g)' =0 280 ('g)' =0.404 and
P~ is the Majorana operator. Translated into our
notation, (27) becomes:

V(r) = I3(ci+c,)+(—3c,+cq)oi o,
+(ci—3c3)ri. r~+( —ci —cm)oi omri r~}e "/16r, (28)

where ci ——('g)', c~ ——('g)'. Substitution of (28) into
(23) yields the differential cross section for the
production of pseudoscalar mesons:

(ci cm)' (—gMk) ' (kp)
do'(Ai, Ag) =

( i i
—(A'(Ai, A2)

2~ E p~) Ep)

X
(&'+p'-+po')' 4po'p'—

tanh 'L2pop/(E'+p'+po') ]
~ dQgtioi„(29)

2p.p(lf: +p+p. *)

V(r) =l(1+P ) ~(r), (30)

'J(r) =0.166'
(r) 0 252

for r( 1.5/p

"W. Pau1i, Meson Theory of Nuclear Forces (Interscience
Publishers, Inc., New York, 1946}.

where k = (oui,
' —p') & and p = (po' —Moia) &. The total

cross section, or'(A&, Am), can easily be evaluated;
we 6nd the results given in Table II for three
values of the incident energy Zp. In Table II the
incident energy is measured in units of the threshold
energy Eg, chosen as 290 Mev', i.e. , the mass of the
~-meson is taken as 145 Mev. The quantity
A'(i1i, A2) is given by Table I while (g'/hc) can be
taken from Pauli;" the product (g'/kc)A' is of
order unity. The rapid increase of cross section
is characteristic of the pseudoscalar theory.

A corresponding calculation has been performed
for a square-well potential using the constants
determined by Serber and Christian, ' namely:
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J(r) =0 for r &1.5/y.

Table III gives the results" for the same range of
values for the incident energy of the nucleon as
Table II.

Comparison of Tables II and III makes manifest
the rather expected insensitivity of the meson
production cross section to the shape of the nuclear
potential as long as the nucleon-nucleon scattering
experiments are fitted at high energies. For both
the square-mell and Yukawa potentials, the meson
production cross section turns out to be surprisingly
small. This result is in striking contrast to the
result obtained by Morette and Peng' on the basis
of a third-order field-theoretic perturbation calcu-
lation. Morette and Peng obtain a meson produc-
tion cross section of the order of 10 " cm' at an
incident nucleon energy of twice the threshold
energy.

The large discrepancy between the two results
has been discussed by one of the authors (R.E.M.)
with Dr. Morette. Dr. Morette has reexamined the
details of her calculation and arrived at the con-
clusion that the "exchange" terms are responsible
for the large cross section predicted by the field-
theoretic treatment. This is a consequence of the
fact that whereas the b-interaction terms between
the two nucleons are effectively subtracted out from
the "ordinary" terms, they are not subtracted out
from the "exchange" terms so that the latter make
the largest contributions to the cross section. This
is contrary to our statement in the introduction
and is due to the singularities which arise in
present-day meson field theories of nuclear forces.
In a correct convergent field theory of nuclear
forces, the "exchange" terms should not be large
compared to the "ordinary" terms, except for
accidental cancellations as in the symmetric scalar
theory.

"The fluctuations due to the sine and cosine functions
(arising from the Fourier transform of the square well) were
averaged out.

We believe that the small cross sections —not
necessarily those predicted by the symmetric
pseudoscalar theory —will correspond to experi-
ment. We feel that the value of our method lies
precisely in its correlation of the meson production
cross section with the nucleon-nucleon scattering
cross section at high energies and its bypassing of
the existing singular field theories of nuclear forces.
The quantitative cross section and the energy
spectrum of the mesons just above the threshold
should therefore contribute to our knowledge of the
meson-nucleon coupling. We do not believe, how-
ever, that our results and calculatiohs along similar
lines (for other types of meson-nucleon coupling
and more complicated (tensor) forms of nuclear
interaction) will shed light on the correct meson
theory of nuclear forces.

The authors are indebted to Dr. E. Caianiello for
assistance with the numerical calculations. This
work was carried out last summer at the University
of Rochester and was assisted by the joint program
of the Office of Naval Research and the Atomic
Energy Commission.

¹$eadded in proof: One of the authors (L.L.F.) has in-
vestigated the effect of tensor forces on the angular distribu-
tion of the mesons produced in nucleon-nucleon collisions.
Toward this end, a calculation was performed with the neutral
pseudoscalar theory (pseudovector coupling) with the same
approximations as were made above with a phenomenological
interaction of the form:

(o.~.grad)(n2 grad) U(r)
d'U 1dU, d'U 2dU=)Sn

~
———+g&i'&~

2 +dr' r dr dr' r dr

where S~~ is the tensor force operator. The results indicate
that in contrast to the isotropic angular distribution predicted
for central forces, a force of the above type yields a (sin'8)
angular distribution where 8 is the angle between the direction
of emission of the meson and the direction of the incident
nucleon. By adding to the above interaction a central force
which cancels out the central part, the resulting angular dis-
tribution becomes ($-sin'8). Hence, in the 6rst instance, the
emission of mesons perpendicular to the direction of the
nucleons is favored while for a pure tensor force, emission
parallel to this direction is favored.


