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J„ ls(s)l'&s& ". (2)

In other words, if q =qI(s) and y=y2(s} are two linearly
independent solutions of Eq. (1}for some X, then at least one
of the functions q I, y2 will violate condition (2). This means
that Eq. (1) and any homogeneous, linear boundary condition
at s=O (such as p{0)=0 or q'(0) =0) will determine an eigen-
value problem. This will, in particular, be the case if the
potential f(s) tends to a finite limit when s~ ~.

The iatter particular case of the restriction
~ f(s) ~

&const.
can be assumed in the form

known' that for no value of the real parameter )I will the dif-
ferential equation

~"+(f(s}+~)v=o
be such as to possess only solutions satisfying

if g{s) is defined by

g{s)=s &(coss) cos(logs)

for 1~s& ~ (and arbitrarily for O~s&1, with the only re-
striction that g'(s)=dg(s)/ds exists and is continuous for
0~~~1 also).

I H. Weyl, Math. Annalen 68, 238 (1910).
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3 A. Wintner, Phys. Rev. 72, 81 (1947).
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paragraph on p. 72.
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on the bottom of p. 396 and the top of p. 397. For details, see Theorem (i)
in a paper of the authors, to appear shortly in the Am. J. Math.

limf(s) =0. (3)

In this case, it can be expected, and recently it was proved, '
that the spectrum contains every point of the half-line
O~P & ~.

In order to simplify the manner of speaking, let the "essen-
tial spectrum" of a differential Eq. (1) be defined as follows:
A ) -value is in the essential spectrum if it is in the spectrum
of every boundary condition assigned at s=0. In this ter-
minology, the fact mentioned before can be expressed by
saying that every point of the half-line 0 ~X & ~ is in the
essential spectrum of Eq. (1) if the potential satisfies condition
(3).

It was emphasized in a previous note' that an exact defini-
tion of the notion of a spectrum cannot be reduced to heuristic
ideas. It will be shown below that intuitive notions on the
spectrum are capable of leading to results which prove to be
wrong.

First, an intuitive approach to the notion of a spectrum
leads to the following definition:4 A X-value is in the spectrum
(for some boundary condition assigned at s=o} if and only if
the corresponding Eq. {1)has a solution p = q (s) which remains
bounded

~ s(s) ~
&const. when s~ ~ (4)

(but is not the trivial solution, p(s} =—0}.This definition clearly
implies that a given ) cannot be in the essential spectrum
unless the corresponding Eq. (1) has a solution y(s) satisfying
condition (4). It is assumed, of course, that f(s) is subject to
some reasonable restriction when s~ ~, such as the restriction
mentioned before Eq. (1).

This restriction is surely satisfied if f(s) is such as to satisfy
condition (3). Since the latter condition assures that every
point of the half-line O~P & ~ is in the essential spectrum,
there results the following assertion: If f(s) is subject to con-
dition (3), then there cannot exist a positive X-value corre-
sponding to which Eq. {1) fails to possess some solution
satisfying condition (4). The truth of this assertion was
deduced from the customary intuitive definition of a spectrum.
Hence, if the assertion deduced will turn out to be false, it will
follow that the intuitive definition must in general be dis-
carded.

Accordingly, it is sufficient to ascertain that, if f(s) is a
real-valued, continuous function satisfying assumption {3),
and if ) has a positive value, say ) = 1, then all solutions of the
corresponding differential Eq. (1), that is, of

&"+(f{s}+1}&=0, (5)
can be such as to violate condition (4). But the existence of
such an f(s) is assured by the method of construction applied
in an earlier paper. ~ In fact, the detailed construction given in
that paper implies that such an f(s) results by placing

f{s)=3g{s)sins —g'(s} cos's —x'(s) coss,
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'HE study of nuclear quadrupole eEects in molecular
spectra has heretofore been confined to linear and sym-

rnetric top molecules. The theory of these efI'ects has recently
been extended to asymmetric tops by Bragg. ' This com-
rnunication is a preliminary report of the analysis of the
observed hyperfine structure in the microwave spectrum of
the asymmetric top vinyl chloride (C&H3CI) with the aid of
the first-order theory.

Table I gives the principal lines in the X-band spectrum of
vinyl chloride and the frequencies corrected for quadrupole
shift, together with the values of the rotational constants and
the asymmetry parameter a derived from them. The transi-
tions are designated in the notation of King, Hainer, and
Cross/ and the listed frequencies are those of the principal
component of each multiplet.

The transitions were identified on the basis of an assumed
planar model for the molecule, and were verified by measure-
ment of Stark effect, relative intensities, temperature coef-
ficient of intensity, and isotopic shift. The rotational constants
were calculated from the corrected 1I0~2II and 1II~2I2
frequencies using the Mecke sum rules, ' and ~ was evaluated
on the assumption of planarity. From these results, the pre-
dicted frequencies for the 10I~202 transitions are 22,946.3 Mc
and 22,485.3 Mc for CIH3C1~ and C2H3CP', respectively. The
close agreement of these values with the observed frequencies
indicates that the deviation from planarity is very small.

The first-order quadrupole interaction energy was calculated
from the expression:

2 —,'C(C+1}—I(I+1)J(J+1)
2J+1 2I(2I—1){2J—1)(2J+3)

—~'z', z")+xi t (~'z'sees —~'~'~") I, (1)
where C=F(F+1)—I(I+1)—J(J+1), x and XM, are the
two parameters of the problem, defined by po =eQ(8'V/8a')
and yt,q=eQ(8'V/89), a and b being the principal axes of
least and intermediate moment of inertia, respectively; Q is
the nuclear quadrupole moment; and cPV/8 s and O'V/a&s
are components of the molecular electric field gradient at the
chlorine nucleus. The quantities ) p, g, s, etc. , are the line
strengths, tabulated by Cross, Hainer, and Kings for the
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transition J,~J, appropriate to the given value of ~, and
for a component of dipole moment parallel to the axis indicated
by the superscript. The values of y, and yw„determined by a

~~-4i
Observ( o'

leads to a value of —67 Mc for g„. The calculations indicate
that the value of x„probably lies between —62 and —70 Mc.
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N a recent paper Heisenberg' has discussed the decay of
isotropic turbulence on the basis of the equation
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I t('. 1. Comp irison oi obserk. ed and calculated hy perhne structures.

TABLE I. J().-band spectrum and rotational constants of vinyl chloride,

Transi-
tion

CoHaCPo
Corr. for

Obser ved quad. e8ect

CoH3CP'
Corr. for

Observed quad. e6ect

1o1~2oo
11o~211
111~212
8, Mc
C, Mc

22,946.9 Mc 22,945.? Mc
23,538.9 23,535,6
22,369.6 22,366.2

6030.5
5445.2—0.9769

22,485.9 Mc 22,485.0 Mc
23,055.0 23,052.4
21,930.2 21,927.5

5903.7
5341.3—0.9779

least square fit of two of the well resolved transitions of
C2H3C13' are given in Table II.

A comparison of the observed hyperfine structures with
those calculated from the values of y„and yea given in columns
I and II of Table II is shown in Fig. 1. The indicated inten-

p ~ F('k, t)——j F(k, t)dk=2 +~J— '
dk J I'(k, t)k'dk, (1)

P
'

p 0

where F(k, t) represents the spectrum of turbulence at time 3,
p, the viscosity, p the density and ic a pure number of order
unity. Heisenberg has pointed out that Eq. (1) admi ts
solutions of the form

F(k, t) =t-~f(kg&),

where f(x) satisfies the integral equation

J, f)*)&*—.-'*f)*)=))-+J (, ) d JJ)). ) d )')).

Heisenberg justifies the similarity hypothesis (2} on dimen-
sional grounds.

Now from Eq. (3) it readily follows that

f{x)~constant Xx as x~0. (4}
Heisenberg, further, states that for p, =0, f(x) constant
px '~' (i.e. , the stationary KolmogoroE spectrum) for x~~,
and that for p~~ (i.e., for small Reynolds numbers) f(x}
~onstantgx 7 for x~~. It does not seem that the latter
statement concerning the solution of Eq. (3) is correct. For
letting

TABLE II. Values of the quadrupole coupling parameters y~ and xw).

I
1 io 211

III
Average

x„Mc
xgk Mc

—5?.o
26.1

-57.2

26. o

—57.4

26. o

sities are only approximate. The two weak components cor-
responding to ~F= —1 were not observed. Analysis of the
structure of the 1p1~2p transition gave a value of —57&1 Mc
for g o, using for xw, the average given in Table II.

The value of x„, the quadrupole coupling constant along
the C—Cl bond calculated from the above data and assuming

an axially symmetric bond is —62 Mc. However, the assump-

tion of axial symmetry leads to an unreasonable angle of orien-

tation of the bond in the Principal axis system, and would,

moreover, not be expected if appreciable double bond character
is present. Alternately, the assumption that the C —Cl bond

is a principal axis of' the g-dyadic, at an inclination of about
20' to the u axis, as determined from the moments of inertia,

g = ~'xef(x) and y = g~ f(x)x2dx
p

we can show that g as a function of y satisfies the second-
order differential equation

g'g" +2y(4+a')+2g'(4 —g') —sg =0, (6)
where primes denote differentiation with respect to y.

The requirement that f(x)~constant)&x as x~0 now
implies that g(y) is tangentia1 to the line g=4y at y=0. From
Fq. (6) it now follows that there is a one-parametric family
of solutions which have this property: indeed, the asymptotic
behavior of these solutions at the origin is given by

g=4y+y' a+- logy +O(y'log'y),

where a is an arbitrary constant. The constant a is related
to p, /p of Eq. {3)by

dx
p, /cp = ~6

—0.375a —limit (g)&—+$ logy
x —+0 ~ X

where c is a constant; also, in evaluating the integral on the


