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The diffraction of a scalar plane wave by an aperture in an
infinite plane screen is examined theoretically. The wave
function at an arbitrary point of space is expressed in terms
of the discontinuity in its normal derivative at the screen,
where the boundary condition is that of vanishing wave
function. An integral equation for the discontinuity in normal
derivative (or the residual function which measures its devi-
ation from the simple distribution appropriate to a com-
pletely infinite screen) is the result of applying the boundary
condition to the space wave function. Utilizing the integral
equation (whose solution is generally unobtainable), the
diffracted spherical wave amplitude at large distances from
the aperture is cast into a form which is stationary with
respect to small variations (relative to the correct values) of
the residual functions arising from a pair of incident waves.

An homogeneous expression for the amplitude is exhibited
wherein the part independent of the residual functions defines
a Kirchoff approximation. The connection with another
stationary form of the amplitude, involving a pair of aperture
wave functions, is examined. A variational expression for the
plane wave transmission cross section of the aperture is based
on the amplitude observed in the direction of incidence. The
variational formulation is applied for a wave incident normally
on a circular aperture. Bv comparison with the exact results
available for this problem, it appears that use of simple
residual functions in the variational formulation yields ap-
proximate, yet accurate expressions for the diffracted ampli-
tude and transmission cross section over a wide range of
frequencies.

I. INTRODUCTION

N a previous paper of the same title, the dif-
- - fraction of a scalar plane wave by an aperture
in an infinite plane screen was described in terms of
a variational principle. The viewpoint adopted in
this formulation regards the aperture as a coupling
surface of the half spaces on opposite sides of the
screen. For a boundary condition of vanishing wave
function on the screen, the amplitude of the dif-
fracted spherical wave at large distances from the
aperture is exhibited in a form which is stationary
with respect to small variations (relative to the
correct values) of the aperture fields arising from a
pair of incident waves.

The purpose of this paper is to develop a second
variational principle for the diffracted amplitude by
considering the screen as an obstacle to the propa-
gation of the incident wave through free space.
Kith the same boundary condition as previously,
a pair of discontinuities in normal derivative of the
fields at the screen appear in the role of functions
which render the variational expression stationary.
(Such functions are analogous to the surface cur-
rents excited on a perfectly conducting screen by
incident electromagnetic waves. )

For explicit construction of the second varia-
tional principle, it proves convenient to deal with
the residual functions which measure the deviation
of the discontinuities in normal derivative from the
simple distributions appropriate to a completely
infinite screen. This procedure leads directly to the
desired spherical wave amplitude in the radiation
field of the screen, as distinct from the plane wave
part of the radiation field that exists even in the
absence of the aperture.

' H. Levine and J. Schwinger, Phys. Rev. 74, 958 (1948);
hereafter referred to as I.

The diffracted spherical wave amplitude is shown
to be invariant with respect to reversal in the sense
of excitation and observation along a pair of direc-
tions in space. With the assistance of this reciprocity
relation, the amplitude is exhibited in a form which
is stationary for sma11 independent variations (re-
lative to the correct values) of a pair of residual
functions arising from excitation along the fore-
going directions. Following a scale transformation
of the residual functions, this relation is converted
to a homogeneous form. A part of the diffracted
amplitude, independent of the residual functions, is
identified as the Kirchoff approximation for it is
the result obtained by ignoring the inHuence of the
aperture on the discontinuity in normal derivative
of the wave function at the screen.

The plane wave transmission cross section of the
aperture is related to the imaginary part of the
spherical wave amplitude observed in the direction
of incidence, and hence retains the stationary
property. In the limit of vanishingly small wave-
length, ), compared to the aperture dimensions, the
Kirchoff part alone contributes and the geometrical
optics form of the cross section emerges. At long
wave-lengths the cross section varies with X '
except for the correct residual functions, unlike the
behavior of the earlier variational form of the
cross section, where the X 4 variation is obtained
with any real aperture field (subject to the boundary
condition at the rim of the screen). Thus the two
variational principles are individually adapted to
opposite extremes of wave-length, and their over-all
compatibility indicates the departure from a correct
solution.

The variational formulation developed below is
applied in detail for a plane wave normally incident
on a circular aperture. Numerical values of the
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at all points of space, and is subject to the pre-
scribed boundary condition

p(r) =0, r on S2, (2.3)

(x,y, z)

in addition, the wave function and its normal
(i.e. , s) derivative vary continuously on passing
through the aperture.

Pursuant to a description of the screen as an
obstacle imbedded in free space, we apply Green's
second scalar identity,

Jt LG(r', r) (V'i2+k-')y(r')

—g(r')(V" +k-')G(r', r) jd~'

FIG. 1. Dlffracting aperture in a plane screen.

transmission coefficient (transmission cross section/
area of aperture) based on a relatively simple form
of residual function are found to exhibit a high
order of accuracy; it may also be noted that the
KirchoE procedure affords a reasonably satisfactory
approximation.

u. rmEGRAI. EqUATrOm FORMULAnox FOR Am
APERTURE OF ARMTRARY OPENING

Ke consider an infinitesimally thin plane screen
S2, of infinite extent, which is perforated by an
aperture S&. A rectangular coordinate system is
chosen with origin at some point of the aperture,
and oriented so that the screen lies in the x,y
plane (Fig. 1).

A plane wave is incident on the screen in the
half-space s &0, and it is desired to investigate the
diffracted held. The incident v ave, propagating in
the direction 0', y' (8' measured from the positive
direction of the s axis, and y' from the positive
direction of the x axis, in the x,y plane) is described
by the scalar wave function

Q'"'(r) = exp(ikn' r) =exp[ik(x sin8' cosrp'

+y sin6' sin@'+s cos6')), (2.1)

where n' is a unit vector in the direction of propa-
gation, k=2s/X is the free space propagation
constant, and X the corresponding wave-length.
The harmonic time dependence exp( i&et), &a=kc, —
with c the velocity of wave propagation, is omitted
throughout.

The wave function describing the complete
(incident+diRracted) field satisfies the wave equa-
tion

(2.2)

= i~LG(r r) (~/~& )4'(r )J
p(r') (8—/Bn') G(r', r) ]d5', (2.4)

to the wave function p(r) and free space scalar
Green's function,

(P+k')G(r, r') = —b(r —r'), (2.6)

where 6(r) is the three-dimensional Dirac delta
function, the volume integral in (4) yields simply
@(r).

I f the surface S+ on the far side of the screen
(s&0) is sufficiently remote, the wave and Green's
functions there exhibit the behavior of spherical
waves diverging from the aperture and held point
r, respectively, and the surface integral in (4)
vanishes. Moreover, for a similarly disposed surface
5 on the near side of the screen (s(0), where the
wave function describes incident and specularly
reflected plane waves appropriate to a completely
infinite screen (i.e. , with no aperture), vis

(2.7)

in addition to a spherical wave diverging from the
aperture, it is only @"'(r) which contributes to the
surface integral in (2.4). Thus, utilizing the boundary
condition (2.3) and. taking account of the oppositely
directed normal derivatives at the two faces of the
screen, we obtain for the wave function at an

G(r, r') =exp(ik
I
r —r I)/4~I r —r'( =G(r', r), (2.5)

within the domain bounded by the surfaces S, S+
and parts of the respective faces of the screen
(Fig. 2); the derivative is taken along the outward
normal at each point of the bounding surface.

By virtue of (2) and the wave equation for the
Green's function,
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arbitrary point in the enclosed region, employing (2.11), Eq. (12) takes the form

y&+&(r) 0

4 ' '(r) 4 "'(r)

with

—@&'&(r') (&&/Bn')G(r, r') jdS'

+JI 4'(t&')G(r; x', y', 0)dS', (2.8)
[82]

+2ik cos8' Jt tPn. (t&')G(r; x', y', 0)dS'
82

I exp(ikn' y')G(r; x', y', 0)dS' . (2.14)

+(y) = (&&/c&z)@(x, y, —0) —(&&/Bz)y(x, y, +0). (2.9)

Here y denotes a position vector in the x,y plane,
and [52] that portion of the screen encompassed
by the integration contour (ultimately all inclusive).

In the absence of an aperture, the result of
applying Green's second scalar identity to the
functions &t

&0& (r) and G(r, r') within the region
bounded by 5 and the screen, is

J
[G(r, r') (&&/Bn') g&" (r')

&t
"&—(r')(&&/&7n')G(r, r') jd5'

The wave functions &f&&+&, g& ' in (14) are equa, l at
any point of the aperture, since p") is an odd func-
tion of s and vanishes in the plane of the screen.
Furthermore, with the Fourier integral representa-
tion of the Green's function (I, 2.5), it follows that

(&&/Bz) G(x, y, 0; x', y', 0)

exp I i[k,(x x')—+k„(y —y') j I dkgk„
8~» „

= ~;~(x —x') ~(y —y'),

where the upper and lower signs apply for 2~+{3,
z-+ —0, respectively; thus, from (14)

+ +&"&(t&')G(r; x', y', 0)dS'
"f~21

t

+~ +&'&(t&')G(r; x', y', 0)dS'
81

= @"&(r), z (0,

(~/~ )0"'( y 0)

(&7/Bz) &t&& '(x, y, 0)

Wik cos8'

2ik cos&&' exp(ikn' t&)

0"(t') ~(x —x') ~(y —y')dS'

where, by (2.1), (2.7)

z) 0, (2.10) —I exp(ikn' p')b( x x')b(y— y)
d—'S.

g&'&(r) = 2i sin(kz cos6') exp(ikn'. t&),

4 ' (g) =(8/Bz)p"'(x y, —0)
=2ik cos8' exp(ikn' y). (2.11)

Hence, on subtracting (2.10) from (2.8), we obtain

y&+&(r), z) 0 & 0
4(r) =

@&-&(r), z(0 l @"&(r)

P
+ ' [4(g') —4&"&(p')]G(r; x', y', 0)dS'

R2

0""&(t&')G(r; x', y', 0)dS', (2.12)
J~,

where integration over the entire screen is permis-
sible, since +—4'~" vanishes at a point in6nitely
removed from the aperture. Introducing

+(t&) —4 &'&(t&) = 2ik cos8'Pn (0) (2.13)

(with dependence of Pn on the direction of the
incident plane wave indicated explicitly) and I' rc;. 2. Integration domain for Eq. (2.4).
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Using familiar properties of the delta-function, we
obtain

(~/~s)4"'(x, y o) =(~/~s)4& '(x, y, o)
= (8/Bs)P' '(x, y, 0), y in 5

for a point in the aperture (compare I, 2.14), and
(after subtraction) the relation (2.13) for a point on
the screen. Finally, by imposing the boundary con-
dition (3) on either of the wave functions (14), we
arrive at the integral equation

4" (y')G(y y')dS'
~S2

f (2.15)
exp(ikn' y')G(y, y')d5', y on 5„

8y

G(y, y') = G(x, y, 0; x', y', 0),

to determine Pn (y) and thus, from (14), the wave
function at any point of space.

According to (2.15), the projection of n' on the
x,y plane distinguishes each function Pn corre-
sponding to a given direction of incidence. In par-
ticular, with excitation restricted to the half-space
g &0, a reversal in the sign of n' implies an increase
by ~ in the azimuthal angle y'. By invoking the
reAection symmetry with respect to the plane of
the screen, this sign reversal can be ascribed to
excitation in the direction opposite to n'.

As in I, we shall confine our attention to the
properties of the diffracted 6eld at distances from
the aperture large compared to its dimensions and
the wave-length. Since a rigorous and explicit
solution of the integral Eq. (2.15) is not generally
feasible, the far field amplitude will be cast into a
form which is insensitive to small deviations of the
assumed solutions from the correct ones.

Inserting the asymptotic form of the Green's
function

G(r, r') exp(ik Ir —n r'I)/4xr, r~~ (2.16)

in (14), we obtain the transmitted field in the form
of a diverging spherical wave,

@&+&(r)~A(n, n')(e""/r}, r~ ~, (2.17)

with the directionality factor

ik cosP' t

A (n, n')=, Pn. (y) exp( ikn y)d—S
2w

exp(ik(n' —n) y)dS . (2.18)
Sg

lt is clear from (2.14), (2.18) that an identical spher-
ical wave appears along the direction obtained by
reflecting n in the plane of the screen.

The transmission cross section of the aperture
for a plane wave is calculated from the diR'racted
amplitude in the direction of incidence by the

Pn (y)G(y, y')Pn. (y')dSdS'

= JI Pn"(y)dS t G(y, y') exp(ikn' y')dS'
~s,

= Jt pn. (y)dS G(y, y') exp(ikn "y')d5' (3.1)
8o S)

with recognition of the symmetry exhibited by the
first term in n', n" (or the angular coordinates r9', &n'

and &1", &n"). Further, by invoking the additive
nature of integration in the domains S~, S~, and
with recourse to (2.15) once again, it follows that

Pn (y)dS G(y, y') exp(ikn" o')dS'

t Pn (y)dS ~ G(o, y') exp(ikn" o')dS'
~So ~ Sy+Sg

—
Jr pn (y)dSJt G(y, y') exp(ckn" y')d5'

S2

Pn (y)dS G(y, y') exp(ikn" y')dS'
Sg 4' 8'y+8g

I exp(ikn' y)dS "G(y, y') exp(ikn" y')dS'
& 8y Sg

in%

Pn (y)d5
J,„ ~ By+SR

G(y, y') exp(ikn" y')dS'

r
~ exp(ikn' y)dS ~

~ 8y ~ 8&+8'

Xexp(ikn" y')dS'

G(y, y')

+ Jt exp(ik(n' y+n" o'))G(y, y')d5dS'. (3.2)
Sy

The integration in S~+S.„ is convenient:1y per-
formed by use of the Fourier integral representation

exp(ik
I y

—y'I)
G(y y')=--

4xl y
—y'I

i t" expl i Ik, (x—x')+k„(y —y') I]
dkgk„,

g. J „ (¹—k, "- —k„') &

arg(k' —k~' —k„') ~ & 0; (3.3)

relation developed in I, namely,

o (n') = —(2x/k)ImA (n', n'). (2.19)

III. VARIATIONAL PRINCIPLE FOR DIFFRACTED
WAVE AMPLITUDE

Multiplying both sides of (2.15) by Pn" (y) and
integrating over the screen, we find
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G(p, g') exp(ikn" g')dS'

b(k. —km, ")8(k„—kn„")

exp[ilk*x+k.yI] iexp(ikn" p)
X — — dkgky —— — - (3.4)

(k' —k, ' —k„') ~ 2k
~

cos8"
~

(where n,",n„" denote components of the ~ector
n" along the x,y directions, respectively). Hence
the relation (2) becomes

Pn (y)dS)t G(p, g') exp(ikn" y')dS'
~82

= [i/2k
~

cos&"
~ ] Pn (g) exp(ikn" y)dSj „c'2

exp(ik(n'+n") .p)dS
8I

+ ~ exp(ik(n' y+n" y'))G(y, y')dSdS'
~SI

and from (3.1), (2.18),

I P~ (y)G(g p)P -(p)dSdS-

Pn. (g)dS I G(p, y') exp( —ikn" y')dS'

P,"(g)dS G(g, y') exp(ikn' y')dS'

with

Ax(n", n') =Ax( —n', —n")

= —[k' cos8' cos8"/s]

X i exp(ik(n' y
—n" y'))G(p, y')dSdS'. (3.6)

The expressions (3.5), (3.6) apply for 0', 0"(s/2,
since the absolute value signs have been discarded;
the remaining amplitudes are readily obtained by
means of the refiection symmetry in the plane of
the screen. With omission of Pn, P ~, or equiva-
lently, on employing the wave functions appro-
priate to a completely infinite screen, the amplitudes
A, A~ are identical. A~ may thus be described as a
Kirchoff approximation for the diffracted ampli-
tude, since it disregards the modification of the
fields occasioned by the presence of an aperture.
This Kirchoff approximation is to be distinguished
from the more familiar type, in which aperture and
incident fields are identified, with disregard for the
presence of the screen.

Equality of the amplitudes A (n", n') and
A( —n', —n") (or the corresponding Kirchoff am-
plitudes) describes a reciprocity condition for inci-
dence and observation along a pair of directions in
space.

On performing independent variations of Pn,
P ~ ~ in (3.5), it is found that a stationary value of
A(n", n') obtains, provided these functions obey
integral equations of the form (2.15). If we intro-
duce the scale transformations

482 j 8i

= —[s/k' cos6' cos6"]
X[A(n", n') —Ax(n", n')]

= —[~/k' cos8' cosd"']

X[A(—n', —n") —Ax( —n', —n")] (3.5)

4 (e)~~0'(e), 4-"(t) W-' (e)

(n = P = 0 for the Kirchoff approximation) and apply
the stationary requirement to the determination of
u, P, we arrive at a variational expression for
A (n", n'),

A(n", n') =Ax(n", n')+[k' cos8' cos8"/s.]

Pn (g)dS G(p, p') exp( —ikn" p')dS' )I „~ ~—n" (p)dS ' G(p, p') exp(ikn'' p )dSj p~ ) E~s, 4 ~Z

(3.7)

~" 4 (t)G(e, e')4- -(t')dSdS'

which is homogeneous in fn, P—n".
A comparison of the two variational principles for

the spherical wave amplitude is instructive; to this
end, we recall the equations (I, 2.11, 2.12)

(3.9)

g&+&(r) = I'
g(, )(a/a")G(r; x', y', 0)dS', (3.8)

for the wave function at any point of space in
terms of its values in the aperture. In accord with
(2.9), (2.13),we obtain on differentiating (3.8), (3.9),
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0'(y) —4'"'(p) = 2ik cosign(y)

Pn(g) = (i/k cos6) ~l pn(y')X(y, o')dS', (3.10)
~sg

where

Z(y, y') = (8/Bs) (8/Bs')G(x, y, 0; x', y', 0)
=&(e', e). (3 11)

The relation (10) may be adopted as a general form
of the residual function, to be evaluated with an
assumed aperture field. If this be inserted in (3.5)
and the resulting expression transformed after the
fashion of (3.2)—(3.4), it turns out that

A(n", n') =—
~~ yn. (y)Z(p, p')y n-(y')dSdS'+«k cosa' ~I y n-(y) exp(ikn' y)dS

+ik cos6" I Pn (p) exp( —ikn" ~ y)dS ——
~ gn (y )K(p', g)dS"

81 1c ~8) Sr

ik cos8—' exp(«kn' o) G(p, o') t E(p', g"')p a (g"')dS"' «k —cos8" exp( —ikn". 0') d5dS'.
SI

Ke observe that with aperture wave functions
which satisfy the exact integral equation

J
t pn(g')E(p, o')d5' =ik costs) exp(ikn p),

p on 5) (I, 2.9)

(obtained by equating the s derivatives of (3.8), (3.9)

in the aperture), only the first three terms in the
preceding equation remain; more generally, on
retaining just these terms, the amplitude A (n", n')
is stationar& with respect to variations relative to
the exact aperture wave functions. Following a
scale transformation of the trial wave functions,
the resulting amplitude

A (n", n')

(4~/k'))~ 4~ (t)&(e, t')4-' (9')dSdS'

P
cos6' cos6"JI pn (p) exp( —ikn" p)dS~ p n. (p) exp(ikn' p)dS

Sj 1

(I, 3.2)

is identical with that derived from the variational
principle in I. Thus, a practical measure of prox-
imity to the correct solution is obtained from the
over-all discrepancy in the two variational prin-

ciples, following the use of assumed trial functions.
Combining (2.19) with (3.6), (3.7), the trans-

mission cross section of the aperture for a plane
wave incident in the direction n assumes the form

0 (n) = 0 p;(n) —2k cos'-'DIm

where

0.(t)dSi' G(e e') exp( «kn e')—dS}{ ' 0- (e)dS ~ G(e e') «p(«kn t')dS'
}

S2 ~Sy ) ( S«S«
Jt Iln(y)G(y, y')g .(y')dSdS'

S2

crx(n) =2k cos«PIm t exp {ikn (y —y') }G(p, y')dSdS'
Sg

(3.12)

(3.13)

is the KirchoB contribution.
To examine the behavior of the cross section at

high frequencies, a convenient point of departure is
the Fourier integral representation (3.3) of G(p, y').
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'i. hus

exp iikn lp —ti') IG(y, y')dSdS'
Jts,

= (i/gs') JI J~ exp[i I u(x —x')+ p(y —y') l]

X [dkrak„/(k' k.'—k„'—) ']dSdS',

u = k,+kn„P = k„+kn„,

and, by virtue of the increasing oscillations of the
exponential factor as k—+~, the integration vari-
ables x, y (or x', y') can be extended throughout the
plane v=0, with the result

exp likn. (ti —o') }G(p, o')dSdS'

i
exp [—i l ux'+ py' I ]b(a) b (p)

2~

Owing to the delta-function character of G(ti, y')
in the limit of infinite frequency (cf. (3.3)), the second
term in (12) tends to zero since the integration
domains for the factors in its numerator are mutu-
ally exclusive. Thus, from (3.12)—(3.14),*

a(n)~asln) 5i cos6, k~ ~, (3.15)

in which the last term contains the geometrical
optics cross section, namely, the projected area of
the aperture on a plane normal to the direction of
the incident wave.

Although the cross section in the limit of infinite
frequency is rigorously obtained independently of
the residual functions, the previous considerations
imply that deviations in this quantity are inherent
for all other frequencies unless the correct residual
functions are employed. ln particular, with a choice
of real, frequency independent residual functions
P(ti), unrelated to the direction of excitation, and
use of the expansions

X [dk Ak„/(k-' k."- k„-')—&]dS—'

=iSi/2k cos8, k~ ~, (3.14)

where 5~ is the area of the aperture.

G(ti, o') =: [1/4irl )) —o', ]+[ik 4']—
exp(&ikn o) =:1&ikn ti —,k—&0,

we find as the leading term in the frequency expan-
sion of the cross section (12),

1t(t)ds ll &(~)dS (ds'/I, —,I) l

E&s& j (&s2 & si
o(n) =(k'&2') cos'8 Si-

J" (4(t)4(e')/I t,
—

t, 'l)dSd5'

k—+0. (3.16)

The cross sect.ion (3.16) departs from the k' behavior
characteristic of low frequencies, although it
embodies the correct angular dependence (compare
I, 3.7). 'Cievertheless, as shown in a later example,
these low frequency deviations may prove insig-
nificant when viewed on a scale appropriate to the
over-all frequency variation of the cross section.

t = ~(0),tS, = t& [2k/5, ]Int. —

( r
P(ti)dS) G(ti ti )dS

E&s, s,
' )

4(t)G(o, t')4(o')d5dS'
J g2

(4.1)

IV. DIFFRACTION BY A CIRCULAR APERTURE

To illustrate the utility of the variational forniu-
lation, we describe an application for the case of
normal incidence of a plane wave on a circular
aperture. We calculate, in particular, the trans-
mission coefficient of the aperture as a function of
the characteristic parameter, ka = 2m. (radius of
aperture/wave-length).

From (3.12), (3.13) the transmission coefficient
for normal incidence on an arbitrary aperture
becomes

tx = (2k/Si)Irn G(y, ti')dSdS', (4.2)
~sg

involving the single residual function P(p) (omitting
subscript) which arises from plane wave excitation
on opposite sides of the screen.

For a circular domain S~, it is convenient to
introduce polar coordinates p, y in the plane of
the aperture, with origin at its center, whence
G(ti, ti') =G(p, y; p', p') and P(p) =P(p) is a func-

*Observe that this result follows from (2.18), {2.19} with
omission of the residual function.
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tion only of the radial coordinate. The Kircho8
transmission coefficient I~ is readily evaluated in
this case with the aid of the integral representation
(see I, 4.12),

1 ~" id'
G(p v' p' v') =— Jo(fR)

4x p (f' —k') i

R = (p'-'+ p" —2 pp' cos(q —q')) &, (4.3)

quency independent residual function is

4(p) =(a/p)'(1 —(a/p)') ', (4 &)

featuring a characteristic (low frequency) singu-
larity at the rim of the screen and decreasing with
sufhcient rapidity therefrom to ensure integrability
over the entire screen. The integrals in the second
term of (4.1) are again simplified with the aid of (4.3),
(4.4). Thus

P ~Oo

f(f' k') —'dfI ~ (a/p)'(1 —(a/p)') '

n=O

where J0 denotes the zero-order Bessel function.
The integration contour in (4.3) avoids a singularity t y(p) ~g& G(
at g=k by an indentation below the singular point, ~ 8& oJ

and arg(f'2 —k')&=0, f'&k; = —x/2, f'&k. Thus,
employing the Bessel function addition theorem

Qo

Jo(CR) = Q (2 —bo.)J.(f'p) J.(f'p') cosn(v —v'),

it follows that

0 P&V
(4.4)

&&pJo(fp)dp II ~

p'J~(f'p')dp'
I

&&~, )

=ma' (f' k') —&Ji(fa)df
Jo

fK=(2k/va')Ivi
~ G(p, q, p', q') pdpdrpp'dp'dp'

J,g) X I (x'-' —1) Vo(f'ax) (dx/x).

= (2k/a2) Iin, g(f
' k2)

~did.

-—-
oo To perform the x integration, we consider

XI i pJo(f'p)dp
I

. F($) = I JD(&x) (x'-' —1) i(dx/x), F(0) = n-/2
I

I'-xtracting the imaginary part of the latter ex- and observe that
pression and performing the p-integration, we find
after a change of variable,

~l
tg =2 ~ (1 r") 'J—i ',(kav)(d'-v/v),

d F/d~ = — J, (gx) (x'-—1)-~dx = sing/P, —2

i
(4 5)

whence

wlleilce (see apl)end ix)

1r,
——1 —(1/ka) J,(2ka)

—',(ka)', ka«1,
ka&&1. (4.6)

F($) = (ir/2) — (sinx/x)dx = (ir/2) —Si)=si],
~0

where Si denotes the sine integral.
Consequently,

Numerical values of tE. are given in Fig. 3, for
the interval 0(ka &10, together with exact values
of the transmission coefficient calculated by
Bouwkamp (l, reference 5). A comparison of this
KirchoA approximation with one based on a con-
stant aperture field (see 1, Fig. 2) reveals that both
approach the value unity at high frequencies and
possess a k' behavior at low frequencies. The latter
approximation, however, is distinctly less accurate
for intermediate frequencies, failing to take values
in excess of unity and exhibit characteristic oscil-
lations of the diA'raction curve.

We consider next a more refined approximation
to the transmission coe%cient, deduced from the
variational expression (1). A simple choice of fre-

4'(p) pdpd&p G(p& 9 s p & p ) p dp d pJ,~, &Si

= xa'(Ri(ka)+il, (ka)), (4.8)

with
a

I (n) = I J (x)(n' —x') &sixdx,

(4 9)

Ri (a) = I Ji (x) (x' —a') &sixdx.
J

' G. N. Watson, A Treatise on the Theory of Bessel Functions
{Cambridge University Press, London, 1945), p. 417.
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APPENDIX

To evaluate the integral

I= (1 —v"-) lJ, '-(av) (dr/r )

we introduce the represent;&t. ion

I= (1/2') x 'J2(2nx)d(u,
x&0

where x=sin8 sing, du=sinldddq, and the inte-
gration extends over the surface of the hemisphere
on which x is positive. The replacement of x by
s(=cos8) corresponds to a rotation of the coor-
dinate system and does not aR'ect the value of the
integral. Hence

J)'(z) = (1/n. ) J,(2z sinO)di'&
"o

and obtaili, with the change of variable @=sin@,

I= (1/2ir) i~ sin 'pdq J2(2n sin8 sing)d8.

I=(1/ 2i)rs 'J;(2as)der
zh0

~l
p, 'J2(2np)dp,

J0
1

= —,~ d(Ji(2~A)/2~& ) = kL1 —(Ji(2~)/~) 3,

Regarding 8, p as the polar angles of a point on a which allows the verification of Eq. (4.6) in the text.
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The Energy Spectrum of the Decay Particles and the Mass and Spin of the Mesotron*

RQBERT B. LEIGHToN, CARL D. ANDERsoN, AND AARQN J. SERIFF
California Institute of TechnoLogy, Pasadena, California

(Received March 11, 1949)

Fnergy values determined from curvature measurements of 75 cloud-chamber tracks of decay
particles of cosmic-ray mesotrons at sea level, in a magnetic field of 7250 gauss, are here reported.
The observed spectrum extends from 9 Mev to 55 Mev with an apparently continuous distribution
of intermediate energy values and a mean energy of 34 Mev. The shape of the spectrum and the value
of its upper limit are strong evidence that the mesotron disintegrates into an electron and two neu-
trinos. It is concluded that the mesotron has half-integral spin. The value of the observed upper
limit of the energy spectrum corresponds to a mass value of the mesotron equal to 227%4 electron
masses.

I. INTRODUCTION

'EASUREAIENTS of the energy of the par-
~ ~ ticles resulting from the decay of mesotrons

have previously been made in three ways. In a very
few cases, the energies have been determined
directly by measurement of the curvature of cloud-
chamber tracks of the decay particles in a magnetic
field. ' In other experiments, the energies of the decay
particles have been inferred from measurement of
their absorption in various materials, ' and recently,

*Assisted by the joint program of the ONR and AEC.
' (a) Adams, Anderson, Lloyd, and Rau, Phys. Rev. 72,

724 (2947); {b) Adams, Anderson, Lloyd, Rau, and Saxena,
Rev. Mod. Phys. 20, 344 (1948); (c) R. %V. Thompson, Phys.
Rev. 74, 490 (2948).

'Fowler, Cool, and Street, Phys. Rev. 74, 101 {1948);
Zar, Hershkowitz, and Berezin, Phys. Rev. 74, 111 (1948);
J. Steinberger, Phys. Rev. 74, 500 (1948};E. P. Hincks and
B. Pontecorvo, Phys. Rev. 74, 697 (1948); M. H. Shamos and
A. Russek, Phys. Rev. 74, 1545 (1948); Kan-Chang Wand and
S. B. Jones, Phys. Rev. 74, 1547 (1948).

from measurement of their scattering in photo-
graphic emulsions. ' The very small number of cases
available for measurement, and the difficulty in
making precise energy measurements, have made it
impossible so far to distinguish between a con-
tinuous spectrum of energies and two or three
discrete energies for the decay particles. Thus, the
basic nature of the spectrum has so far not been
established.

The measurements of the energies of decay par-
ticles that are here reported were made on 7S cases
obtained in a cloud chamber operated in a magnetic
6eld. The precision of the measurements and the
number of cases provide strong evidence for a con-
tinuous decay spectrum, and yield some information
as to its shape.

' Brown, Camerini, Fowler, Muirhead, Powell, and Ritson,
Nature 103, 47 (1949).


