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tritium, He', and O.-particles. To build across the
mass 5 and 8 gaps, it is necessary to assume triple
collisions such as cx—n—n and 0.—0.—e and proc-
esses such as Li'(a, n)B". Difficulties of another
type arise at masses 10 and 14. Be" and C" both
have half-lives of more than 1000 years while Be"
and C"are probably neutron unstable. From A = 15
on, there seem to be no breaks in the formation
chain due to nuclear instability or long-lived
P-emitters which cannot be bypassed.

The formation of the elements then appears to
be divided into two distinct parts. For A &16, the
process is essentially one of building heavy nuclei
by successive neutron captures interspersed by
P-decays. In this region, there are two other reac-
tions which are of some importance to the formation
process. They are the nuclear photo-effect, which

may be responsible for the creation of isobars, ' and
fission in the heaviest elements, which sets an upper
limit on the size of nuclei formed. For A (16, there
are many types of reactions having probabilities of
the order of magnitude of the neutron capture
probability, and any attempt to compute the rela-
tive abundances of light elements must consider
all of them.
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The binding energy of the triton has been calculated variationally employing the Hylleraas
expansion for the trial wave functions, thus permitting a systematic improvement in the binding
energy. The procedure used was tested by applying it to the binding energy problem of the deuteron
with tensor forces. The present theory, assuming a rectangular-well shape with a range of 2.8&10 "
cm for all the internucleon potentials, yields a H' binding energy 40 percent to 50 percent of the experi-
mental value. Various suggestions f'or resolving this dilemma are discussed.

I. INTRODUCTION
' 'HE explanation of the properties of the triton

is a severe test of the phenomenological theory
of nuclear forces. Prior to the introduction of tensor
forces, its calculated' binding energy was in good
agreement with experiment. It was realized at an
early date by Inglis' that this situation might be
substantially altered when tensor forces are in-
cluded in spite of the rather complete explanation of
two-body problems' afforded by the Rari ta-

~ Assisted by the joint program of the ONR and the AEC.
~~ This work was done while the second author (W.R.)

was in residence at Massachusetts Institute of Technology.
He takes this opportunity to express his appreciation for the
hospitality shown him during his stay there.

' W. Rarita and R. D. Present, Phys. Rev. 51, 788 (1937).' David R. Inglis, Phys. Rev. 55, 988 (1939).
~See for example: Bailey, Bennet, Bergstralh, Nuckolls,

Richards, and Williams, Phys. Rev. 70, 583 (1946). Russell,
Sachs, Wattenberg, and Field, Phys. Rev. /3, 545 (1948).
R. Wilson, C. H. Collie, and H. Halban, Nature 162, 185
(1948).

Schwinger theory. In the H' problem, their inter-
action potential, a rectangular well, is tested for
larger relative momenta of the constituent nucleons.
Inglis' argument was based on perturbation theory.
A more complete discussion has been given by
Gerjuoy and Schwinger, ' using the variational
method with results in substantial agreement with
Inglis. It is the aim of the present paper to enlarge
the scope of the former's work by the use of the
method of Hylleraas which has been applied suc-
cessfully to problems of this type in the past. ' We
shall use the two-body law of force as given bx
Rarita and Schwinger. ' Their results do not deter-
mine the exchange character of the nuclear force
but this property does not enter crucially into our
discussions. The main conclusion of the present
paper is that the simple theory which works so well

'E. Gerjuoy and J. Schwinger, Phys. Rev. 61, 138 (1941).
~ W. Rarita and J. Schwinger, Phys. Rev. 59, 436 and 556

(1941).
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for two-body problems fails for O'. VA shall discuss
some possible modihcations in the concluding
-section.

II. TRITON MNDING ENERGY

We shall employ the relative coordinates r~, r2, y
illustrated in Fig. 1. After the coordinates of the
center of mass are eliminated the Hamiltonian for
this problem may be expressed in terms of these
coordinates:

II= —(h'/M)(V, 2+V, V, +V22)
+ V(rg)+ V(r2)+ V(p). (1)

The potential energy V is

kg+kg~& 'o2+ &S» I ~(p) ~ (2)

Here o; is the Pauli spin vector associated with the
ith particle, and

S)2=[3(e~ y)(e2 y)/p'] —og ~g . (3)

V(r~), the potential between particles 1 and 3 is
obtained by replacing e2 by e& in (2) and (3) and
p by r~. The constants g and y, are given by Rarita
and Schwinger' for a rectangular potential well of
depth VQ and range rQ.'

g=0.07K, y=0.775,
Vo ——6.40Xbinding energy of the deuteron, (4)
rQ=2. 80 10 "cm.

'Ihe ground state of H' has a total angular mo-
mentum of ~~A. For a three-particle system the
possible orbital angular momentum states are S,
P, D. The 5 states must be doublets, the D states
quartets, while the I' states may be either doublet
or quartets. The angular and spin dependence may
be removed either in terms of the Eulerian angles
associated with the plane containing the three par-
ticles' or much more conveniently by the use of spin
operators as performed by Gerjuoy and Schwinger.
From the measured magnetic moment' of H', it
may be seen that the principal state is an 5 state.
Of the two S states which can be formed, the most
important will be that one symmetric in r~ and r2,
its angular and spin dependence will be represented
by '5" the other 5 state 'S" will be antisymmetric
in rl and r2. In virtue of Hamiltonian the 'S~Q state
will interact directly with the 'S state and with
the 4Dg states. These latter may be formed as shown
by Gerjuoy and Schwinger from the four operators
which may be realized by combining the dyadic
o]o3 with the space dyadics r~rl, r~r2, etc. However,
it has been shown by L. H. Thomas' that an
identity exists between these four so that there are

6E. C. Kemble, The Fundament@/ Principles of QNantum
MecIMnics {McGraw-Hill Cook Company, Inc. , Neer York,
1937), p. 230.

~ H. Anderson and A. Novick, Phys. Rev. 71, 372 {1947).' Private communication.

FrG. 1. Coordinates for H'.

It will be assumed here as in Gerjuoy and Schwinger
that this state is the principal one combining with
the ground state 'S . The qualitative argument
upon which this is based relies on the fact that the
4D~" states are odd in the exchange of rj and r2

and thus must have a node whenever r&=r2, i.e. ,
whenever the two neutrons are close together. From
the short range character of the forces it follows
that U(p) will have relatively little average value
for these states. A similar argument may be applied
to the 'Sg' state which is known to be present in a
relatively small amount in the ground state of H'.

We therefore write for the wave-function 0':

f 2S(0+g
—4D10 (6)

where f and g will depend only upon r&, r2, and p.
Finally

'S = (1/g~) **~(3)[~(1)J3(2) —0(1)~(2)3. (&)

where n and P are the usual spin functions. Ex-
pression (6) may now be introduced into the varia-
tional principal to obtain the energy E:

Z= (+, H+)/(0, @). (g)

The explicit expressions are given in the Appendix.
The functions f and g were determined by the

method of Hylleraas. 'The functional forms assumed
first were

f=A exp[ —X(r,+r2) —rpg, (9)
g =3 exp[ —p(r~+r2) —o p].

When a variational function of the type f is used
in the Rarita-Present theory, one obtains im-
mediately 90 percent of the binding energy of H',
which indicates that it is an excellent description
of the S state. Once the proper values of ), p, v, 0

are determined both f and g are to be multiplied

' Herman Feshbach, Phys. Rev. 61, 544A (&942).

only three independent D states, which we shall
call 4D~Q, 4D~', 4Dg'. This may be verified directly
using the more explicit Eulerian angular de-
pendence. ' Only one of these D states has a de-
pendence on r~ and r2 which is even in their
exchange:

'Dg' ——(r PS„+rm'Smq) 'S1'.
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TABLE I. Percent experimental binding energy.

5 sCRCe
nucleus (no Censor forces) 5 and D

74
70

—46
18
28

Equivalent
Two Body

by power series in r&, r2, and p. For variational
functions (9) it was found that X~r and o 0
although equalities did not occur precisely at the
minimum. However, because the difference in

binding energy involved was slight (about 3 per-
cent) the simpler expressions obtained by assuming
equality were used with

) = v=1.5/r ,0o =0; ii=5 Oj r, . .(10)

The binding energy found using function (10) was
32 percent of the experimental binding energy, and
the percent D state=1. 7 percent.

The next step involved the use of the Hylleraas
expansion for both f and g. In the present calcula-
tion terms up to the squares of ri+r2, and p and
their crossproducts were included. Thus ten more
terms, five for the S state and five for the D state
were considered. Xo marked improvement in the

binding energy was obtained when the coegcients of
these terms were varied, indicating that form (9) was
already a good approximation to the correct wave

functions The fin. al ~alue for the calculated H'
binding energy was 40 percent of the experimental
value.

To buttress this conclusion, v e have checked
upon our results by comparing with similar calcu-
lations for the deuteron and by employing the
equivalent two body" method to estimate the con-
tribution of the 5 state to the total energy. These
results, are summarized in Table I.

We have given our results for the case of the
simple function (10). For the more complicated
Hylleraas expansion, we estimate that the entries
in columns (3) and (4) for H' would change to 21
and 19, respectively.

The first column S gives the energy computed
using the potential energy required to obtain the
binding energy of H' before the discovery of the
deuteron quadrupole moment, and thus in the
absence of tensor forces. The second column yields
the total energy when potential energy (2) is used.
The decomposition in the third and fourth columns

gives the energy obtained from the S state alone
and the energy obtained from the D state together
with the coupling energy between the S and D
states.

Ke first note that the equivalent two body

"Eugene Feenberg, Phys. Rev. 47, 850 (1935); 48, 906
(1935).

method gives for the binding energy from the S
state alone, the value 28 percent of the experi-
mental binding energy of O'. This value is to be
compared with 18 percent for the trial function
(10) and 21 percent for the Hylleraas expansion,
remembering that the two body method may give
a value 10 to 15 percent too large in absolute value.
The rough agreement obtained indicates that our
representation of the S state is excellent. No such
check is available for the D state energy so that we
must rely on the indirect evidence offered by the
above S state comparison, and the data in the
table. Here we see that for the simplest variational
form used for H' the energies computed with and
without tensor forces are very close. Moreover when
a power series expansion was added on to the
deuteron wave functions the rate of improvement
was similar to that obtained for H' with the Hyl-
leraas expansion. We would like to emphasize the
drastic change in the comparison between the
computed energies for the binding energy of H'
with and without tensor forces. Moreover the de-
composition in S and D energy given in columns
(3) and (4) lends additional weight that no gross
inaccuracy can be ascribed to our final values. *~*

As a final check, the contribution of the 'Sg' state
was computed using form (10) for the 'S and 'D
terms. The 'S~' state couples directly to the 'S;,'
state. It is fairly representative of the many
omitted states noted above. We then let

4=f 2S~'+g 4D , '+h 2S~'. . (11)

The function h must be odd in exchange of r~ and r2

so that as in Rarita and Present h must be taken
proportional to rj —r2. Then

h =D(ri —r2) expL —a(ri+r2+t2)],

where D and ot, are to be determined variationally.
The resulting increase in binding energy is only 0.4
percent indicating that these additional terms will
not affect the binding energy of H' to any great
extent. We thus conclude that the computed bind-
ing energy of H' employing nuclear potentials (2)
and (4) is not appreciably greater than 40 percent
of the experimental value.

III. DISCUSSION

It is appropriate now to discuss some of the
possible changes in the internucleon potentials
which might bring the theoretical value for the
binding energy of O into agreement with experi-
ment. One might hope to resolve the difhculty by
(1) keeping the Rarita-Schwinger potential intact

~*~ One of us (O'.R.) has used a joining method {described
Phys. Rev. 74, 1799 {1948)),to compute the binding energy.
Here f and g are assumed to have diferent radial dependence
inside and outside of an arbitrary radius. The best binding
thus obtained was 36 percent.



TENSOR FORCES

and adding forces which are of some importance
in H' and of relatively little importance in H~, and
(2) changing the shape and range of the interaction
potential.

Considering method (1) first, a measure of the
additional potential required is given by the ratio
r of the Vs needed to the Vs used in (4). We estimate

1.1. Such additional potentials can in principle
arise from relativistic efl'ects since u'/c' of a nucleon
in H' is appreciable. Relativistic effects include
three body forces" beside relativistic corrections"
to two body forces. The 4tter will probably be
made available as a result of experiments on high
energy neutron-proton scattering. It should be
noted however that such additional potentials as
contemplated above would not correct other dif-
ficulties of the Rarita-Schwinger interaction po-
tential. "

In category (2) we have investigated briefly the
effects of a change in range, or shape, or both, of
the interaction potential. Decreasing the range of
both the central and tensor forces decreases the cal-
culated binding energy of O'. For example using
the range" 2.66 10 " cm with a rectangular well
potential for J(r), the calculated binding energy of
H' decreases to 24 percent of the experimental value
for the same trial functions which yield 32 percent.
The qualitative reason for this behavior may be
given. Reducing the range requires a greater relative
amount of tensor force, i.e. , a greater y, for only
in this way is it possible to obtain the experi-
mental quadrupole moment for the deuteron. How-
ever a large y requires a smaller Vs (in order to
obtain the experimental binding energy of the
deuteron), leading to a reduction in the calculated
binding energy of O'. Since present two body data
requires, if anything, a reduction in range, changing
the range of both central and tensor forces does not
seem to be a fruitful idea.

Another possibility then would involve main-
taining the range of the central force to that given
by p—p scattering data, but using a longer range
tensor force. Primakoff and Feenberg" have pointed
out that by taking the tensor range sufficiently
long the tensor force would have no effect on
binding energy problems, so that the binding
energy problem would return to the pre-tensor
situation. Here however a difficulty encountered by
Rarita and Present would recur, for although H'
binding v ould be precisely correct, the calculated
binding energy for He' would be too large. This
has been verified for other potential wells by

"H. Primakoff and T. Holstein, Phys. Rev. 55, 1218 (1939).
"Gregory Breit, Phys. Rev. 56, 153 {1938)."D. Bohm and C. Richman, Phys. Rev. 21, 567 (1947);

J. Blatt, Phys. Rev. 74, 92 (1948).
"William G. Guindon, S.J., Phys. Res. 74, 145 (1948).
"Henry Primakoff, Phys. Rev. 72, 118 (194'}.

Svartholm. " It is essential, therefore that the
tensor force be of sufficient strength as to effect the
binding of H' considerably, of H' somewhat, and of
He4 not at all. This adjustment is very sensitive to
the skate of the interaction potential. )

Finally one might give up the luxury of charge
independent nuclear forces as suggested by Blatt."
It would be necessary to keep the (n—n) and (p—p)
forces the same because of evidence obtained from
the energy differences of mirror nuclei, particularly
the H' —He' binding energy difference. It is, how-
ever, possible to reduce the range of either the
singlet n p fo—rce or the central (non-tensor) part
of the triplet (n—p) force. It should be noted that
such an interaction potential would in addition
yield results closer to the present scattering data
than the Rarita-Schwinger ansatz.

APPENDIX

Variational Calculation for the Deuteron

The deuteron serves as a useful introduction and control to
the more difFicult triton problem. The energy 8 of the deuteron
ground state is

Ef L(An)'+(Bis)')dr

I [d(A n)/dr]' —JA'-'u'- —4v2y JA Bum
0

—(1 —2y) JB'm'-+ (6B'm'/r') +fd(Bm)/dr O' I dr. {A1)

Here Au/r is the S radial wave function and Bm jr is the D
radial function. Varying the coefficients leads to a secular
equation

i)E;;ii =0, E;, =P;; L;; Eft/;; ——(A2).
Using the binding energy of the deuteron ~Es~ as the unit of
energy:

P, ~
——f /a~f (du/dr) dr, a'"' = 2'-'d IEs I

/5',

I'i2=0,

P.2 = 1/0."'
D dm/dr) -'+6(w-'/r-') jdr, Xi I —— n"-dr,

0 0

I.ii = Ju'dr,
0

L, I2 = 2& y Jumdr,
0

.V22 = m'dr,
0

Let J be the rectangular well. t', se r0, its range, as the unit of
distance. Let u =re ~", ~v = r'e "".All the integrals are easily

"N. Svartholm, Thesis.
t Since the calculations reported here were completed, one

of us (H.F.) has shown that a potential

~(~)= —C(1—ka)+la&i &2l ~.(~)+S»~.(I )
v. = v,.(.--/ ) v, = v.,(.-"/.p)
p=326 mc/A v =p/1. 8

yields on a variational calculation 85.5 percent of the experi-
mental H' binding.
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evaluated. The integrals involved are of the form
Cgl

me- rdr I me
—r dr

0 0

r1 &21' ~f ~2 &12f ~f+ ——+ —— r'
r1P Bri BP r2P Br2 BP

dr =4rir2pdridr2dp. (A5)

L, 1( = (1. —2g)L~(12) +(I —gj2)LI ~(13)+I ~(23) j,
L"(12) =fJs J(p)dr, Ls(13)+Le(23}=fp[J(r, )+J(rs) jdr.

The coupling term E12 is:

E)s= 2'f '$—1'J(r )g 'D1'dr

2yf—fJ(r,)g('6r +(3—9 cos'8)rs 'jdr-
]'he kinetic energy for the D state P22 is:

—&2.= (g 'D1'
I V 2+V i V s+V s'

I g 'D1')

(A6)

rl'r21 ~ g r2 ~I2 ~ g+ g + g
r1P Bf18P r2P Or28 P

i1.1'2 d2g 2 Bg+ g + g—(A/'D~)
~r1~r2 p ~p-

+ I 6r1'+3r1'r22(1 —3 cos'8) j——4g1 ~g

ri Bri

+$6r24+3r12r2'(I —3 cos28) j——dr, (Ai)
4g~g

f2

where ('D1'I'D1s)=6[r~'+rs'+rgrP(1 —3 cos'8}). -

I,„=P~(12)+L,&(13)+I.D(23)j
+yt L+(12)+I.+(13)+I.g D(23) j, (A8)

where the subscript 1 denotes tensor, the terms involved
being diagonal values for the D state for the tensor terms.

Variational Calculation for H'

Ke list the elements of the matrices P;;, L„;, N,;. The
determinant is, of course, of the form (A2). The elements P11,
I.11, and N11 listed first are well known being given in Rarita
and Present.

I (12) =fg J(p)dr; I (13)=fg J(r~)dr;

Finally

—3(r1'+r24)r 1r2 COS8j g'J(p)dr. (A 1 0)

Nss fgsd r (4D——)'/4D1s) (A»)

Assuming {10)for the D state and the rectangular well shape
%22 = (192)(6!)luxo. P22 = (96)(6!)jP

8
LAN{12) = + Vo —IQ"+ (S4"—I4")

. 21

24 1——(S2"—I2")+—(So"—Io")
35 15

ID(13)+I, {23)= +96VoLS6"I2"+$2"I6"g;
32 1I.&&(12)= Vo —I,&—(S6~ —I&&)
49 3

183 1—(S;—I;)+—(SP-I;)—(S:-I:);
245 15

(A12)

Ip+(13) +Kg (23) = +96Vop+ S6~I2~ —S4~ I4~ —252~I' $.
KVhen the more complicated variational function (9) or the
Hylleraas expansion are used more dificult integrals appear.
Two auxiliary integrals had to be introduced.

1 8aP s e ads pne ~dp,

1 71+72
G1 t~= r ~e "'dr1 r2 e ~"2dr2 p"e I dp,

71 72

(A13)

where s=r1+r2. By means of recurrence relations these may
be reduced to the I and $ integrals defined above,

I&(23) =fgs J(rs)dr,

Lro(1 3) =f$6(rs' —rPrs' —2r&4)

—3(i —COS'8) (r2'+r 12r22) gg2 J(r1)dr.

For IgL'(23) make substitutions ri~~r2 in multiplication factor
in square brackets and in J(r1).

3 cos'8 —1
Lro(12) f=12 r,4+rs'+rPrss

2

12——$2r1 +2r20+(ri'+r2')r12r22
p2


