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Note added in proof: Since this paper went to press, Lonsdale
and Owston have pointed out to us by correspondence that
the parameters given by Bernal and Fowler, namely, y=0.105
and Z=0.037, are incorrect and should be changed to y=0.115
and Z=0.0435. This change in the value of the parameters
would affect somewhat the intensity calculations given in
column 3 of Table I but this change could almost certainly
not produce good agreement between this model and our
observed results since the coherent scattering by the hydrogen
atoms in a model in which these atoms are fixed at definite
sites will always be twice as great as that produced by the
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Pauling model. The calculated intensities given in Table I
for the Bernal-Fowler model are all higher than the observed
intensities given in column 7 of the table and it would not be
expected that a revision of the parameters would alter this
situation.
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The experiments of Cook, McMillan, Peterson, and Sewell on the cross sections of nuclei for
neutrons of about 90 Mev indicate that the nuclei are partially transparent to high energy neutrons.
It is shown that the results can be explained quite satisfactorily using a nuclear radius R=1.37A}
X107 cm, a potential energy for the neutron in the nucleus of 31 Mev, and a mean free path for
the neutron in nuclear matter of 4.5X 1073 cm. This mean free path agrees with that estimated from
the high energy n-p cross section, but the results are not sensitive to the choice of mean free path.

N a previous paper by one of the writers! it has
been pointed out that to a high energy bom-

barding particle a nucleus appears partially trans-
parent, since at energies of the order of 100 Mev
the scattering mean free path for a neutron or
proton traversing nuclear matter becomes com-
parable to the nuclear radius. This transparency
effect is strikingly apparent in the experiments of
Cook, McMillan, Peterson, and Sewell? on the
scattering by nuclei of neutrons of about 90 Mev.
In the present paper it will be shown that the
observed scattering cross sections can be quite
satisfactorily accounted for, using a mean free path
of the expected magnitude.

The problem is that of the scattering of the
neutron wave by a sphere of material characterized
by an absorption coefficient and an index of refrac-
tion. The index of refraction is determined by the
mean potential energy, V, of the neutron in the
nucleus. If 2= (2ME)*/k is the propagation vector
of the wave outside the nucleus, its propagation
vector inside is 24k, with

ki=k[(1+V/E)}*—1].

For E=90 Mev, £=2.08X10%® cm™. The potential

V is generally taken to be about 8 Mev larger than

the energy of the Fermi sphere. The latter depends

on the assumed nuclear density. If we use for the

nuclear radius the wvalue R=1.37A¥X10"2® cm,
1 R. Serber, Phys. Rev. 72, 1114 (1947).

2 L. J. Cook, E. M. McMillan, J. M. Peterson, and D. C.
Sewell, Phys. Rev. 75, 7 (1949).

deduced by Cook, McMillan, Peterson, and Sewell
from the 14-25 Mev scattering results of Amaldi,
Bocciarelli, Cacciapuoti, and Trabacchi,® and
Sherr,* we find a Fermi energy of 22 Mev, and
V=30 Mev. This gives k1=3.22X102 cm~. The
absorption coefficient in nuclear matter is equal to
the particle density times the cross section for scat-
tering of the neutron by a particle in the nucleus,

K=3A40¢/47R8,
In terms of the n-p and n-n cross sections,
0=[Zonp+(4—2)0,n]/A.

Cook et al.,? give for the scattering of a 90 Mev
neutron by a free proton oapres) =8.3 X 10726 cm?2.
This cross section must be reduced to allow for the
effect of the exclusion principle on the scattering by
a proton bound in the nucleus; according to Gold-
berger,® the factor is onp=30up(tree). Assuming a 1/E
dependence of the cross sections we find, for
E=904+30=120 Mev, 0,,=4.15X10"26 cm?. If,
following Goldberger, we take ou,=2104,p,, and use
the previously quoted radius formula, we obtain
K=24X102? cm™ for Z/A=%, K=2.1X102 cm™!
for Z/A=0.39 (U). It will be seen from these
numbers that in the ensuing calculations it will be
a reasonable approximation to suppose that AR>>1,
but k;/k and K/k«<1, so that kiR and KR are of
order one.

3E. Amaldi, D. Bocciarelli, B. N. Cacciapuoti, and G. C.
Trabacchi, Nuovo Cimento 3, 203 (1946).

4 R. Sherr, Phys. Rev. 68, 240 (1945).
§ M. L. Goldberger, Phys. Rev. 74, 1268 (1948).



SCATTERING OF HIGH ENERGY NEUTRONS

F1G. 1. Absorption, diffraction
and total cross section as a func-
tion of the nuclear radius mea-
sured in mean free paths. These
curves are for ki/K=1.5.

The scattering cross section consists of two parts.
The first, the ‘“‘absorption cross section,” is just
wR? times the probability that the neutron collides
with a particle in the nucleus. This is not true
absorption: inelastic scattering and scattering with
exchange are included. The second part, the ‘‘dif-
fraction scattering,” is elastic scattering arising
from the disturbance of the incident plane wave by
the nucleus. To illustrate the calculation, we first
consider the scattering from a disk of radius R and
thickness T. We suppose there is a boundary layer
at the surface of the disk in which k; and K rise to
their interior values in a distance larger than 1/k.%
There will then be no scattering at the surfaces,
and, for unit amplitude of incident wave, the wave
transmitted through the disk will have an amplitude
and relative phase ¢ =exp(—3%K+1k,)T. The ab-
sorption cross section is

coa=7TRX(1—|a|?) =7R2(1 —e~KT), (1)

The diffraction cross section can be found from the
consideration that on a plane behind the disk the
wave is no longer plane, but differs from a plane
wave by an amplitude 1—a in the shadow of the
disk. This amplitude represents a scattered wave,
and the corresponding cross section is

ca=mR}|1—qa|?
=7wR*(1—2¢ KT cosk T +eXT). (2)

It can easily be shown that the angular dependence
of the scattered amplitude is

¢ In terms of the model being employed, the finite intercept
of the R vs. 41 line obtained from the data on the lower energy
scattering could be interpreted by the more careful examina-
tion of the boundary conditions which in this case would be
necessary.

R
f(0) =t f (1—a) Jo(kp sinb) pdp
’ = (1—a)RJ (kR sinf) /sin6, (3)

which gives the differential scattering cross section

doa(6) = |f(6)|*d%
= (oa/m)[J1(kR sinb)/sind dQ. (4)

The absorption cross section is, of course, always
less than wR?, but the diffraction cross section may
be either larger or smaller, depending on the mag-
nitude of the phase shift. For large KT, o, =0s=7R2.
In the opposite limit of small KT and k.7, we have

6,=mR2KT=Ao,
0a=mRGK*+ k) T2=1A4A0[1+4(k:2/K?)]KT.

Thus for low density or small thickness, o, ap-
proaches the sum of the scattering cross sections
of the separate nucleons. The diffraction cross
section, however, vanishes in the limit, being pro-
portional to the probability of double scattering.

The corresponding calculations for a sphere are
only slightly more complicated. The portion of the
wave which strikes the sphere at a distance p from
a line through the center of the sphere emerges after
traveling a distance 2s, with s?=R>—p?. Its ampli-
tude on emerging is a =exp(— K +21k,)s, so that, in
place of (1) we have

R R
aa=21rf (l—e_““)pdp=21rj (1 —e2Ks5)5ds
0 0
: . (5)
=mR*{1—[1—(1+2KR)e *.E]/2K*R?}.

This formula for the absorption cross section has
previously been given by Bethe.” Similarly, in

7H. A. Bethe, Phys. Rev. 57, 1125 (1940).
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place of (2), we have
R

0‘d=27rf | 1..6(—K+2ik1)cizpdp
0

=7R2[14(1/2K2R?) {1 — (14+2KR)e2KE}
— (1/ G k2R (K~ k1)
+eXR[ 2k \R(3K2+k1?) + k1K ] sin2k R
— e FR[ (K2~ k) +KRGK 4 £:%) ]
Xcos2kiR}]. (6)

In deriving (5) and (6) we have neglected refraction

kR?( . (k1— %K) [1— (1+KR—2ik,R)e K +2ikDR]
! .
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at the surface of the sphere. It can easily be seen
that this is legitimate, since it gives an effect of
order (ki/k)k1R.

For the angular distribution we find, in analogy
to (3),

R
5(6) =kf [1—eCE+2ik0] Jo(kp sind) pdp. (7)

For KR— «», we again obtain (4), but we have not
found a convenient expression in the general case.
The amplitude for forward scattering is easily
evaluated, and is found to be

f(0)=
2 |

For purposes of calculation, the integral can be
converted to a sum; letting /43 =£%p and using the
relation Jo((I+%) sinf) = P;(cosf), valid for large !
and small 6, we find

143 <kR
f0)=3k 2 (2+1)(1 —eCK+200%4) Py(cosh), (9)
=0

where
si=[kR*— (I+3)*]"/k.
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F1G. 2. Nuclear radii deduced from the total cross section
measurements of Cook, McMillan, Peterson, and Sewell,
plotted against the cube roots of the mass numbers. The
straight line is R=1.37A#X 1013 cm.

(8)

2(_1_K2+k12)2R2

This expression can also be obtained by a partial
wave analysis, using the WKB method to evaluate
the phase shifts. This gives

&= (k1+%’iK)51,

whence we immediately obtain (9), and for o,
and oy,

oa=(m/k?) 2 0(20+1) (1 —e2Ke),
ca=(x/E) T 1(21+1) |1 —eCK+2iED 2,

(10)
(11)

Converting the sums in (10) and (11) to integrals
we again obtain (5) and (6).

In Fig. 1 we have plotted o4/7R? o¢4/7R?, and
the total cross section o¢./7R*=(0,+04)/mR? as
functions of KR. The ratio ¢,/mR? is a function
only of KR; the other two depend on &;/K as well.
The curves in Fig. 1 have been plotted for k;/K
=1.5, about the ratio indicated by our earlier con-
sideration of the expected magnitude of the con-
stants. Using this plot it is possible to determine,
once a value of K is chosen, the radius required for
each nucleus to give the measured total cross
section. The radii calculated in this way from the
observed cross sections, using the value?® K=2.2
X102 cm™, are shown in Fig. 2. It will be seen that
they lie quite closely on the line R=1.37A¥X 10~
cm; the self-consistency of our description of the
scattering process is thus established. The value
K =2.2X10"2 cm™! corresponds to a mean free path
in nuclear matter of 4.5X 1073 cm. The associated
value, k1 =3.3X10? cm™, corresponds to V'=230.8
Mev.

The question now arises as to the accuracy with
which the constants K and k,; are determined by the
scattering data. If k; is decreased, keeping K
constant, it is found that the radius curve, Fig. 2,
is pulled up in the middle; the resultant curve can

8 The small dependence of K on Z/A4 is unimportant, as we
shall see later.
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be approximated by two straight lines, the light
elements lying on a steeper line through the origin,
while the heavy elements lie on a less steep line
with a positive intercept. Increasing k;, has the
opposite effect. A variation in k; of +0.2X10%?
cm™?, or in V of &2 Mev, begins to produce appre-
ciable bending. A reduction in K, with fixed &,
introduces a curvature in the radius line, the center
being pulled down and the two ends raised. The
curvature becomes noticeable if K is reduced to less
than K=1.9%X102 cm™!, however K can be almost
doubled before the opposite curvature becomes very
pronounced. For example, K =3.0X10"2 cm™ gives
an about equally good straight line, R=1.39A}
X107 c¢cm. The total cross-section measurements
thus determine the potential fairly well, but are
quite insensitive to the absorption coefficient.
Measurements of o, and of the differential dif-
fraction scattering are required for a better evalu-
ation of K. It should be noted that while £, and K
are determined directly from the cross sections,
the evaluation of V depends also on the energy of
the incident neutrons. Cook et al. state that the
energy of the neutrons detected in their experiment
may be a little lower than 90 Mev, lying somewhere
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between 80 and 90 Mev. If we took E =80 Mev,
we would find V'=28.8 Mev.

For K=2.2X10"? cm™, the values of KR range
from 0.58 for Li to 1.87 for U. It will be seen from
Fig. 1 that the nuclear opacity, ¢,/7R?, would vary
from 0.52 for Li to 0.88 for U. It will also be seen
that over this range of values of KR it would be
expected that o4 will be nearly twice as large as o,.

If one plots the angular distribution of the dif-
fraction scattering given by (9) (i.e., doa(8)/do4(0)
versus kR sinf) one finds curves for the heaviest
nuclei which are indistinguishable from that for an
opaque nucleus (Eq. (4)), at least as far as the first
minimum of the diffraction pattern. For the lighter
nuclei, the form of the curve is closely the same,
but with an altered scale of abscissa, corresponding
to using an effective radius somewhat smaller than
the true radius. The increase in the half width of
the diffraction peak is zero for KR=1.78 (Pb),
3.7 percent for KR=1.20 (Cu), 6.2 percent for
KR=0.90 (Al) and 9.6 percent for KR=0.63 (Be).
Measurements of the diffraction scattering and of
the absorption are now in progress in this laboratory.

Work described in this paper was done under the
auspices of the Atomic Energy Commission.

PHYSICAL REVIEW VOLUME 75, NUMBER 9 MAY 1, 1949

He? Isotopic Abundance*
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The isotopic abundance of He? in one sample each of “well” helium and “atmospheric’” helium has
been measured by detecting the He?(n,p)H3 disintegrations induced by thermal neutrons. The helium
gas was put into a proportional counter, the disintegration rate compared to that with nitrogen in
the counter, and the He? content deduced from the known ratio of the He3 and N disintegration cross

sections.

INTRODUCTION

REVIOUS measurements!? have indicated that
He? is present in natural helium in amounts of
the order of one part in 10% to 107, and that the
abundance varies by more than a factor of 10 de-
pending on the source of the helium. He? concen-
tration determination is of special current interest
in connection with nuclear investigations of inter-
actions between elementary nuclei, and in con-
nection with investigations of the thermodynamic
behavior of He® and He* at temperatures of liquid
helium.

* This document is based on work performed at Los Alamos
Scientific Laboratory of the University of California under
Government Contract W-7405-eng-36.

tL. T. Aldrich and A. O. Nier, Phys. Rev. 70, 983 (1946);
74, 1225 (1948); 74, 1590 (1948).

2L. W. Alvarez and R. Cornog, Phys. Rev. 56, 613 (1939);
56, 379 (1939).

In the present work measurements were made of
the isotopic abundance of He? in two samples of
natural helium: one from wells near Amarillo,
Texas, and one from air reduction processing. The
presence of He3 was detected by counting ionization
pulses arising from the disintegration products of
the reaction He3(n,p)H?® induced by thermal neu-
trons. The cross section for this reaction is about
5000 barns,® which is sufficiently large to make it
possible to detect the He? in natural helium samples.
Data were also taken with nitrogen in the counter,
in which case one detects the N!(#,p)C!* disin-
tegrations. Since the protons from the He® and N
reactions have very closely the same range, the
“wall effect”” corrections will be similar for the two
cases. If counting is done on nitrogen and on

3J. H. Coon and R. A. Nobles, Phys. Rev. 75, 1358 (1949).



