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The residual current observed by us in the best vacuum
conditions —10 ' mm Hg—may be certainly explained as an
effect of ionization by collision if an effective cross section of
the order 1 cms/cm'mm Hg is attributed to the gas, in
agreement with the results normally obtained.

Regarding the fundamental effect we were investigating,
vis. the liberation of ions from the metal in the best conditions
of surface purity and of vacuum, we infer from our rneasure-
ments that, if it occurs, its threshold must be over 70 kv.
This is also compatible with the shape of the curve of Trump
and Van de Graaff. Our present arrangement did not permit
measurements at higher voltages.

It is a pleasure for us to thank the Consiglio Nazionale delle
Ricerche which has granted a scholarship to one of us (I.F.)
and the S. A. Vetrocoke of Porto Marghera (Venice) which
kindly put at our disposition the liquid nitrogen necessary
for the experiments.
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GENERALIZED Schrodinger equation has been used
by Schwinger' and Tomonaga and collaborators in the

interaction representation for a system whose state is given
on a space-like surface. In both presentations a form for the
Hamiltonian is assumed and then shown to sa,tisfy necessary
conditions. We will deduce the generalized Schrodinger equa-
tion by a method which, when applied to a particular case,
gives the Hamiltonian directly, even when the interaction in-
volves derivatives and the Hamiltonian consequently contains
terms dependent on the directiqn of the surface.

Let x"= (cjI, t). o is a general space-like surface through x".
n„ is the normal to the surface at x"(n„n"=—1). The La-
grangian of the field is P.(y, q„) where q„=8q /Bx". The
energy momentum tensor is U»= (89/&p„)p, —Qg».

Define the canonical conjugate of q to be

~ =(aP/a~„)n„.

The generalized commutation relations of Schwinger can then
be written for a Bose field

[y (x), wS(x')] =0 xWx', f$c (x), xb(x')j do'=ihcbb, (2)
aIld

ty (x), wb(x'))~=0 xWx', f (s (x), b(x')jr+de' ihcbb =(3)

for a Fermi field.
Define the Harniltonian

@= U„„n"n".

This reduces to the usual expression when cr is flat. Choose a
particular Lorenz frame such that at the point xt' the co-
ordinates x"=u" lie in the tangent plane to 0 and so=co is in
the normal direction. The equations of motion of the held,
derivable from the Lagrangian are by (2), (3), and (4)

fL ( ') O( )jd '= h b
(5)f$q (x'), Q(x)jda'=ihcbc /bcu

Introducing the condition of Kanesawa and Tomonagas that
elementary regions are scale form flat, we have Bq "/Dc'

Therefore
iacSU/a~= g(&s. s)U.

ikcb%'/bo =@(qs, ms)%'.

If two fields interact the Schrodinger equation in the
Schrodinger representation is

+c&~/& =I (v8)+0 (0's)+0 (Ns 4s)I~ (j0)
To go over into the interaction representation we make the
transformation %'~UI U2%' where U~ and U2 are determined
by (8) for @I and @2, respectively. Then

ihcb%/bo '@,g=(P, f)%', (r&)

where tc = Ui 's st and f= U2 'Ps Us. By (7) the motion of
the field variables P, f and their respective canonical conju-
gates is determined by the Hamiltonians of the two separate
fields without interaction. This is the distinguishing character-
istic of the interaction representation which makes it possible
to calculate the commutation relations between field variables
at points with time-like separation.

The value of Qi~ for the various meson, photon, electron or
nucleon interactions can be calculated directly. The results
are in agreement with those of Tomonaga and his collabo-
rators. ' Note that in calculating @ defined by (4) the normal
component of q „must be eliminated by (1). Thus if
m=(j„—q„)n" say, a term such as q„y" occurring in @ must
be written &„Q+(p„n")(p~nt, )—(x-z„n")(m —Z~n~). @» can
then be derived after a short calculation.

The above presentation shows that the error in Section II
of a recent paper by Dyson, 4 corrected by him in a note added
in the proof, arose from the neglect of the dependence of the
Hamiltonian on the direction of the surface.

Equation {2)was deduced by Weiss' for the Poisson Bracket
in classical field theory. Weiss' work has been developed
independently by Roberts' to derive the classical analog of
the Schwinger-Tomonaga theory.
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'HE beta-spectrum of I'" has recently been studied in
this laboratory' with a view toward determining its

possible complexity. In connection with this study a number
of internal conversion lines were found and were assigned as
X, L and M lines of four gamma-ray energies. Metzger and
Deutsch' also have recently made a study of the I'" radiations.
Their report did not include a gamma-ray of 163 kev energy

=(b/bs(x)) t 1's (x') do'j. Thus the second of Eqs. (5) can
be written in the form

chcbpH/bo'= t (ps, gl(ps( xH)]. (6)
If + and %' are corresponding wave functions in the

Heisenberg and Schrodinger representations, then %' = U(o +.
Denote the Heisenberg variable by p~ and the Schrodinger
variable by ps. Then

eH= U ivsU. (7}
Also Bps/ba =0 and by an argument similar to that used by
Dirac'


