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be produced by a large solenoid. W'e have taken a long step
in this direction, and although our resolution does not yet
permit observation of the true line width, we believe the
results obtained so far are of some interest.

Apart from the increased resolution, our experiment pro-
vides a severe test of the theory, for the "strong" magnetic
field, Hs, is here actually comparable in magnitude to the
perturbing intermolecular magnetic fields.

The proton resonance in one liter of water at room temper-
ature was observed at a frequency of 50 kilocycles per second,
in a magnetic field of approximately 11.7 gauss. The magnetic
field was produced by a solenoid four feet long, one foot in
diameter, with a correcting coil 16 inches long wound over
the central portion. The calculated magnetic field inhomo-
geneity over t'he volume of the sample was of the order of one
milligauss. The signal was detected by means of a lock-in
amplifier with a band-width of about one cycle per second.
The observed signal voltage was roughly 15 times noise.

The observed line width, taken here as the distance between
the points of maximum and minimum slope on the absorption
curve, was 7 milligauss; on a frequency scale, this is com-
parable to the 30 cycles-per-second modulation frequency, a
situation seldom occurring in previous experiments. In such
cases there is reason to believe that the line width is deter-
mined by the modulation frequency rather than by field
inhomogeneities. A similar e8ect has been observed and
explained in Stark effect patterns in the microwave region. "

These experiments are being continued with the aim of
increasing the resolution and of testing for possible shifts of
the resonant frequency from 7IIO, arising from second-order
eEects.
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'N the usual discussion" of the Sommerfeld theory of
- - diffraction by a semi-infinite conducting plane, approxi-
mate expressions are derived which are valid only in the
regions outside two parabolas. ' At optical frequencies this is
not a serious restriction, but at radar frequencies the detecting
unit is much smaller than the excluded region.

Dr. R, B. Watson and the writer are engaged in some
diffraction measurements that involve the diffraction field
inside the parabolas mentioned above. For this region,
approximate analytic expressions have been developed which,
in connection with the formulas already known, cover the
entire plane. To save space, all of the symbols used are those
defined by Baker and Copson. '

%'hen the electric vector is parallel to the edge of the screen,
the electric vector in regions S2 and Se, except for the parts
inside the parabola T"=1/~e', is given by

d, = (1/2) exp Iikp cos(qb —p')+ikct I
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The plus and minus signs apply in the illuminated and in the
shadow regions, respectively. C and S denote the Fresnel
integrals as defined by Jahnke and Emde. ' The argument of
these functions is kpI1+cos(p-p') ). The error of Eq. (1)

is not greater than. me'/2. It is seen readily that the first two
terms of (1) represent a plane and a cylindrical wave, respec-
tively.

When the electric vector is parallel to the edge of the screen,
the electric vector in regions Si and S~, except for the parts
inside the parabola T'=1/mes, is given by
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The minus and plus signs apply inside and outside the region
of geometric reAection, respectively. C and S again represent
the Fresnel integrals, but the argument is kpI1 —cos(p+p') I.
The error of (2) is not greater than me'/2. It is readily seen
that the first term of (2) is the incident plane wave, the
second term is a plane wave traveling in the direction of the
reflected wave, while the third term is a cylindrical wave
diverging from the edge.

When the incident plane wave is polarized so that the
magnetic vector is parallel to the distracting edge, the above
discussion will apply to the magnetic vector, provided that
the second term on the right side of (1) has its sign changed,
and that the second and fourth terms on the right side of (2)
have their signs changed. The corresponding electric field can
be readily calculated.
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ET us consider a perfectly compensated hot-wire ane-
~ mometer with a wire of non-negligible length l. If Iq is

a factor by which the measured intensity of longitudinal
turbulence should be multiplied to give the correct intensity
of turbulence then (1/Ii, ') = (2/P) Jo'{I-s)R„{s}dswhere R„ is
the transverse correlation coeScient. This relation was first
found by H. K. Skramstad' by a rather complicated method
and was obtained by the author' by a much simpler method.
In the case of isotropic turbulence I~ can be expressed' in
function of the longitudinal correlation coefficient R by
(1/I ~) = (1/l) Jo'R, (s}ds.

If the length l is large compared with the transverse
scale of turbulence L„=Jo"R„(s)ds then' (1/It, ') =2L(L„/l}
—(L ~0/L ')(L„/l)'g where I. &'& =Jo sR„(s}ds. In homogene-
ous isotropic turbulence L„&'&=0 and L„=2L„. With wires
for which l)&L we have then (1/IP) =L,/l. As

lim (1/IP} =0,
(~/&v)~

it appears that the longitudinal turbulent energy measured
with a hot wire of an indefinitely increasing length (compared
to L„) will approach zero even if the real energy is not negli-
gible.

If now we consider the case when l/X () being the microscale
of turbulence) is small, then developing R„(y) in a Taylor's
series and computing the value of the factor Ii, we find'
{1/IP)=1—P/6X'+Gl4/120X4, where G=X'R~~+(0). If l/) is
su%ciently small the simple relation (1/IP) =1—P/6)P can
be used to correct the measured intensity of longitudinal
turbulence.


