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The quantum theory of a radiation 6eld in an inhnite dielectric medium is extended to include dis-
persion. The Cerenkov radiation is discussed in terms of the theory both for the case that the medium
is at rest and the electron moving and for the case that the electron is at rest and the medium moving.
In each case the results agree closely with those of corresponding classical treatment.

A. THE CLASSICAL FIELD EQUATIONS

"N the first two parts' we have discussed the elec-
t - tromagnetic theory of dielectric media and its
quantization. It was noted that this theory was not
satisfactory for a treatment of many physical
problems. In particular, the radiation emitted per
unit time by a charge moving with velocity u) c/n
in a refractive medium at rest is infinite. The reason
for this is that we did not take into account the
phenomenon of dispersion, which is a characteristic
of physical media. In the present discussion we
extend our results to include dispersion.

In the coordinate system for which the medium
is at rest the dielectric constant e and the magnetic
permeability p vill now be functions of the fre-
quency k' of the light wave that is passing throu h

the medium, or

since e and p are invariants. Here (k,k') represents
the wave number-frequency four-vector for a
Fourier component of the electromagnetic wave.

The field variables Fp„and G» satisfy Maxwell's
equations (Eqs. (6) and (7) of Part I). Thus Fi„
can be expressed in terms of a vector potential tI5„
as given by'Eq. (8,I)

(4)

However, to obtain the definition of G~„ in ac-
cordance with Eq. (9,I) we perform a Fourier de-
composition of the field variables, setting

y, (x) = (2s.)-' d4kQ. (k)exp[i(k x —k'x')]. (5)

e= e(k'), p= p(k').

g
Equation (9,I) is modified by putting z= ey —1

under the integral sign in the Fourier representa-
tion. This equation may also be written as

The field vectors will then be related by the equa-
tions

D = (2s.) &

~,

d'kE(k) e(k') exp Lik x],

G „=F„+ d' 'g( — ')

X [F„.(x')vi, Fi.(x')v„]v',—(6)
where

8 = (2x)—
jr

d'kH(k) p(k') exp Lik. x], (2)
g(s) = (2n.) ' d'ki~(v'k' —v k)exp[ik, s ] (7).

where k'=k/n (n= (ep) & is the refractive index of
the medium) and E(k) and H(k) are the Fourier
components of E(x,t) and H(x, t), respectively.
Here and in the following the notation is the same
as that of Parts I and II.'

In the case of a general coordinate system in
which the medium is moving with the four-velocity
(v,vo), the above equations must be generalized.
Q~e have

e = e(v'k' vk) p =p—(v'k' v lr), —

' J. M. Jauch and K. M. Watson, Phys. Rev. V4, 950 (1948);
2'4, 1485 (1948). The notation in the present paper follows
that of Parts I and II. Reference to equations in the 6rst two
parts will be given as "Eq. (8,I)" to mean Eq. (8} of Part I,
etc. Greek indices run from 0 to 3, while Latin indices may
have values from 1 to 3 inclusive.

II).„(x)= (2s.) ' ' d( k/pI) ),G„( ) kexfpi xk'], (8)

where Gq„(k) is the Fourier transform of Gi„(x).
Hq„will also satisfy Maxwell's equation (7,I).

It is apparent that the other equations of Part I
defining the field variables can be expressed in a
similar way by replacing functions of rc, say f(~),
by the integral operator

j d'x'k(x —x'), (9)

As it is not possible with dispersive media to
introduce p as a multiplicative factor, we will find
it convenient to introduce a new set of variables
II),„derived from the G),„by the relation
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k(z) =(2z) 4, d'kf(x)exp[pk z j
Thus Eqs. (10), (12), and (13) of Part I become

x=8'@p v—B.v& I q(x —x')y, (x')d'x',

+"= qP —v,v"
) q(x —x') y (x')d'x',

It is also easily shown that 4, and x (Eq. (10))
satisfy Eq. (14) when 4'" does.

Transforming Eq. (14) into k space by a Fourier
transform. ation, we obtain the following condition
on the k's.

k),k~ —iv),v„k"k"= 0, (15)

which is formally equivalent to Eq. (41,I). Formal
solutions for k' are

xvPv k+[(I+avp')kP —a(v k)']l
kp'(k k') =

1+mo'

where

y"=@"+v.v" ' r(x x')+'—(x')d4x',

() =(2 )-' I'd'k[/«+ )j p[k"j

(12)

where
a= a(vPkP —v k).

av'v k —[(1+ave)k' —a(v k)'j*
kp" (k, k') = (16)

1+avp'

For the subsequent quantization of the field it
will be convenient to generalize the canonical vari-
ables pr„of Eq. (22,I):

z „(x)=G„'(x) —g„Px(x)+v„v' I d'x'g(x —x') x(x')

Rng

x„'(x) = (2v) '
l d'k(1/p)x„(k)exp[ik. x'j, (13)

where n.„(k) is the Fourier transform of m.„(x). It is
to be noted that m„' is related to m„as was H),„re-
lated to G

In order that these four-dimensional integrals
may have meaning, we must suppose that they
converge. It might be too restrictive to insist that
our 6eld variables vanish for large time intervals,
so we shall restrict ourselves to f~'s of such a form
that all the integrals will converge. 'This restriction
would seem to be physically reasonable in that one
would hardly expect the state of the field at suffi-
ciently great space-time distances to aEect a par-
ticular region of interest. We thus assume our x's

to be so restricted; then the differential and integral
operators commute. For instance,

8, q(x —x')@.(x')d'x'=) g(x —x')Bp'y, (x')d'x'

where 8,'=—8/Bx".
Our field equation then is, '- analogous to Eq.

(11,I)

)td4x'[8(x —x')8„8"
—g(x —x') 8„'vl'8.'v j0'(x') = 0. (14)

' This equation can be derived by variation of the integral
of the Lagrangean density which is obtained from that of
Eq. {16,I) by replacing a by the integral operator of Eq. {7).

ko' and ko" are functions of k and k' and define
roots k' and k" of Eq. (15) by the conditions

kp'(k, k') =k', kp" (k,k") = k". (18)

In order to further develop the theory it seems
necessary to make some restrictive assumptions
regarding the functional form of a. |A'e shall not
endeavor to 6nd the most general functional forms
of ~ under which our present form of the theory can
be developed. Instead, we shall impose on f~: the
following conditions which seem to be physically
meaningful and which allow considerable simpli-
fications.

(a) The three functions a, p, and p shall be real
valued functions satisfying the inequality 1+a)0
on the real axis.

(b) a(z) and p, (z) are analytic in a neighborhood
of s= ~.

(c) lima(z)~0, limp(z)~1.
g~ 00 g~ 00

(d) «(z) =a( —z).
(e) [1+x(z)jz' is monotone increasing for in-

creasing real positive values of z.
The physical meaning of condition (a) is that the

medium is non-absorbing. Condition (d) is necessary
to insure the reality of the field variables. Condi-
tions (d) and (e) imply that for each value of k
there exist two real and distinct solutions of Eqs.
(18). This can be seen immediately in the rest
system of the medium where Eq. (15) becomes

k' = [1+a(k') ]k". (19)

Since the right-hand side is monotone increasing
with 0', there exist two real roots 0', k"/0 for
k'/0 which satisfy the condition 0'+k"=0. In a
general coordinate-system the roots are obtained
from those of Eq. (19) by a Lorentz transformation.
Since a Lorentz transformation is a continuous, rea1
transformation, the new roots are again distinct
and real.
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k'(-k) = -k"(~). (2o)

This equation is necessary in order that we may
have real solutions of Eq. (14). That is, the solu-
tions wi11 be of the form

e(~) = "d'k['I(I')exp[i(I' x —k'"))

If condition (e) were not satisfied, we could
have photons of diferent energy for a given mo-
mentum. This would not seem to involve any
fundamental difFiculty; however, we have excluded
this case explicitly in the present paper for reasons
of simplicity even though it might be of consider-
able physical interest.

A further consequence of condition (d) is the
functional identity

where the root k' is inserted for k' into ~ after the
derivative is evaluated, as indicated. Here A and y
are defined as

A= [—(1+avoo) —zb')&

y=(1 —(gko /gk ) oo

and b= (v —&)k '. (23)

On replacing k by —k this expression goes over into
the negative of Eq. (22), since k"(—k) = —k'(k).
Collecting the results, we can write the D function as

The expression for A is obtained from (k —ko )
using Eq. (16). The pole at k'=k" gives

-1
[(1+~o')(k"—ko')(1 —(~ko"/'ko))]o'-o".

—expL —i(& 3' —k'y')]]. (24)

+go( g) [.( kjl o)]) D(y)=o(2~) i (dk/kA&)[exp[i(k'y ky))

d'k[A(k)exp[i(k x —k'x')]

+A*(h)«p[ —i(k x —k'xo))].

The fact that we have only two (real) solutions of
Eq. (15) implies that the vanishing of x in Eq. (10)
(the subsidiary condition) and its time derivative
at all space points and at a single instant is suffi-
cient to make it vanish for all time. This may be
readily verified by using a Fourier representation
such as that used above. The conditions stated
imply that the Fourier coefFicients vanish.

For later use we desire a D function analogous to
that of Part I. We define

pex[ik, y']
D(y) = a(2m) ' ~ d4k

k, k& 'v'v'k, k. —

r

=a(2w) 4 d'kexp[ik y)J

dk' exp[ —ik'y']X,(21)
"v (k' —ko')(k' —ko")(1+ceo')

where ko' and ko" are given by Eq. (16) and are
equal to our roots k' and k" when we substitute the
value for k' and k" into ~ in Eq. (16). The contour
of integration is deformed at the poles k' and k"
on the real axis as described in Part I. The contour
is further deformed to avoid any contribution to the
integral from singularities off the real axis. This can
be done as we have assumed ~(s) to be analytic at
z = ~. According to the residue theorem, inte-
grating about the pole k =k' gives a term

This divers from that obtained in Part I only in
the occurrence of the factor y and in that ~ is now
a function of k. Since the D function has the prop-
erties of a Green's function, it will determine the
manner of propagation of a light signal in the
medium. In particular, we wish to so choose the
contour of integration in Eq. (24) that the wave-
front velocity of a light signal is just c, its vacuum
velocity —a problem similar to that of Sommerfeld
and Brillouin. '

In appendix I the following results are shown
concerning the analytic structure of the quantities
in the integrand of Eq. (24):

(i) k', A, a, 1/y, and p are analytic functions of k
in a neighborhood of k= ~ for all values of the
angular variables.

(ii) k' is an odd function of k, whereas 4, a, 1/y,
and p. are even in k.

We first illustrate the problem by considering
the propagation of a signal f(xo)(=0 for xo(0)
initiated at the point x = 0 at the time x' =0 in the
coordinate system for which the medium is at rest
(v=0). Consider the function

f(x,xo) = ((2m) ' 2/)iJ" (d'k/kny)

X [f(k')exp[i(k x —k'x'))

—f(—k').xp[ —i( x —k''o))], (25)

where f(k') is the Fourier transform of f(xo) and n
is the refractive index of the medium. As n and y

[(1+cavo') (k' —ko")(1—(gko'/gko))]oo o,
'A. Sommerfeld, Ann. d. Physik 44, 177 (1914); L. Bril-

1ouin, Ann. d. Physik 44, 203 (1914).A discussion is given by
J. A. Stratton, Ekctromcgnetic Theory (McGraw-Hi11 Book

2kAy, ~22) Company, Inc. , New York, 1941), p. 335.
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are even and k is odd in k, we can write Eq. (25) as is odd in k, we can write this as

(fx,x') = ((2zr) '/2)i I (kdk/ny) f(k')

)&j dO exp[i(k x —k x'')]

= (1/4v) (1/r) (1/2zr) l dk'f(k')

g [exp[ik'(nr —x') ]—exp[ —ik'(nr+x') ]], (26)

where r =
~ x~, dQ is an element of solid angle, and

k =k'n. We have also used the relation dk/ny =dk',
which is demonstrated later (see Eq. (90)). Choos-
ing the contour of integration to lie above the singu-
larities of the integrand for outgoing waves and
below the singularities for incoming waves, we see
that f(x,x') vanishes outside its light cones, or for

Going to the limit of an impulsive signal for which
f(k') = 1, we obtain just the D function for the case
v=0. When v/0 we can expect the same result,
as the light cones are invariant under a Lorentz
transformation. However, we wish to inver+igate
this general case in more detail.

Consider the tensor

Qg„(y) = (2m) ')Id'kryo, „

X [exp[zk,y ]/[k, k' ~(v,k')'—]], (27)

where I'» is a tensor which may depend explicitly
on ~ and p, , but does not otherwise depend on k„
and is non-singular as ~~0, p,—+1. C represents the
particular contour of integration that we shall
choose. Because of the covariant form of Eq. (27),
a Lorentz transformation will give an equivalent
expression in the transformed variables kp vp and
gp. Since k, enters only in an invariant manner into
the integrand, the contour C will transform into an
equivalent contour in the new variables.

As I'» is assumed to involve only ~ and p as
variable quantities, we can perform the k'-integra-
tion in such a manner as to avoid any contribution
to the integral from the singularities of F~„. This
gives

g„„(y)= ((2 )
—'/2)i I(d'k/kA&) 1" „(v'k' —v k)

&([exp[i(k y —k'y')]

—e pL-z(k y-k'y')]]. (28)

as in Eq. (24). Again, since ii, i1, y are even and k'

Q&„(y) = ', (-2~)-'z kdk (dn/i1y) r»
f

&&exp[z(k 'y k y')] (29)

From our assumption that in the limit as k—&~,
i~—+0, and ii~1, the integrand in Eq. (29) then goes
over into that of the usual vacuum case. Thus on
performing the angular integrations, we obtain two
terms which behave asymptotically as simple in-
coming and outgoing waves, respectively. Since
the integrand is analytic in k in a neighborhood of
k = ~ before the angular integrations are performed,
it will remain so afterward. Then choosing the k-
contour above the singularities of the term that
behaves asymptotically as an outgoing wave and
below the singularities for the asymptotically in-
coming wave term, we see that Q» vanishes out-
side its light cones, or for

Replacing I'» by unity in the above analysis gives
just the D function.

A further important relation can be established:

(~/e )D(y) I„,= ~(y). (30)
For

(2ir) ' p (a(k)bv' 1)
~ d'k

]
2 & 0 xq &)

( 1
X~ - —

~
(exp[ik y]+exp[ —zk y]). (31)

E 1+gvoz)

The quantity in brackets can be written in the
form 1+f(k) where f(k) —+0 as k~~. The singu-
larities of f(k) are among those discussed a,bove,
so the integral of the f(k) term vanishes, when we
choose the contour above (or below) the singu-
larities of the integrand for terms that behave
asymptotically as exp(ikey~)(or exp( ikey~))—. The"1"term gives just the b-function.

When the electromagnetic held interacts with
an electron field whose current-charge density is
j", Eq. (14) must be generalized. Writing the field
equation in terms of H„i, defined by Eq. (8), we
have

(32)

making use of the subsidiary condition. That the
subsidiary condition can be imposed in the case of
interaction follows from the continuity equation
8),j"=0, as in Part II.

B. THE QUANTUM THEORY OF THE
DISPERSIVE FIELD

Our next problem is to develop a quantum theory
of the electromagnetic held discussed in the first
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section. In particular we shall suppose that there
are Iil electrons at the space points z„(n = 1,2, X)
and shall develop the quantum dynamical theory
of the interacting electron and electromagnetic
fields. The coordinate representation of the electron
field will be used for simplicity, as we are primarily
interested in the quantization of the dispersive
electromagnetic field.

The dispersive field is of the non-localized type
discussed by several authors. 4 That is, the field
variables H&" depend on the values of the I'&" not
at a point but over all space-time. This introduces
certain difficulties from the standpoint of the usual
canonical development of field theories. Whereas
we can still derive the field equations from the
variation of a Lagrangian density, ' we find that the
space-time symmetry of the integral operators
having the form given by Eq. (9) does not readily
Iend itself to an unsymmetric space-time canonical
treatment. We must accordingly develop the theory
along other lines. In discarding the energy-momen-
tum densities of the canonical method we lose a
prescription for constructing a Hamiltonian formu-
lation but not quantities of physical significance,
since these latter quantities occur only as the inte-
grated form of the densities of energy and mo-
mentum. Noting that the integral operators oc-
curring in our theory are replaced by multiplicative
factors in k-space, we can suspect that the theory
can be more readily developed in a k-space repre-
sentation. Therefore, we choose a development
similar to that of Pauli' in discussing the ) -limiting
process, which will later be shown to be a special
case of the present theory.

We can write immediately the Hamiltonian for
the N electrons in the electromagnetic field, for it
will be of the usual form:

II. =II.+II'

IXp Q(e p„+Pm), ——

II'= —)"jib"d'x= P e„(y'(z.) —e P(z.)). (33)
n=l

Here j", the current density of the electron field, is
j"= g e e"&(x—z„), with e the charge on the nth
electron, e"(k=1, 2, 3) the Dirac matrices, and
e'=1 the unit matrix. Equation (33) clearly leads
to the correct equations of motion for the electrons,

4 P. Dirac, Phys. Rev. V3, 1092 (1948); F. Bopp, Zeits. f.
Naturforschung I, 53 (1946); W. Heisenberg, Zeits. f. Natur-
forschung 1, 608 (1946). The occurrence of the four-vector
parameter v" in our theory represents a difference between
these theories and that of the present paper. For this reason
the method of treatment used here cannot be directly applied
to the 6eld considered by Bopp and Heisenberg.

~ W. Pauli, Rev. Mod. Phys. 15, 194 (1943).

@i= ((2gr) I/W2) d'k T(k)
J

X [Ax(k)exp[i(k x —k'x')]

+A i+(k)exp[ —i(k x —k'x')]], (36)

where T(k) is a normalizing factor and the Ai(k)
and Ai+(k) represent dynamical variables in our
theory. The form of Eq. (36) is such that pi satis-
iies Eq. (14) with the Az and A&,+ constants of mo-
tion in the free-field case. From Eqs. (34) and
(36), we see that if T(k) is

T(k) = I/(key) &, (37)

then the commutation rules for the Ay and A~+ are

[Ai.(k),A +(l)]= I'i,.(k) b(k —l),
[Ag(k),A.(l)]= [A i+(k),A.+(l)]=0. (38)

These are considered as the fundamental commuta-
tion relations of our theory.

There are a number of conditions which must be
met by the theory. Since we have imposed a sub-
sidiary conditions x(x) =0 on the classical theory,
we have now

x(x)II =0, (39)

as these are the same as those for the usual vacuum
case.

It remains to quantize the field variables @' and
to find the part of the Hamiltonian, Ho, corre-
responding to the free electromagnetic field. We
postulate commutation rules for this (non-inter-
acting) field:

i[4&(x) 4' (x)]=K& (x x) (34)

where Pi, = P,i are real c-number functions to be
determined. As we are interested in a k-space
representation, we introduce the Fourier decom-
position of Pi,

exp[ik y ]
Q&, (y) = (2ir) 'jt d'kl'i, .(k)

k.k"—K(v "k„)'

(2n.) '
t d'k

=i ~ I'g. (k) [exp[i(it y —k'y')]
2 ~ kw~

—exp[ —i(ir y —k'y')]], (35)

where I'~ =I',~ are real unknown functions of k
yet to be determined. The last form follows if we
assume that we can exclude any contribution from
the singularities of F), to the k -integration, as will
be justified from the final choice of that function.
We note that this last form is consistent with the
field equations (14).

Performing a Fourier decomposition of the held
variables @)„we have



—v»v"g(x —x') )g'(x')d'x' =j„(x). (42)

q(x —x') is given by Eq. (7), and x'(x) is derived
from x(x) by

x'(x) = (2s) ')td'k(1/ii)x(k)exp[ik. x ],

where y(k) is the Fourier transform of x(x). Collect-
ing the terms in Eq. (42) which contain a time
derivative, we obtain just ~»'(x) of Eq. (13). Then
we must have

i[Hp, 7r„') = BIH»'+8&t[b„'—8(x ,

x')—
J

—v»,kg(x —x') ]y'(x')d'x' (43)

i [H', rr»'] -j„. (44)

Since the time-dependent operators A~, A~+ are
constants of motion when there is no interaction,
it follows that

i[HO, A), (k)]= —ik'Ai(k),
'i[Ho, A i+(k)) = ik'A&+(k). (45)

These equations imply that IIO must be a quadratic
function of the A 's determined to within an additive
constant to be of the form

H, =-',
~

d'kk'[q'»(A&, (k)A„+(k)

+A»+(k)A i(k))), (46)

where Ii»= 1»i is determined from Eqs. (38), (45),
and (46) by

I (47)

A principal axis transformation on the quadratic
form in Eq. (46) will also diagonalize the commuta-

where 0 represents the state vector of the system
in a Heisenberg representation and y is given by
Eq. (10). In order that Eq. (39) may not lead to
further subsidiary conditions, we must also have

[x(x),X(x')]=o (40)

hold in virtue of the commutation relations (38).
Then

(dy/dx')0=0

will follow from Eq. (39), as was shown in Part II.
With interaction, Maxwell's equation (32) will be

[B„H"» —j"]0= 0.

Also, the Hamiltonian and the commutation rela-
tions (38) must be consistent with the field equa-
tions (17,II), which are for the dispersive field

tion rules (38). It is thus seen that the eigenvalues
of Ho are of the form (n+1)k' where n is a positive
integer (or zero) as usual. The corresponding field
momentum vector will be

P =-', I d'kk[q"»(Ag(k)A»+(k)+A„+(k)A), (k))]. (48)

Writing the four-vector (P,Ho) as P", we see that
the expectation value for this operator for any
state is of the form

P»= g P (a)(n, (k)+-,')k»,

where k»=(k, k') and n, (k) represents the number
of photons i'n the k'th momentum state with "po-
larization" along the 0'th principal axis of the
quadratic form in Eq. (46).

We also note that if F(x) represents any of our
field variables,

i[F(x),P„]=BF(x)/Bx (50)

H =H, +Hp+II', (52)

because of Eq. (47).
Equation (43) is satisfied in virtue of Eq. (45).
To satisfy conditions (40), (41), and (44) we

choose

F&.(k) = [gi.+(~/(1+ K))viv. ]ii (51.)

These commutation relations are now formally
equivalent to those of Parts I and II except that
the factor p, is explicitly introduced, since the eigen-
values of the Hamiltonian give the energy directly
in the present paper, in contrast to Parts I and II,
where the energy was multiplied by the factor p. It
is readily verified that Eq. (40) is satisfied by Eq.
(51) if one expresses x(x) as a Fourier series in the
A' s, as is done in the next section.

As we have assumed ~(s) and ii(s) to be analytic
in a neighborhood of s'= ~, it follows that we may
perform the k -integration as indicated in Eq. (35).

Since the commutator of the field variables given
by Eq. (34) is of the form of Eq. (27), we may con-
clude that the field variables commute at points
outside each other's light cones.

That the commutation rules (44) hold in the non-
dispersive case was shown in Part II, except that
the factor p, was explicitly introduced. In the dis-
persive case the commutator in Eq. (44) will have
the same form as for the non-dispersive ease, except
for the factor of 1/y in the integrand, and that ~

is no longer constant. We are thus led to integrands
of the type given in Eq. (31), which give a 6-func-
tion as was the case for Eq. (31).

We now have the complete Hamiltonian for our
dynamical system. It is of the form
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where the terms on the right-hand side are defined
by Eqs. (33) and (46). By forming the commutators
of H with the field and electron variables we obtain
the field equations (32) as well as the differential
equations describing the electron motion when we
apply the subsidiary condition.

Introducing the three unit vectors ei(k), ep(k),
and ep(k) of Eq. (61,I), we define a set of operators
0., by

(A ei) =u, ,

(A ep) = [4/(1+«)&]ap,

C. ELIMINATION OF THE LONGITUDINAL
COMPONENTS

Just as in the case of the non-dispersive theory
(Part II), we can eliminate the longitudinal com-
ponents of the field by making use of the subsidiary
condition. Since we are developing the theory by a
momentum space representation, we must find the
subsidiary condition in momentum space. Expand-
ing x(x) of Eq. (10) into a Fourier series, we obtain

KbVO

CSK 0!2
+

(1+«)~ i1

(~1 —«b'~)'q «so
~o=( ~ )uo+ 0!2)j X(1+«)~

A3 ( $ no
(A ep) =

(/1-«bo f)" i (/1-«b'i)~) i1

(60)

JQ=O, (55)

x(k) =k A —«s k"s A (53)

and its complex conjugate as the expansion co-
efficients, if we drop the multiplicative factor iT(k).
In the absence of interaction the subsidiary condi-
tion is

x(k) II =0 and x+(k)0 =0. (54)

With interaction, Eq. (54) must be generalized to

where a —=v ep, b =ve p, a—nd wherever the (K) sign
ambiguity occurs, the (+) sign is taken when
«b' & 1 and the (—) sign when «b'& 1.The commuta-
tion rules satisfied by the 0.'s are

[u.(k) a '(I)]=g"~~(k—I) (61)

(all other combinations commuting) for «b'&1.
When Kb'&1 the commutation rules for e3 and O.o

are interchanged. These become
where

(56)
[no(k), np+(I) ]= —pb(k —1),
[uo(k), uo+(I) ]= +pb(k —I). (61')

The quantity f is uniquely determined' by the
condition that

Then according to Eqs. (46) and (47) Ho becomes

II =II'"+H""

1 p
Ho'" ———

I dok(k'/p) Q (n„n„++n„+a,),
2~ r=l

f=Q e„[(2pr) &/v2]iiT(k)exp[ —i(k z„—k's')] (58)

(dL/dxo)0 =i[H,L]Q =0 (57)
where

must be a consequence of Eq. (55). Using Eq. (33)
the quantity f turns out to be

(62)

n=l

as may be readily verified from the commutation
relations

i[Ho, x(k)]= —ik'x(k),

i[@,(z ),x(k) ]= i[(2Ã) P/V2—]T(k)yk„

Xexp[ —i('k z„—k's')],

i[p„,I.(k)]= i [(2pr) &/v2—]e.AT(-k)

Xexp[ i(k z„——k's')], (59)

where p„= (1/i) (8/ojz„).
The elimination of the longitudinal components

is straightforward and may be done directly in
terms of the A' s. It seems to be simpler, however,
to introduce emission and absorption operators
obtained from diagonalizing the commutation rules
(51). The elimination then proceeds in a manner
almost identical with that used by Pauli. '

x(k) =g(n, +np),

where g=A.k'/(~ 1 —«b'i)&.
Ho""' can be written in terms of L, as

(64)

Ho""«= (a) ~dok(k'/)sg) {(ap+—np+ —f~)L

+(ap ao f)L++2—aof*+—2ao+f+2(ff*/g) } (65)

In virtue of the subsidiary condition, the terms
involving L and J+ may be dropped. The inter-
action term H' can be decomposed into

H' =Hl+H'""g

f

H, i "'= (+)—
I dok(k'/p) [a,a,++a,+u,

2~ —uono+ —no+no]. (63)

Again the (&) sign is to be chosen according to
whether «b'~1. x(k) becomes
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where

H& ———p e a [(2or)-&/v2] l d'kT(k)[(a~e~

+(A/(1+«)&)aoeo)exp[ —i(k z„—k's')]

+comp. conj.] (66)

H'""&= —Q e„[(2or)—i/v2]) d'kT(k)

(l 1 —.b'l):&
X a e,(a e,) + l

~ iao)
Kavo

+ ao exp[i(k. z„—k's')]
x(iy.) ~

Here A 63 is understood as being expressed in
terms of the a's by means of Eq. (60). Comparing
Eqs. (6S) and (67), we see that the ao terms in
Ho' "& just cancel the O. o terms occurring explicitly
in Eq. (67).

We now replace p by p„', where

is the Coulomb interaction. II~ is the last term in
Eq. (67) and is

(2or) i l- f~aVo

H2 ———Qe, d'kT(k)
v2 ~ A(1+«)i

X [ao exp[i(k z„—k's')]+comp. conj.]. (72)

H3 comes from the part of A eo in Fq. (67) that
was not included in p„' in Eq. (68).

Ho ———g e a [(2or)
—l/v2]~Id'ke, T(k)

n

X [ab«/A(1+ «)1][a,exp[i(k z —k's') ]
+comp. conj.]. (73)

Because of the form of the contour of integra-
tion, we can evaluate the integral giving the Cou-
lomb energy in Eq. (71). If we drop the terms in
Eq. (71) for which n=m, we can rewrite it as

(2s.) '
(

d'k p ( «bvo)
Hc= P e.e

l 1+
2 -&- & k&X'~( X)

X [exp[ik (z„—z„)]

p.'=p. —e.a ((2or)-*'/v2) d'kT(k)e, A e,

ah~
ao exp[i(k z —k's')]

A(1+«)l

+comp. conj. . (68)

But we see that
'[p.',1.]=0,

o[p~ P "]=8$ "/Bz„,
i[P,s;]= 5;,5„„,

i[p-',p-'] =0. (69)

The last relation holds in virtue of our choice of
contour of integration which makes the field poten-
tials commute at djR'erent space-points. But one
can take the observable p

' as (1/i)(8/Bz„) because
of the relations (69) after the subsidiary condition
has been applied. Hereafter, we drop the prime on

l
Pn ~

Collecting our results, we see that the Hamil-
tonian becomes

H =Ho'"+Hp 1Hg+Hg+H2+ H3,

where H& is given by Eq. (66) and

(2n.)-'
He=(~) d'k(k'/1)(ff'/a') = Z e.e

zs ~ ozz

d'k p(1 —«b')
X I

— exp[ik (z„—z„)] (71)

+exp[ ik—(z„—z )]]. (74)

Ke assume that the quantities ~ and p are non-
singular at the origin in k-space. We can then dis-
place the k-integral below the origin by a small
semicircle, since this won't change the value of the
integral. Performing the angular integrations we
obtain terms that behave asymptotically with k~ ~
as simple positive and negative exponentials in

ik is —s l. Since the contour is chosen above the
special singularities caused by functional depend-
ence of ~ and p, for the positive exponential term
and below the singularities for the negative ex-
ponential term, we can shrink the contour to a small
circle enclosing the origin for the former and a small
circle below the origin for the latter term. The
integral may thus be evaluated in a neighborhood
of the origin in which ~ and p are effectively con-
stant, having the values.

&o=«l «=o go=pl «=o.

We also have y = 1 when k =0. The «obvo/A term
will vanish on performing the angular integrations,
as it is odd in k. For simplicity, we assume that v
is parallel to the s axis. Then set

( 1+ tco

I,=k, f„=k„, I, =l
l
k„

E 1+«ovoP)

$, =(z —z )„$„=(z„—z )o,

(1+«ov

/
(z„—z„),.

1+«n )



QUANTUM ELECTRODYNAMICS

t d(cos8)d4
~Pdi il eel ) cOSIIi

~-eil) e
—il $-

d/4m
2iig

= (2~)'(I/5), (75)

For the coordinate system in which v=o, this
becomes

H =c(1/4 irp)pP e.e /Iz„—z
I

n&m
(77)

where pp ——p
~

q p, the static ~alue of the dielectric
constant. Il~ is thus seen to be the same for a dis-
persive as for a non-dispersive medium, which is
consistent with the notion that it represents a static
interaction.

This completes the formal development of the
theory. Before applying it to some examples, we
must show its relation to the canonical treatment
of Parts I and II in the limit of non-dispersive
media. We shall find, as a matter of fact, that there
exists a canonical transformation which brings the
Hamiltonian of Part I I into the form of the present
Hamiltonian when x and p, are constants; and, in
particular, the Coulomb energy (Eq. (48,II)) will
reduce to just Eq. (76), which holds for both dis-
persive and non-dispersive media.

where (= ~(~.
Returning to a general v direction, we have

i Po
I+c=—2 e-e-, {(z-—z-)'(1+«)

4~ -&~ (1+«cp') l

+~p[v (z„—z )$'I —
&. (76)

parts of the Hamiltonian simultaneously. The pres-
ent time-dependent operators O.„are thus constants
of motion when there is no interaction, whereas the
quantities ai and ap defined by Eq. (71,I) have a
rather complicated time dependence before the
subsidiary condition is imposed.

It is thus necessary to examine the relation be-
tvPeen the operators ai and a2 of Parts I and II
and the operators uI and 0.2 appearing in the present
treatment. This can probably be done most easily
by expressing the operators P.(k) and Q„(k) of Eq.
(57,I) in terms of the n's by expressing the poten-
tials P, in terms of the n's according to Eqs. (36)
and (60), substituting these into Eqs. (22, I) and
then comparing the resulting Fourier coefficients in
Eq. (57,I) with those of Eqs. (70,I). However, we
don't need the general expressions relating the a' s
to the 0.'s, but just those which hold after the
subsidiary condition has been imposed. We then
obtain

where
a, (k) =S 'np(k)S, (79)

(2pr)
—

& 1
S= exp — d'k n, (k) —Q e.

A(1+.)l vZ(Ak)lk-

Xexp[i(k z„—k's') $ —comp. conj. . (80)

ai(k) =ni(k)

~ah (2pr): 1
ap(k) =np(k)+ —Q e„

A(1+e)& V2(Ak)&k e

Xexp[ —i(k z„—k's') ]. (78)

But the transformation on ap in Eq. (78) can be
expressed as

D. THE LIMITING CASE OF NON-
DISPERSIV MEDIA

~, p, , and ~ are now considered to be constants
as in the first two parts. We wish to show that we
can perform a unitary transformation to bring the
Hamiltonian of Part II into the forin of Eq. (70).

Since the energy is multiplied by p in Part II,
and the quantity p does not occur in a simple
manner, we will set it equal to unity to simplify
the analysis. If desired, we could redefine the A' s
so that ii did not occur in Eq. (51), and then could
show the equivalence of the two forms of II in the
general case; however, the added complication is
of no interest.

The source of the apparent discrepancy in the
two forms of the theory lies in the fact that in the
first two parts we diagonalized only the transverse
parts of the free-field Hamiltonian, whereas in the
present discussion we chose operators e„that would
diagonalize both the transverse and longitudinal

On performing the transformation (79) from the
a's to the 0, s, the Hamiltonian is transformed as

H(a) =S 'H(n)S, (81)

where H(a) represents the Hamiltonian of Part II
and H(n) is the same function of the n's The tra.ns-
formation replaces the a's by the o, s according to
Eq. (78) in H(a) and also the momentum operator
p„of Part I I is replaced by

(2pr) & l. d'k aab
5 'p,.S=p„—e„

V2 & (Ak)& A(1+a)&

X [np exp[i(k. z„—k's') ]+comp. conj.]. (82)

Comparing this equation with Eq. (73), we see
that

S ' Z n p- S=Z n y.+Hp.
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On making the substitutions (78) into the Hamil-
tonian of Part II, the Coulomb energy and H2 of
that section are transformed into the corresponding
expressions (71) and (72). The equivalence of the
two Hamiltonian forms is thus demonstrated.

It is interesting to note that by means of a
second transformation of the type used here that
one can completely eliminate the term H2 from the
Hamiltonian. In this case the Coulomb energy
becomes equal to that of the classical theory,
which can be directly obtained from Eq. (63,II).
This transformation is given in appendix II.

E. CERENKOV RADIATION

We assume that the medium is at rest and wish
to calculate the Cerenkov radiation due to an elec-
tron traveling with a velocity N„as in Part II.
~, c, and p are now functions (k')' only, and we have

k"=k'/(~+1)

to determine k' as a function of k. As the angles
giving the direction of k are not involved in It:, A,

y, etc. , the choice of contour of integration is con-
siderably simplified. We must, however, choose it
in such a manner that we obtain a 6-function in
spite of the 1/y term in such equations as (31).
The singularities can be avoided by enclosing them
in two boxes joined by a line crossing the real axis
at a point I' sufticiently far from the origin that
the condition of energy conservation will make the
integrand vanish before we reach it in the final
integrations. The probability per unit time for the
emission of a photon of momentum k is, as in Eq.
(79,II),

dr = 2 dp, (lII, l )„ (85)

(lH&l')i, is given by Eq. (80,II), except that p
occurs to the first power only (as we are not now
multiplying our energy by p) and that y (Eq. (23))
occurs in the denominator. We suppose that the
initial electron momentum is y and that after emit-
ting the photon its momentum is p —k. The initial
and 6nal energies are, respectively,

E,= (p'+rnm) &, Ei ——(k/n) +[(p—k)'+m']&, (86)

where n=( +x1)& is the refra. ctive index. We find
that energy and momentum conservation give
(Eq. (92,II))- ~=[E./p j+L /( +1)jLk/2pj, (87)

where 8 is the angle between k and y.
The density of states is, as before,

d pi =k'(dk/dEr)dQ, (88)

where dQ is the element of solid angle into which k
is emitted. But

dE /dk = [d(k/ )/dk j
y (k —p costt) [(y —k)'+in') '. (89)

y (Eq. (23)) is defined as

y = 1 —k(d(1/n)/dk').

dk'/dk=d(k/n)/dk = 1/nq (90)

in Eq. (89). Using the value of cos8 from Eq. (87),
we obtain, assuming k«p,

dk ii+1 2E~ 1 —y 2E„x+1
1+

der ~ k . ny

Similarly, we obtain

(91)

d cos0 1 ~ 1 —y 2E„~+1
1+

dk 2p ~+1 ny k
(92)

which is valid when k«p. Combining results, we
have

1 u t' 1 )dk
epl 1 — l~

2 4~' I n2u') np
(93)

where p is the azimuth angle. The rate at which
energy is radiated is

dW
t

k e'u r ( 1
dI' = ul 1 ——lk'dk' (94)

4v& I, nmu2&

s—=e'k' —v k

but in the present electrostatic case k'= 0 so

ii=c[(—v k)'j (95)

and similarly for e and p, . When n'(1 for all
values of k, the self-force vanishes as before. Other-
wise we have an equation of the type (77,II). How-
ever, on integrating over the angles, the dependence

since dk'=dk/ny This a.grees exactly with the
classical results of Frank and Ta,mrn (references
are given in footnotes 3 and 4 of Part II), except
that they took p, =1. In this integral n' can be
expressed in terms of the frequency k' rather than
k, which simplifies the integration. The integration
in Eq. (94) can be performed entirely along the real
axis, since n'u'&1 before we reach the point I' at
which the real axis may be cut.

We would like now to investigate the behavior
of a charge at rest in a medium moving with veloc-
ity u) c/n. This is essentia, lly the study of Cerenkov
radiation in the coordinate system for which the
electron is at rest. We must first modify the classical
treatment of Part II to conform with a variable a.
We can start with Eq. (76,II); however, u will
now occur to the first power instead of the second,
as the result of our dropping the factor p, in the
definition of the energy. ~ is a function of
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of x on the angles gives us an additional factor

k d~——1+—
v' - 2 («)» ds *-«n.&'-

(96)

so

d~'= Le'/2]L1/4 '][M/(I+ )( )']
X [1/y][dk/v](«v' —1)dP. (105)

The force on the electron is
where 2 has been written for —v k and is set equal
to k/(»:)» after the derivative d«/ds is evaluated. F
Then the self-force is given by (Eqs. (77,II) and
(78,II))

e'
»» («v' —1) kdk

F=—v
4s. & «:+1 «v'

(97)

d p» =k'(dk/dE») df» kdk(v'/v)dy- —

where p is the azimuth angle. Finally

&i~ i')"=[' /2(2 )'][I/']
&&[( '-1)/( )»( +1)][1/v],

(103)

(104)

Ke now turn to the corresponding quantum-
mechanical treatment of this problem. The treat-
ment is very similar to that of Part II. Ke calculate
the transition probability for the emission of a
photon of momentum k by an electron at rest in
the moving medium. We can assume that k&&m

(since dispersion is assumed to cut off the integrals
to satisfy this condition). This probability is (Eq.
(99,I I))

dZ'=2 dp, (III,~')„, (98)

where II2 is now given by Eq. (72). If the electron
is initially at rest, it has a momentum —k in the
final state. In working out the condition for energy
conservation, we may expand in powers of k/»»»,

keeping only the lowest powers, except that
must not be expanded as it is assumed to be a
rapidly varying function. We thus obtain, as in
Part II,

cosn —[v—o/2»»»v]k —[1/(«v')»] (99)

for the value of the angle between k and v. Since ~

is a function of s=e'k —v k, this is only an implicit
equation for cosa. Equation (99) is obtained from

2,= (k'/2~)+k' = 0,

where L~p is the energy of the final state. For y
(Eq. (23)) we have

y = 1 —(Bko'/2k') —1+—,'(k/(«)») (d~/ds) (100)

using Eq. (99). From these results, we have

dk/dE& —2m/k[1 [2»»»/k]
&&[(v-1)/v][1/( )"']]-' (101)

and

d cosa/dk — [v'/2rnv]—[1—[2m/k]
~ r(T —I)/7][1/( )' ']] (1o2)

Then

=(e'/4v)v I [(«v' —1)p/(1+«)«v'][kdk/y]. (106)

We see that this agrees exactly with the classical
result (97) in our approximation, as s—=v'k' —v It
~(k/(«)»); and thus y'=y, as can be seen from
Eqs. (96) and (100). That the contour of integra-
tion is along the real axis in Eq. (106) follows from
arguments similar to those given for the preceding
example.

It is apparent from the two examples discussed
above that applications of the theory may not be
as complicated as would appear from its general
formulation. Thus in simple radiation processes
such as those considered it is not necessary to solve
for k' and ~ as functions of k in general, Rather, the
conditions for energy and momentum conservation
may lead to quite simple results as is seen above.
For instance, if we chose a simple relation for z
such as

~ =constant/(1+) k") (107)

in the discussion of Cerenkov radiation (when
v =0), we would find the k' had eight branch points
in the complex k-plane. e, p, would have consider-
ably more, including several poles. By our treat-
ment we need never solve for k' as a function of k,
but can substitute Eq. (107) directly into Eq. (94).

F. THE X-LIMITING PROCESS

If we set ep, =1, then ~ =0 and the medium ve-
locity no longer appears explicitly in our equations
for the field variables or in the Hamiltonian. Its
only occurrence is in e and p, , so we may treat it
as an arbitrary parameter. In particular, we may
set

e(v,v') = (3,X')

where e is a number.
Then if we take»»=cos(k'X' —k 2), our theory

becomes equivalent to the X-limiting process. For
instance, the commutation rules (38) become

[A„(k),A „+(I)]=g„„cos(k'X —k X)8(k —1). (108)

G. CONCLUDING REMIGES

We have given a formal extension of the quantum
mechanics of the electromagnetic field. This gen-
eralization was obtained by subjecting the classical
phenomenological field equations of Maxwell to
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the process of quantization. In doing this it is no
longer possible to maintain the principle of rela-
tivity. This is only natural since a ponderable
medium introduces automatically a preferred co-
ordinate system, namely, the rest system of the
medium, and there is no objection to this from a
physical point of view.

It might appear to be worth while relaxing some
of our restrictive requirements on the functional
forms of ff: and p in order to apply the theory to the
vacuum ease. However, in doing this it seems to
be impossible to avoid conAict with the relativity
postulate. This eonHict would not be of the "crude"
type which could be detected by a Miehelson-
Morley experiment or similar arrangement, since
the kinematics is that of the Lorentz group. How-
ever, there might occur results for certain scatter-
ing cross sections which would depend on the ab-
solute motion of the coordinate system. A conse-
quence of this sort is of such a radical nature that
we do not yet feel justified to propose a phe-
nomenological electrodynamics for the vacuum.
The same reason prevents us from applying such
generalized theories to meson fields.

a=P a„s'&
@~1

(A1)

as an absolutely convergent series in a certain
neighborhood of z =0. Furthermore, we may expand
the quantity ko' of Eq. (16) into an absolutely con-
vergent series in ~, when ~ is sufficiently small,

ko' ——k 1++ bo~' ——k 1++c„s'"
@=1 m=1

(A2)

by inserting Eq. (A1) into the first equation in
(A2). The final power series in (A2) is again abso-
lutely convergent for sufficiently small z. Finally,

s—= 1/(k'vo —v k) = [1/kj (1/(vo —b))

+Q d„s'" (A3)
n=l

APPENDIX I

We must justify our being able to choose the
contour of integration in such a manner that we
can avoid undesirable contributions to the integrals
in k-space arising from the special singularities
caused by the dependence of e, p, and x on k'v'
—v.k. We have assumed that e and p approach
unity and ff:—+0 as their arguments become infinite,
and that these quantities are all analytic in a
neighborhood of the point at infinity. Writing
1/s—=k'so —v k, we have

is obtained by using Eq. (A2). The coefficients d in
this equation will be expressed in terms of the
coefficients c of Eq. (A2), which in turn will be
expressed in terms of the coefficients a„of Eq.
(A1). The right-hand side of Eq. (A3) is again
absolutely convergent in some region about z=o.
By means of successive approximations, we can
solve Eq. (A3) formally for s as a function of k.
We obtain

s= [1/k(vo b) j+P f (1/k").

We must prove that the expression given by
Eq. (A4) converges to the solution of Eq. (A3)
for large enough k. We have when Is I &Q, where Q
is some suitable positive number,

(D is some positive number) by hypothesis. Now
let us assume that the n —1th approximation,
z„1, is such that

Then
Is„,

I
&Q'&Q.

I
2' d~(s--i)'" I &»

lim Is —s„ iI =lim
I P d (s„ i"—s o")

I
=0.

Thus Eq. (A4) converges absolutely for values of k

satisfying Eq. (AS).
Then ~, A, k', and 1(y occurring in the integrals

in k-space can. all be expanded into convergent
power series in z, and thus in k—' for sufficient1y
large k. It should be noted that it is easily verified
that we can make the substitution of Eq. (A4) into
absolutely convergent series in z to obtain con-
vergent series when k is su%ciently large. It is a1so
seen that the coe%cients in these power series, which
involve the angles, have no singularities (as k'vo
—v k) 0 for real k) 0). The angular integrations
can be performed, leading to analytic functions of
k as coefficients of the power series in k

—'. Thus the

where Q' means the summation used in finding
the nth approximation (in which all powers of s
higher than the nth are dropped). Then

I s- I
& [1/k][(1/(s' —b))+D3 & Q'

when k) [1/Q'j[(1/(v' —b))+D j. (AS)

But this means that all the approximations are
bounded and within the circle of convergence of
Eq. (A3) (since the first can be so chosen) when k
satisfies Eq. (AS). But since s„differs from s„ i
only in powers of k greater than the (n 1)th, w—e
can conclude that
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integrands involving the final integration over k

will be analytic in a neighborhood of k = ~.
Turning to Eq. (A3), we note that replacing k

by —k and s by —s leads to the same equation,
so s must be an odd function of k. From Eq. (A2),
we see that k' is also an odd function of k. Equation
(Al) shows that « is an even function of k. Also A

and y are even functions of k.

0.2= T QT, (A6)

where q is an operator satisfying the same com-
mutation rules as 0.2. Here T is

T=eDq+ D*q

with

D = Q e„[(2s)-&/v2][«amp/h(1+ «) &]

&& [I/(il.k)'][I/O ]e'xp[ i—(k z k—s )']'.(AS)

This leads to a Coulomb term

Hg=g [1—( /(1+ ))v(P]e 8 4'(z —z„) (A9)

in agreement with Eq. (70,II). Here 4' is defined
by Eq. (59,II). We thus see that our Hamiltonian
can be put into the form given by the classical

APPElVDIX II

It was noted above that it is possible to eliminate
the II2 term (Eq. (72)) entirely from the Hamil-
tonian by means of a unitary transformation (we
assume that the medium is non-dispersive for
simplicity). This transformation is

theory. (There are some extra c-number vector
potential terms, as in Eq. (70,II).)

It is rather curious that the term H~ can be so
eliminated. When «s')1, 4'(s) is infinite every-
where on a cone (Eq. (6S,II)), whereas in the pre-
vious forms H~ is finite except at points s„=s .
In the calculation of the self-force on an electron
at rest it was shown that H2 was physically mean-
ingful (as it accounted for the force). However,
when we perform the transformation (A6) and if
we discard the infinite self-energy electrostatic
term corresponding to n=m in Eq. (A12), we lose
entirely the effect of II2 when only one electron is
present. This paradox occurs because it is not al-
ways a consistent procedure to discard infinite
terms just because they are infinite. It is to be
recalled that in calculating the self-force classically
in Part II that it was necessary to assume an ex-
tended source model for the electron, then to let
the radius of the source approach zero after the
self-force was calculated. Were we to assume an
extended source model also in our quantum theory,
then Q„& in Eq. (A9) could be interpreted as an
integration over the charge elements. The self-
force would then be given by the expectation value
of

Pp =i[H Qp]

which must be in agreement with the classical re-
sult. It appears that a discussion of the problem in
terms of point charges (in either classical or quan-
tum theory) must await a more complete theory of
the role played by self-energy terms in electro-
dynamics.


