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The Electromagnetic Shift of Energy Levels
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The effect of the interaction with the radiation field in changing the energy levels of an electron in
an external field is calculated using the conventional form of perturbation theory. The infinite
self-energy of the electron which occurs in the same approximation is removed by subtracting
from the Hamiltonian a "mass operator" 3L The criteria used in deriving M are that it should cor-
rectly give the self-energy for a free electron in the absence of an external field and that the amended
Hamiltonian should give a properly covariant form for the level shift in an external field. It is pointed
out that M is uniquely determined by these requirements.

The results give 1051 mc/sec. for the 2sy —2py separation in hydrogen and also show the surplus
magnetic moment of the electron as a/2x Bohr magnetons, as first found by Schwinger. The amended
Hamiltonian can be used for determining the radiative corrections for other processes.

I. INTRODUCTION important consequence that when we carry through
the renormalization of electron mass and charge,
to be discussed below, we shall get finite observable
eEects due to radiative coupling. This would not be
true in the one-electron theory.

The other main result of introducing hole theory
is the phenomenon of vacuum polarization in the
presence of an external field, which also leads to
logarithmically divergent expressions. It has long
been recognized that the main effect of the vacuum
polarization is to electively increase the electron
charge from eo to e where

ECENT measurements, for example the work
of Lamb and Retherford' on the 6ne structure

of hydrogen, indicate that calculations made on the
basis of the Dirac theory of the electron should be
modified.

This, however, does not necessarily indicate a
failure of the theory. Many calculations, for
example of atomic energy levels, are made without
taking into account the interaction of charged
particles with the radiation held. We might reason-
ably expect that when the radiative coupling is
properly considered the energy values would in
general be diferent from those calculated in the
usual way. The di%culty, however, is that the
energy values thus calculated are found to involve
divergent integrals. Thus each energy is infinite
and moreover the difference of energy between two
levels will in general be also infinite. It is for this
reason of course that the interaction is omitted in
the usual calculation. It is, however, significant that
the energy levels calculated with omission of this
interaction are only very slightly diA'erent from
those observed experimentally. Thus though the
radiative coupling gives rise to infinite level shifts,
yet in a very real sense it behaves as a small per-
turbation.

A separate aspect of the problem is due to the
fact that the ordinary one-electron Dirac theory is
incapable of explaining positron phenomena and is
moreover plagued by the negative energy solutions.
The Dirac hole theory disposes of these difhculties
and it is on the basis of hole theory that the present
calculations will be made.

It is well known that the introduction of hol
theory reduces the degree of the divergences whic
are encountered. In place of linear divergence
which are encountered in the one-electron theor
we meet only logarithmic divergences. This has th

e =ep(1+ 8), 8 (e'jkc)x.

Here X is a logarithmically divergent integral. %'e
argue that when the entire theory is eventually
modified for very high momentum exchanges a
result will be to make E convergent and of order
unity or smaller. Without this belief indeed the
application of a perturbation theory would be
senseless.

But now with the argument that the measured
charge e includes the additional "induced" charge
we see that the term in the Hamiltonian of the
system which corresponds to this renormalization
should be omitted. The residue is then interpreted
as the physically observable part of the interaction
which produces the vacuum polarization. '3

In precisely the same way it has been argued' '
that the infinite energy which arises when we
consider the radiative coupling (without the vacuum
polarization terms) is mainly due to a term which
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represents an increase in the effective electron mass.
The radiative coupling will be considered as a small
perturbation, its smallness being characterized by
the fact that in a future theory the electromagnetic
mass should be of the order (e~/hc)mq where mo is
the mechanical mass. Arguing as above we should
therefore subtract this mass renormalization term
from the Hamiltonian. The residue will then give
rise to observable effects. The separation of the
mass renormalization term is however more difticult
than the separation of the charge term. We shall
consider the self-energy of a free electron (which
should of course be exclusively a mass renormaliza-
tion term) and we shall be guided by this in finding
the renormalization operator (the "mass" operator)
in the case of an external field. The fact that the
self-energy of a free electron diverges, introduces
ambiguities in the determination of the mass
operator. The choice is determined in this paper
by requiring that the results be Lorentz invariant.
This is discussed in Section III of this paper. Some
evidence can be given that this determination is
unambiguous.

In the present work we shall consider an electron
in an external time-independent electromagnetic
6eld. We shall evaluate to the 6rst non-vanishing
order the perturbation energy which results when
we add the radiative coupling to the Hamiltonian
of the system. We shall then separate out the part
which may be regarded as energy due to electro-
magnetic mass and also the terms corresponding to
a charge renormalization. The residue which will
be 6nite will be regarded as the true level shift.

II. THE PERTURBATION ENERGY

1. We consider an electron in a stationary state
$0 of an external time-independent electromagnetic
field. The state of the vacuum will be that where all.

negative energy states are filled; the physical situ-
ation in which we are interested will have all the
negative energy states and one positive energy
state $0 filled.

We regard the radiative coupling as a perturba-
tion. As the significant energy we take the difference
between the energies of the two systems: vacuum
plus one electron in $0, vacuum.

W= TVvgc+i —+"vac

KVe shall call S' the perturbation energy. At first we
shall consider separately, in the usual way, the
transverse (electrodynamic) and longitudinal (elec-
trostatic) parts of the perturbation energy.

2. The electrodynamic energy (WD). We expand
A, the transverse vector potential of the radiation
held, in plane waves. We regard the wave function
function of the entire system as a function of the
photon and electron occupation numbers. For

physical states where no photons are present we
then find that K~i ———e P e A transforms as
follows: electrons

where e*, a are the usual electron creation and de-
struction operators and ( ) denotes a matrix
element. We take the + or sign in the exponential
for transitions involving respectively, absorption or.

emission of a photon. a~ is a unit polarization vector
and ei k=e~ k=ai e~ ——0. We shall often write
0! F)t = A)I, .

A second-order perturbation calculation with this
interaction gives

nc'
t dk A"„„¹(1N,)—

W=
4n' & k ~' E, E„ck— —

A=i, 2

A"„„„S',N„
(2)

where X, are the electron occupation numbers and

2"ii „=Qi*ni, exp( ik r—/h)gi)

X(il *un exp(+ik r/h)P„ ). (3)

M~e then get

gTD glDX+ +DiV (4)

nc' p dk A"pJ Jp
WDx

4n' " k ~ Ep Eg ckbg— —

—ac f' dk
WD iv

2x' ~ k'

where g J—means a sum over negative energy
states and 8s Es/~Es{ = &1. W——e call WD the
electrodynamic exchange energy and I'D~ the non-
exchange energy. The reason for this separation and
nomenclature will become obvious later.

3. The Electrostatic Energy (We). The electrostatic
energy which represents the Coulomb interaction
energy and self-energy of the electrons can be
written as the average value of the operator

drdr'
-', e' {x~(r)x(r) I {x*(r')x(r') I

fr —r'J

where x=P a,P, and as before the a, and P, are
the electron operators and eigenfunctions. The
product { ) is the spin scalar product.

Hi„,—+ —eh(2irc)t Q Q,"e eg
r. s, I (k) &

A=i, 2

Xexp(haik r/h)P, )a,'a,
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uc p dk
0JJo'Jy

4w' ~
Jt(dk/h')A "o,„„=2~'hB"o,„„, (14)

nc t dk—ZA ooze
2X' „O' J—

(" whe-

Ke now find as before that 5'~ can be divided In evaluating the sum over X we can most simply
into exchange and non-exchange parts. take 0,),

——ni, n2, n3, i.
S'8 = I/tt'8~ S'~" To combine the non-exchange terms we note thatW=W +W A'oozq=0 (by an application of (10)). We find too

that

where 241,~ „ is as dehned before with the under-
standing that a4 ——1.

4. Symmetric Form of the Perturbation Energy.
The expressions above for ttt~'D and 5'8 are in dif-
ferent form corresponding to the fact that we have
divided the total field into two parts and treated
each part in a different fashion. We may now write
S'~ in a form closely analogous to t/I/'D. This is of
little importance in calculating g and t/I/' since
the two methods will of course give the same result.
But the difference will be found to be of importance
when we later consider the subtraction procedure to
eliminate the energy due to electromagnetic mass.

If H be the one-electron Hamiltonian, P„and E„
its eigenfunctions and energy values, we have

(P„*[Hexp(&ik r/h) —exp(&ik. r/h)H]lP )

=(E„—E„)g„*exp(+ik r/h)g ).
But

H exp(haik r/h) —exp(haik r/h)H

=ace k exp(~k r/h).

So

(E„—E„)(g„*exp(+ik x/h)P )

= hach(g„*ao exp(haik r/h)P ), (10)

where ao ——(1/k)a k.

Using this we 6.nd that we may write

Oc~ t dk
Wsx

4mo" h ' (Eo E' chug)——

X{A ozzo —A ozzo}i (11)

where in A'I, g „, n), is replaced by uf, .
Adopting now the convention that

8"o' =
J {go*(r)a"P'(r) I

X {4„*(r')ad@(r')I(drdr'/{ r —x'{). (15)

Then

WÃ WDN+Wsn — e2 Q'j!3x
XJ

Lpo(r) p„„(r')—(1/c') J,(r).J„„(r')]
X(drdr'/~ x —r'~). (16)

The last step follows from the definition of B"~~ „
and the identification of ece as the current operator.
po and Jo are here the charge and current densities
due to the electron in fo, p„,„and J„„are the den-
sities due to the electrons in the negative energy
states.

To summarize we have now, for the total per-
turbation energy, W +W" given by Eqs. (13),
(16). We now examine each of these separately.

5. The Ton-Exchange Energy. The non-exchange
energy has been considered by many authors, first
by Uehling "for the case of an external electrostatic
field. When the eigenfunctions occcurring in lV~
(Eq. (16)) are expanded in powers of the external
potential the zero order term gives simply the
interaction with the unperturbed vacuum electrons
which is of no physical interest. The first order
term contains a divergent charge renormalization
energy and a finite term AW~ which we regard as
an observable effect. The higher powers are of no
interest to us. We get then

~W"= a/15m(h—/mc)'{-'U ea 7'A—]Av, . (12)

Qg' F(X) = F(1)+F(2)+F(3)—F(4), (12)

we have

g7X gJ'8X'+ glDX'

QC P~ ~ OJJO
(13)4.oJ h, z (Eo E, chb,)——'0 E. A. U'ehlinj„Phys. Rev. 4S, 55 (&935).

where p= U/e and A are the potentials for the
external field.

In the case of no external field, only the zero
order term remains and thus we may say that the
non-exchange energy vanishes for a free electron.
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6. The Exchange Energy We now put Wx (Eq.
(13)) in a form suitable for calculation. We treat
fo exactly but expand the intermediate states in

powers of U=eit —ee A where p, A refer to the
applied field. This procedure is clearly not accurate
for low-lying intermediate states. Ke therefore
restrict ourselves to values of k (the momentum
exchange) which are greater than bp where we con-
sider 8~1/137 and p=mc. For k&bp we shall be
able to use the non-relativistic calculation of
Bethe. 4 The two parts of the result will join cor-
rectly.

We expand P~ as

0'=4'(q)+2
E~(a) —E~ (q')

4'(q')+, (»)

where p~(q) =u~(q) exp(iq r/k) is a Dirac free
electron solution and Uoo"*= (p"'(q) Ug'(p)).

We insert this expansion for the intermediate
states into S"x and collect together the terms of
different orders in U. We have then

Wx= Wx+Wx+
where, for example,

—ac2 r dk
gT X

4m' " k». o

(Po~uz exp(ik r/k)$~(q))($*~(q)az exp( ik —r/k)fo)

(E(q) —Eo4+ck)

cn (p —k)+&pc
G+=-,' 1+

E(p —k)

KVe write

= -', [1aH/E]. (20)

(E(p —k) WEo+ck) =B~. (21)

We can now write the terms of W~ as expectation
values in fo of certain operators. We get

nc' dk G+ G
Wo"= — —P' n&, ———~x

4w'~ k & 8+ 8— (22)

ec-'p dk 0+U G+ G UG
+

4n' k i B+ B+. B B
O' UG G UG+

-Av

O.c' dk G+ UG

4m' ~ k ~ 8 8

In the second part of 5'~ we have

E(p-»+E(p -»'

where Eo is the energy of fo and

E(a) = +(cV+u'c']'.
We introduce now the projection operators G+

which we shall use all throughout the calculation.
These operators when operating on free electron
states of momentum y —k select those of ~ energy.

where it is to be understood that p stands to the
left of U and p' to the right. Both Box and S'i
diverge. The higher terms however are convergent.
It will become plain later that the higher terms will
not contribute to the level shift and it is for this
reason that we have written no terms of higher
order than 5 ~x above.

III. THE ELECTROMAGNETIC MASS OPERATOR

We must now separate from t/t/'x that part g™
which is due to electromagnetic mass; or, more
generally (for use e.g. in scattering problems), we
should find an operator 3f which represents the
e.m. mass effect. This operator, which should be
proportional to the Dirac operator P, will then be
subtracted from the one-electron Hamiltonian in
accordance with our idea of mass renormalization.
For level shifts we subtract from 8'x the average
value W~ of this operator in Po.

We proceed as follows; let us find an operator R
such that for a free electron in the state p the self-
energy is Q*Rp). We would then like to argue that
R is the desired mass operator M. There are how-
ever ambiguities. The self-energy of a free electron
involves only the diagonal elements of an operator
(in terms of free electron solutions) and thus from
the self-energy the non-diagonal elements cannot
be determined. Thus 3f is determined by the above
procedure only to within an operator with no
diagonal elements.

The ambiguity may be removed by definitely
choosing M so tha. t it is a multiple of Pp. We meet
here the fact that M is divergent and we encounter
all the difhculties involved in handling infinite
quantities in an unambiguous fashion. (For example
the usual calculation for the free electron self-
energy does give for the divergent part a term in
Ppo, but there are finite terms not of this form. )
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One method of treating the problem is the rela-
tivistic "cut-off" procedure introduced by Feyn-
man. ' This method avoids the ambiguity by modi-
fying the electromagnetic interaction so that the
divergent integrals become finite. We shall not
discuss the procedure at this point though in part
V we shall give a simple application of it.

Alternate1y we shall use as a criterion the re-
quirement that the result, for the level shift in an
external field be in a relativistically invariant form.
Specifically we shall calculate the level shift in both
an electrostatic and a magnetic field and combine
the results to give the level shift in a general e.m.
field. We will find that this may be m'ritten as the
average value of the following operator

cieg —c,ea A+co ', (k/mc-)'SV+c4(ek/2mc)Pe I
+ (k/mc) 'V'(cop —coca A), (25)

where SV is the operator which enters in the inter-
action of a magnetic moment with the electrostatic
field. It is defined later by Eq. (36) and its rela-
tivistic equivalent is (mc/k)ipco VV. The c s are
numerical constants of order n. For an invariant
reSult We muSt haVe Ci=C~o, Co

——CA (alSO Co=Co but
we shall not however calculate co). We shall
require that 3f be so chosen that these conditions
are satisfied. It mill be noted that when ci ——c2 the
first tmo terms simply form a charge renormaliza-
tion term of' no significance. It will however turn
out that ci = cg =0. The identity of c3 and c4 insures
that the correction to the magnetic moment will be
identical if measured by the interaction with an
electrostatic field or with a magnetic field.

We see from Eq. (22) that we can write the self-
energy of an electron with momentum y as

where H(p) =ca p +pic and is to be interpreted in
the obvious fashion.

We note that consideration of W(self) does not
distinguish between Z(p) and H(p) in the denomi-
nators above. It has been pointed out to the authors
by Professor F. J, Belinfante that the require-
ment of symmetry between electrons and positrons
demands the use of H(p) and not E(p). We shall
use M as given above for calculating the level shift.
Strictly speaking, the mass operator should be
written as —',(iV+3f+) where M+ is the adjoint to
3E and dilfers from (27) by having the denominators
placed to the left side of agG+0, ),. This is of no
account for the Lamb shift calculation, but is
important for scattering problems. There is still an
ambiguity to be resolved. If we had written the
self-energy not in the form above but, for example,
in the more usual form given by Eqs. (5), (8) with
the electrostatic and electrodynamic energies sepa-
rated, then clearly we would have written a dif-
ferent mass operator (say M') which would have
different non-diagonal elements than M, though its
diagonal elements would coincide with W(self).
With some manipulation the difference between 3I
and M' can be evaluated. Neglecting terms of order
higher than (p/p)4 we find that 3I 3I'= T, —

T=n/(3irm)[PP' IAn p]. -- (28)

It has indeed been pointed out by Kroll and Lamb'
that any operator, not higher in order than (p/p)',
whose diagonal elements are zero is equal to a
multiple of T. Thus any operator which has the
same diagonal elements as the correct mass operator
must differ from it only by a multiple of T. This
fact can be used to justify the mass operator (27).

For an applied electromagnetic field given by p, A
(where V=e@) we find by use of the Pauli approxi-
mation to the Dirac equation that

—Oc p dk 0.) 6+0'),
W(self) =

4ir'- & k A Z(p —k) —Z(p)+ck

(po*Tpo) = (ii./6or) (k/mc) o(po*SVpo)

+ (ci/37r) (go*en Ago) (29).
(26)

E(p —It) +B(p)+ck A,

We therefore define

ac~ p dk—Q' nAG+nA
4oro 3 k &, E(P —k) IZ(P) +ck—

(27)
E(p —k) +H(p) +ck

Thus the addition of a multiple of T to any mass
operator changes the' values of c2 and c3 in the
resultant level shift (25) but leaves ci and c4
unaltered. We may choose this multiple of T so
that c3 ——c4. If at the same time we find c~ ——c2 we
may conclude that the resultant mass operator M
is the correct one and that this choice of 3I is
unambiguous since a different choice must neces-
sarily lead to a non-invariant result.

We remark finally that M, defined by (27) does
give the desired invariant result. This will be
shown in IV and V; it will be found that the mag-
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netic moment term will be invariant (i.e. , cg=c4)
without using any special precautions in handling
divergent integrals which enter in the calculation.
More care must be taken with the charge term and
we shall indeed use the Feynman cut-ofP to evaluate
it. Its value will then be zero.

ac'
t

dk G+
hW»=

~

—Q' n), az
4~2 J P ~ B~2

0
+ng np, —

B 2
-Av

&W»= W» —W."=W» —[MjA, . (3o)

IV. THE LEVEL SHIFT IN AN ELECTROSTATIC
FIELD

It is convenient to consider separately the cases
of an external electrostatic and a magnetic 6eld.
We now briefly outline the detailed calculation of
the level shift for the former case. We have for the
level shift (exclusive of 6W~ given by Eq. (17)).

G 1
+ (8 V—UE) ag

2
-Av

nc p dk

4s' ~ k

G+ UG

nc' p dk, G+ 1
+ — —Q'n), (E V—VE)

4~' ~ k ~ B+' B+,

In anticipation we may say that the order of the
level shift is

G—UG+
+ ny

B B+ ~ Av

(n/~') CP'V7A. -(alu~) E V'3.,

~~x = ~ox+ +'ix —W". (31)

We combine TVox and g™and then to eliminate
the H(p) in the denominator we introduce the
operators H+ which decompose f~ into its positive
and negative energy parts.

1 cn p+ pic 1 H(p)H+=- 1~ —
.=- Ia . (32)

&(p) — 2- &(p)

'6'e get then t/t/'Ox —W'~ = lV~'+ 8'2',

—nc- p dk G+
Wg' ——

I
—Q' ag ngH+

4'' ~ k ~ B+'

Thus in the expansion of g x we need terms up to
W2 . On the other hand the only terms in S'&x not
smaller than the order of the level shift are terms in

L V jA„we would expect such terms to be canceled
exactly since U' is not a gauge invariant quantity.
It has been verified that this is so, and for this
reason the expansion of 8'x is now carried only to
first order. AVe have

nc'- p dk G+ G
I
—P', —VG-+—VG+

4~' ~ k ) B+ B

(34)
B+ 8 A,

In (34) and elsewhere we have

E=E(p —k) =cLp'+(p —k')]'

and G+, B, are given by (20), (21). Each of these
terms is now calculated. The procedure is to
expand, B, E in powers of k p keeping as many
terms as will contribute to the effect (no higher
than p' in any case). Such expansions are valid for
all k. We then integrate over directions of k and
finally over the magnitude of k. In the last step
we meet only convergent elementary integrals of the
form J'k"/(Q"A~'A ') where

Q =c$y'+k'j& A & = QWZ0+ck. (35)

Since we concern ourselves only with non-rela-
tivistic $0 it is convenient to use the Pauli approxi-
mation to the Dirac equation to reduce various
operators to their non-relativistic equivalents. We
then find that all operators occurring reduce to a
combination of the two

G II—
+n~ n~H++ U . (33)8' B~

Wq' is of second order in V. (It is W2' which cancels
the V' terms in WP. ) Combining WP and W&' we
now find that we can write b, S'x as the sum of four
separately convergent terms.

7'V, SV=(1/k)VU e&(p —-', V'V. (36)

In SU we understand that V'U e Xy =0 for s states.
The relativistic form of SV is (mc/k)iPn 7'V.

We find the following result for the four terms
of AT4 X. Writing each term as

a/3s (k/mc) '[p&(V" V)A, +p~(S V)A,], (37)
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pi ——a, Inb+as In2 ——,',
p2=0,
p2 ———-,'In2+p,
p~ ———~ Inb —ln2 ——,',

pg=o,
pi ——-', In4i+ -,' In2+Sa,
pi = —$ ln2+35/24,
p, = —»21n44+-', ln2 —9/8,

v(2si~a) = +1034 mc/sec.
v(2p, i,) = —17 mc/sec.
v(2pay2) =+8 mc/sec.

(38)

we 6nd, respectively, for the four terms of A W» (34) we find the following level shifts, which we write in
terms of the corresponding frequency:

nt kq'
(&' V)a,

3& Emc)

tadk 11 1 3
X ——ln2+ ——— ——(5V)a, , (39)

~ I O k 24 5 4

where cko is the Bethe lower limit.
We record also the results of separate calculations

of the shifts due to electrodynamic exchange terms
(X = 1, 2) and the electrostatic terms (X =3, 4).
Writing as above, we have:

For AWn», pi —— ~ (dk/k) —ln2+-'„p, = a.
~ID

For a8"'~, pj ————,', p2 ———1.

The spin term in the level shift has the form of
the interaction of a magnetic moment with the
electrostatic field. It gives a surplus magnetic
moment of the electron n/2ir Bohr magnetons, a
result first given by Schwinger. '

For hydrogenic atoms of principal quantum
number e we have

(k/mc) '(i7' V),„=8n'(T4/n') Ry, (l =0),

=0, (l/0),

T4 1
(k/mc) '(S V)a, —4n'—R——yn' (l+1)(2l+1)

(40)

(j=1+2),

1' 1
= +4n' —Ry——,(j= l —-', ).

n' l (2l+ 1)

where, as mentioned above, Bp is the lower limit
of the k integration and we consider 14 1/137.

Now adding the four terms above, together with
the Bethe non-relativistic result which joins on
correctly and hW~ given by Eq. (17), we get for
the total level shift

Thus the 2s~~2 state, which by the Dirac theory is
degenerate with the 2pi~a state, will on the present
theory be higher by an energy corresponding to
1051 mc/sec. This is in agreement with the measure-
ment of Lamb and Retherford. '

V. THE LEVEL SHIFT IN A MAGNETIC FIELD

We repeat now the calculations for the case of
an external magnetic field. We shall be content
with verifying the magnetic moment result derived
in IV and shall not calculate the term in e V'A.
We have for the applied field U= —ee. A. The
order of magnitude of the level shift wi11 be

n[p H]a, n[en A]a,

where p is the magnetic moment operator. We may
thus neglect terms in A' and p'A.

Expanding the intermediate states in powers of
U, it will be sufficient to consider terms of order
zero and one. Since 0.), does not commute with U,
the manipulations used in IV to write AR'x as the
sum of individually convergent terms will not be
useful.

As before 6$' = t/Vi +IVY', where 8'i'= %ox
—8'~. TV&x is found by taking U= —ee A in Eq.
(23) and Wi' comes from Eq. (33) by changing V
to —ee A.

We now calculate each term using the same pro-
cedure as in IV. We consider non-relativistic &0 and,
in various convergent terms, we use the Pauli
approximation to the Dirac theory, to reduce
various operators to their non-relativistic equiva-
lents. We find one essential diRerence in the cal-
culation. Whereas for the electrostatic field no
divergent integrals entered the actual calculation,
this is not the case for the magnetic held. This will
have an important consequence to be seen later.

lV&' is easily evaluated. Much more work is
required for S'&x. We write each term in the form

en/24r[p, n. A+ p, (k/mc)4r H
+pa(1/mc)(A. Ii+Ii A)]a~ (41)

We find

for Wg'.

Then for the n = 2 states of hydrogen we use the
value for J'ao"dk/k given by Bethe" ( = 7 6876) and

"H. A. Bethe, Solvay Report, 1948.

+
A+' A

p2 = pa
——2 lnb+2 ln2, (42)
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for WP (1st term)

1 tk' 1 1 2

p = —lnb ——,
' ln2 ——,',

p3 = —lnb —-', ln2 —(5/12),

for Wr (2nd term)

k'dk 2 t k'

QA+A 3 Q'A+A

p2= —
6 ln2,

(44)
pg= ——,

' ln2+-', .

The integrals appearing in each p~ are logarith-
mically divergent. Q and A & are as given in (35).
The range of integration is from by, (h~1/137) to ~.
If now we evaluate the integrals without taking
special precautions because of their divergent nature
we find the following values:

p~~=
~

(dk/Q) —21n8 —2 ln2 ——,',

p, , = —
-3) I (dk/Q) + -', In 2,

p~~ ————
3~ (dk/Q) ——,

' ln2+-,'.

In every integral appearing we replace k by
n=(k'+X')& wherever k represents an energy: We
now evaluate the integrals for the two cases: X =0
and X large (say not smaller than 137y). In doing
this we take E as the upper limit of the integration
where X))P. We then subtract the result for large
X from that for X =0 and then allow X—+ ~.
Finally we may allow X—+ ~.

A little consideration will show that if an indi-
vidual integral is convergent this procedure will not
change its value. Thus the results of IV will be
unchanged. We must consider the divergent inte-
grals in AW» (magnetic case). For X =0 the values
will be as found before with an upper limit X on
the integrals J'dk/Q. For large X we have
A &~(k+ co), Q—k, dk/k —+dk/o& and thus kdk—&(k'dk/ro).

Then each separate integral in S'~' and the hrst
term of TV~ becomes

[k'dk/(v(k+(u) ']= Ii say.

The total contribution of these terms for large ) is
thus

n/2s(en A)A, {(8/3)I~ }.
The structure of the integrals in the second term
of W~ is diferent. For these integrals come from
terms involving I- = [2ck/B(p —lr) +E(p' —it) ]~&a/k.
Thus each integral here becomes, for large X,

~" [kdk/(k+~)']=I, say

We note, of course, that the divergent integrals
cancel We now add the terms and use the pauli and the total contribution for large ) is

approximation: a/2~(en A)A, {—(8/3) Ig }.
2y(n A)A„——[A p+p A+ha H]A, .

n —ek
g~X

2g 277$C

e H ——[en A]A, .
6~ I& and I& are easily evaluated. Neglecting terms

which do not contribute in the limit we find

Thus we must subtract from A W» given above (Eq.
(39)) the following term

Ke now find that we may write, for the level shift,
4a/3s(en A)a, {Ii—I~ }. (46)

We thus get once again n/2s Bohr magnetons for
the surplus magnetic moment of the electron. The
magnetic moment term in the level shift is therefore
invariant or in terms of (25) we have ca=c4. (Note
that the Pauli approximation which we have used
does not distinguish between Pe H and e H.)
However comparison of (45) with the electrostatic
level shift (39) shows that the condition c& ——c~ is
not satisfied. This can be easily remedied by a
better treatment of the divergent integrals ap-
pearing above in the p~'s. We shall use the rela-
tivistic cut-o8 procedure described by Feynman.
For our purpose this may be described as follows:

I& ——~ In (2Z/X) ——,'„ I~ ——»~ ln (2E/X) ——,'„

The term to be subtracted from ~Wx is then
—(n/6s)(ea A)A, We thus get.

hW» =a/2m [—(ek/2mc)a. H],„ (48)

giving in (25) cq=0=c~ and clearing up the dif-
ficulty of non-invariance. It might be noted that the
divergent terms which enter the calculation involve
only the operators U= U or —ee A and thus any



J. B. FRENCH AND V. F. WE I SSKOPF

error due to improper handling of divergent in-
tegrals will result only in a violation of the condition
c~ = cm in (25). An error of this sort can be corrected
by simply omitting any V and ee A, terms in the
result.

VI. COMPAMSON WITH OTHER WORK

The results derived here are in agreement with
those of Kroll and Lamb. ' Standard perturbation
procedures are used in both papers. Kroll and Lamb
do not introduce a mass operator however, but cal-
culate instead the value of the perturbation energy
(1) and omit afterwards all terms independent of
the external electrostatic field. Their treatment of
the ambiguities differs from ours only in the fact
that they do not use their own methods to calculate
the energy shift in a magnetic field but use the
criterion that the surplus magnetic moment in an
electrostatic field should be equal to that pre-
viously measured by Kusch and Foley" and cal-
culated by Schwinger. '

An expression for the level shift has also been
derived by Feynman. ' His procedure diA'ers from
that used here in that the ambiguities in handling
the divergent quantities which normally appear are
removed by introducing a relativistic cut-off. For
processes in which the actual value of the Feynman

"P. Kusch and H. M. Foley, Phys. Rev. 72, 125' (1947).

cut-olf is unimportant (e.g. , the level shift), his
results should agree with ours. Apart however from
the non-exchange level shift AW~ (the Uehling
terms given by (17)) which Feynman deliberately
omits, there is a discrepancy, of value 6(a/37r)
X (h/mc)'LV' U)A„between the two values (Eq. (39)
above and Feynman's Eq. (19)).This is due to an
incorrect joining of Feynman's result with the
non-relativistic result of Bethe. In order to join at
a momentum ko, Feynman introduces a small
light quantum mass X and then integrates down to
k=0. The correspondence between ) and ko is
given as Inh=ln2ko —1. Examination of hW» (34)
shows that the correct transformation is ln)
=ln2ko —

6 and when this is applied to Feynman's
Eq. (18) the result agrees with the exchange level
shift given above.

The formalism introduced by J. Schwinger, " in

order to express quantum electrodynamics in a
more obviously relativistic form, leads to results
identical with ours for the electromagnetic level
shift.
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