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quire a knowledge of the internal dynamics of the participating
systems; only their mass energies are required in order to set a
rigorous lower limit on the beam energy for single or multiple
production of mesons.

The most convenient coordinate frame for the analysis of
the threshold is that in which the center of gravity of the
colliding systems is at rest. The net momentum then vanishes,
and when the kinetic energy of all products also vanishes, the
threshold for the reaction leading to these particular products
has been reached. Furthermore, the absolute threshold for the
production of any particular product, such as a meson, is
reached when all other products of the reaction are left in their
combined state of lowest energy (often a single system in its
ground state). For example, when protons bombard C®? the
threshold reaction yielding positive mesons is the one simul-
taneously producing C!3 in its ground state. Above threshold
resonances should be observable in which C!3 is left in its
various excited states, and at any bombarding energy the
meson spectrum should show a corresponding structure near
the upper energy limit. On the other hand, the threshold
production of negative mesons, when neutrons bombard Li?,
yields in addition two alpha-particles of zero kinetic energy.

For a quantitative treatment suppose that in laboratory
coordinates a moving system, mass m, of kinetic energy I’
bombards a target system, mass M, at rest. The sum of their
kinetic energies, 7, in the center-of-gravity system is then:

(m4-M)H{[14+ 2MT'/(m+ M)%c*) J—1}. 1)

For a reaction leading to particular products of mass 7
and other products of total rest mass M; in their sth discrete
energy state, we have:

(m~+M)c* = (m+ M)+ Q;, (2)
as the defining equation for Q;.
We set T'=—(Q; and thus obtain as a general theorem:
T =[(mi+ M~ (m+ MP]c*/2 M, 3

T’ being the kinetic energy of the beam in the laboratory
system at which the sth resonance occurs.

The absolute thresholds of a number of typical reactions
leading to single meson production are given in Table I.

TasLE 1. Thresholds for typical reaction leading to single
meson production.

Meson Other Threshold
Beam Target produced products Mev
% P Pos. n 159
% Cr Pos. B2 161
¥ Cn Neg. N 165
b2 P Pos. d 301
b4 (2] Pos. cB 155
P Cr Neg. Niz+p 178
n P Neg. 2p 301
n P Pos. 2n 306
n Ccn Neg. N 156
n Ccr Pos. B 168
d Ccu Pos. Cu 162
d Ccr Neg. Ou 166
a Cn Neg. F 207
a Ccn Pos. Nis 202

Masses of bare nuclei have been used in the calculations, the
coupling to electronic systems being quite negligible in the
energy range where mesons are produced. The meson mass
used was 286 electron masses.

This type of threshold calculation invokes the over-all
conservation of momentum and energy. The internal kinetic
energies! of the reacting systems and the Coulomb barriers
will enter only if one undertakes further to estimate cross
sections for such reactions. A deficiency of internal kinetic
energy, as in the deuteron, may increase the observable thresh-
old if mesons can be produced only by the energetic collisions
of pairs of nucleons, but lower thresholds than those here calcu-
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lated cannot be obtained consistent with energy and momen-
tum conservation. However, when one compares the threshold
energy (3) with that calculated by the admittedly approximate
theory of McMillan and Teller, their result often is consider-
ably lower. The discrepancy arises because their formulation
is inexact in the following details:

(a) The meson is supposed to be produced by the collision of a beam
nucleon with a target nucleon, which at that instant is approaching the
beam nucleon. The velocities then compound to raise the available energy.
In order for the momentum of the target nucleus to remain zero, however,
the remaining nucleons of the target must instaneously have a net momen-
tum in the direction of the beam. The corresponding kinetic energy term,
which will usually be small, has been omitted. Furthermore, the velociy
of the remainder of the nucleus makes it necessary to calculate the kinetic
energy of the product nucleons in the moving reference frame of the as-
semblage before equating their kinetic energies to the Fermi energy.
McMillan and Teller neglected this effect.

(b) Errors are introduced by their use of non-relativistic mechanics.

(c) In the light nuclei, especially, the binding energy? of a nucleon to the
nucleus may deviate widely from 8 Mev, and as they note the kinetic energy
may be poorly approximated by the Fermi energy.

(d) The threshold state is not, as assumed, that in which the meson has
zero kinetic energy in the laboratory coordinates, but one in which it has
the velocity of the center of gravity of the reacting systems.

The valuable comments of Professor Robert Serber in dis-
cussions with the writer on this subject are much appreciated.

1W. G. McMillan and E. Teller, Phys. Rev. 72, 1 (1947).
2 W. H. Barkas, Phys. Rev. 55, 692 (1939), Fig. 1.

Erratum: On the Numerical Calculation of the
Internal Conversion in the K-Shell—
The Electric Dipole Case
[Phys. Rev. 75, 534 (1949)]

B. A. GRIFFITH AND J. P. STANLEY
University of Toronto, Toronto, Canada

IN the above letter,

(1) The formula for Ix should read as follows:

v3B([1+48+(1/6)F—1}-4+ed™ [T (1+8—ib) |
24(137)(24B)T'(34-28) | (—z)~+b—id) |2
X[2|P2+(Ql2].

(2) The explanation of 21k given in the note below Table I
is based on Hulme’s simplified model of the system considered.
This is now known to be incorrect. Accordingly, the first
paragraph of this note should read as follows:

In the above table, 2/k represents the ratio of observed
K-electrons to observed photons of energy hv. No allowance
for screening effects has been made.

For further details, see N. F. Mott, and I. N. Sneddon,
Wave Mechanics and Its Applications (Oxford University
Press, London, 1948).
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Alpha-Particle Ionization in Argon and in Air and
the Range-Energy Curves

WILLIAM P. JESSE AND JOHN SADAUSKIS
Argonne National Laboratory, Chicago, Illinois
February 17, 1949

E have recently compared by a method already de-

scribed? the relative ionization for individual sama-
rium and polonium alpha-particles in argon and in air. We
find the ionization for samarium relative to polonium about
5 percent less in air than in argon. These preliminary measure-
ments would indicate what has long been suspected,® that,
while in hydrogen and the noble gases the total alpha-ioniza-
tion is fairly well proportional to the particle energy, air is
distinctly anomalous in this respect. Thus, should we assume
the above relation fulfilled in each gas, we get for a computed
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TaBLE [. Derived values of (n —H!) mass difference.

(n —H?) from
Ni4(n, p)CH (n —H!) from Mean of (n—H!)
Range-energy (measured range  He3(n, p)H3 from the two
curve =0.991 cm) (range =0.980 cm) determinations

Uncorrected 0.751 Mev 0.754 Mev 0.753 Mev
Bethe-Livingston

Corrected 0.771 0.782 0.777
Bethe-Livingston

Parkinson, Herb, 0.822 0.845 0.833

Bellamy, Hudson

energy for the Sm alpha (Po=5.298 Mev) 2.18 Mev from our
argon comparison and only 2.07 Mev in air, a distinct dis-
crepancy far above the experimental error.

If air behaves in the anomalous manner which these pre-
liminary measurements would indicate, the effect of such
behavior on the alpha-range-energy curves in current use is
at once apparent. The energy-range curve derived from the
very careful measurements of Holloway and Livingston,* for
instance, is in reality an ionization in air-range curve. The
authors have themselves explicitly stated that the validity
of their relative energy values depends upon an assumed pro-
portionality between the alpha-particle energy and the total
ionization in air produced by it. If this condition is not ful-
filled, as our preliminary measurements would indicate, then
corrections to their energy values must be made, particularly
in the region of lower alpha-energies.

Such corrections in the region from 1 to 3 Mev we have at-
tempted to make from our measurements above. This results
in raising the energy values of the Holloway-Livingston curve
in this region by amounts varying from 60 to 130 kev. The
maximum correction appears to fall at about 1.5 Mev. This
is the region where the present curve is known to give much
too low energy values for the measured ranges, as for example
in the (n, @) reaction for B!, From a compilation of data by
L. H. Gray? based on the original ionization measurements of
Gurney we have computed corrections to the range-energy
curve almost identical with our own. Finally, we have found
in the literature a limited number of reactions where alpha-
ranges in air have been determined and elsewhere reaction
energies independent of range measurements. The plotted
points in all such cases are in better agreement with the cor-
rected curve than with the original.

It should be emphasized that our energy values still rest
upon the assumption of the proportionality between alpha-
energy and alpha-ionization in argon. We have merely as-
sumed that argon is a gas much superior to air in this respect—
an assumption we think, well justified by our own experience
and that of others.

We have also attempted to correct the proton® range-energy
curve from the corrected alpha-curve. This would seem logical.
since in the region above about 0.3 Mev the proton curve was
apparently derived from the alpha-curve by use of the equa-
tion Rg(E)=1.0072R,(3.971E)—c where R and Ry denote,
respectively, the corresponding alpha- and proton-ranges and
¢=0.20 cm is an empirical constant introduced by Blackett to
account for the difference in behavior of protons and alpha-
particles at low energies. Obviously, a change in the alpha-
curve necessitates a change in the proton curve. The energies
for the corrected Livingston-Bethe proton curve are slightly
higher than in the original (about 20 kev at range 1 cm) but
still much lower than in the curve derived from the data of
Parkinson, Herb, Bellamy, and Hudson.

Perhaps the most interesting aspect at the moment of the
corrected proton range-energy curve is the effect it will have
upon the energies derived from the proton range determina-
tions by Hughes and Eggler® in the (%, ) reactions for N¥ and
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He? and their bearing upon the now uncertain (z— H!) mass
difference. Table I shows the derived values for (z— H!) from
the three possible range-energy curves. The beta-end points
have been taken as 155 kev and 19 kev for C* and H3, respec-
tively. It will be seen that the use of the corrected curve raises
the (n—H!) value derived from the proton ranges from a
value in good agreement with the formerly accepted value of
0.755 Mev to a value 0.777, about halfway between the former
value and the new Chalk River” value of 0.804 Mev. Prob-

-ably the greatest uncertainty in the value 0.777 Mev lies in

the uncertainty in the empirical Blackett constant ¢, which
uncertainty affects equally the corrected and uncorrected
L and B curves. A minor uncertainty may lie in the assump-
tion mentioned above as to the energy-ionization relation in
argon for alpha-particles.
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7 R. E. Belland L. G. Elliot, Phys. Rev. 74, 1552 (1948).

Radiative Corrections to the
Klein-Nishina-Formula

R. SCHAFROTH
Swiss Federal Institute of Technology, Zurich, Switzerland
February 21, 1949

T is well known that the new developments in quantum
electrodynamics allow the computation of the radiative
corrections to various first-order effects.! We have applied
these methods to the scattering of light by a charged particle
of spin }.2 The calculation was first carried through using the
older methods of perturbation theory in momentum space.
After subtraction of the photon and particle self-energy-
operators,? one can interpret the remaining divergencies (for
high momenta) as a charge renormalization.t This charge
renormalization must take place in such a fashion that in the
extreme non-relativistic limiting case the corrections disappear
(compare reference 2). In addition, one obtains integrals which
diverge for small photon momenta, and which in a known way
are compensated by the scattering cross section for the double
Compton effect.® The formulas can then be transformed into
x space where they are seen to be gauge and Lorentz invariant.
Since these formulas are very long, we reserve their publication
for a later detailed paper. The evaluation leads to the same
uniqueness difficulties as in the case of the Lamb-Retherford
shift and the anomalous magnetic moment of the electron.$
The investigation of these difficulties is now under way. The
detailed calculation for the non-relativistic limiting case (that
is, limiting our results to terms « k2 logk, but neglecting terms
« k% where k is the momentum of the photon in the rest system
of the particle) gives for the correction to the differential
cross section :7

dag=(r®/137)(dQ/4w)(k/m)*{[1+cos?3][2 log(k/m)
4 (8/3) log(w/m)]— (8/3)[14cos?3] cosd log(w/m)
—(4/3)[1—cos?¥] cos? log(k/m)},

where % is the momentum of the photon, m the mass of the
electron, 7o the classical electron radius,® ¢ the scattering
angle, dQ the solid angle element, and w the cut-off radius of
the double Compton effect. Thus das is the cross section for a
process in which, in addition to the scattered photon (&), at
most one of momentum =w is emitted.

I am very grateful to Professor Pauli for his kind interest
in this work and also to Dr. Res Jost, who suggested this



