
PH YSICAL REVIEW VOL UM E 7S, NUM BER 7 A P R IL 1, 1949

On the Quantization of a Unitary Field Theory

R. J. FINKELSTEIN
Institute for Addio, need Study, Princeton, %no Jersey

(Received September 20, 1948)

In a unitary field theory particles appear not as singularities
but as small volumes in which energy and charge of the field
are concentrated. In a theory of this nature, which is neces-
sarily non-linear, all properties of the particles, such as their
equations of motion, follow from the field equations. It is
pointed out in this paper that the non-linearity present in the
usual classical field theories is suAicient to permit the existence
of particle-like solutions under certain conditions and that it
is therefore possible to derive a class of classical unitary
theories by postulating that solutions of the usual classical
theories are physically admissible only if they are free from
singularities. Ke have studied the quantization of such a
theory without specializing the Lagrangian. Momentum (G )
and angular momentum (M p) appear naturally and a rela-
tivistic definition of the position (X ) of a particle may be
given in terms of M p and G . The commutators of these par-

ticle observables (X~, G, M p) with each other are calculated
and found similar to those postulated in the Snyder formalism
which quantizes space-time; these commutators reduce to the
usual ones for non-relativistic velocities. (The quantized Born-
Infeld theory did not agree with the usual quantum theory of
particles even in. the non-relativistic limit, because it was not
strictly unitary. ) The connection between velocity and
momentum, and the equation of motion of particles which
follow from the field equations are the usual ones. Operators
for mass and charge may be defined; these mutually commute
and permit the usual classification of the elementary particles
according to mass and charge. Magnetic moment and charge
commute with the total electromagnetic field. Particle ob-
servables and observables describing the external field may
not commute in general.

INTRODUCTION

(CURRENT theories of matter are based on the~ concept of elementary particles, which are
described either as point singularities or as extended
sources of field. The point source models lead to
infinities which must be removed by subtraction
formalisms; they are unsatisfactory in their present
forms either because of the arbitrariness associated
with the subtraction recipes or because of their
reliance on a future theory which is expected to
permit the calculation of certain "infinite" inte-
grals. ' On the other hand, the extended source
models, which correspond to cut-off. and strong
coupling theories, are not relativistically covariant.
We are here interested in a theory which avoids, at
least at the classical level, the dif6culties charac-
teristic of both the point and extended source par-
ticles. In the theory to be discussed the field is
everywhere 6nite, single-valued, and continuous.
The particles appear only as small regions where
energy-momentum and charge current of the 6eld
are concentrated. The particles, being no longer
associated with singularities, do not have an inde-
pendent existence. Such a theory is for this reason
termed unitary and ascribes to the elementary par-
ticles a finite extension whenever the concept of
particle is adequate. On the other hand, in this kind
of theory one must abandon the particle concept
in certain situations such as a high energy collision,
in which the interaction is so intimate that charge,
spin, and rest energy are exchanged, and the
number of product particles need not be equal to

' Mass and charge renormalization appears to be a unique
procedure, but (1) the replacement of infinite integrals by
finite quantities needs to be justified by the "future theory, "
and (2) mass and charge are associated with the singularities
in a semi-empirical way.

the number of colliding ones; for it is certainly
meaningless to speak of the existence of extended
and distinct particles during such a collision. It is,
however, still possible to describe collisions of this
sort in terms of the energy-momentum and charge
current densities in the space where the interaction
occurs. Of course, it is likely that such a detailed
description of the interaction is not physically
meaningful; in that case it can be hoped that inves-

tigations along these lines will reveal which elements
are essential and which may be omitted. In a similar

spirit one may interpret the structure which a 6eld
theory ascribes to the elementary particles: only
those structural details which are observable, such
as mass and charge, should be taken seriously.

In a unitary theory the equations of motion of
the particle follow from the 6eld equations; in this
respect it differs from a theory in which the particles
are represented by singularities in the field, for in

that case the field equations break down at the
singularities, and therefore cannot in general deter-
mine the motion of the particles. A unitary theory is
necessarily non-linear, for one particle could not
inhuence another if the equations were linear. A
second essential role of the non-linearity is to
stabilize the concentrations of energy which are
interpreted as particles. Since the current 6eld
theories are non-linear before field quantization, one
is led to investigate the possibilities which arise,
when one takes over the Lagrangians of the usually
accepted 6elds—Maxwell, Dirac, Yukawa and
Einstein —and the usually discussed couplings
between them, and adds the postulate that a solu-

tion is physically admissible only if it has no
singularities. The coupling between these 6elds
leads to a non-linearity in the field equations which
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permits in the one case which has been investigated
the existence of static and spherically symmetric
solutions, which can be interpreted as particles,
since they concentrate charge and energy in a
small region. The Lagrangian which has been
investigated is

I-= '~..~"+(DA)(D.*4*)+oW* (1)

Then the field equations become

d d8
r z—rz +~ ——+ey

~
8 —oz8=0

dr dr Ec )
d der (co

r '—r'—+2e( —+ep ~8'=0
dr dr (c (4b)

where
D„g=(8„—zeq„)P, p=1 4,

D„*Pe= (8„+zeq „)P*, x4 =zct. (1a)

Change to dimensionless variables

s=o '(oi/c+ey), y=~o 'e8, x=or, (Sa)
This case was considered by Rosen, ' who was led
to it as the simplest modification of the Maxwellian
Lagrangian which contains the potential explicitly
and is still gauge invariant. Except for a sign dif-
ference, however, this Lagrangian represents simply
the usual Maxwell field coupled in the ordinary
way to the usual scalar (or pseudoscalar) mesic
field. The signs are so chosen that the energy of the
free electromagnetic field is positive, as it should be,
while that of the free mesic field is negative. This
choice of signs is physically meaningful if the net
energy of a particle constructed out of this mixture
is positive; we return to this question later.

Before considering the Lagrangian (1) in more
detail, we wish to point out that the Maxwell-
Dirac case, which is the most thoroughly inves-
tigated field from the standpoint of quantum per-
turbation theory, has not yet been considered from
this point of view. Other combinations of known
fields are possible, and it is possible that if a field
theory of matter exists at all, one can approach it
by considering simple combinations of fields already
believed to exist. The cases to be discussed in the
next paragraph are only illustrative and have no
physical application as they stand; we wish to
point out mainly that there is a class of unitary
theories which are very close to the current theories
and which may be arrived at by rejecting singular
solutions and rigorously satisfying the self-con-
sistency conditions of current theory.

THE MAlDV'ELL-YUKAWA AND THE SCALAR-
SCALAR FIELD

The Lagrangian (1) leads to the field equations

gbD —o')4 =0,

and take
q =xy, g =xs'. (Sb)

Then the non-linear equations

n" +(I'/x' 1)n =—o, (6a)

f(0) =g(0) =0, f'(0) =s(0), g'(0) =X(0). (7a)

These conditions exclude a discontinuity in slope of
8 and y and a corresponding discontinuity in the
electric field at x=0. In addition we require

I /x =oi/co.
or lim

g/x =0.
(7b)

If one of the slopes I'(0) or q'(0) is assigned arbi-
trarily, the other is fixed by the condition of finite-
ness at x = ~.

Thus there is a one parameter family of solutions
to (6) and (7). The value of this parameter may be
assigned as follows. Asymptotically one has by
(6b)

I = eQ+Bx,

where Q and 8 are integration constants. To satisfy
(7) we take 8=o&/co. We may regard Q as the
parameter to be fixed. One sees that @=Q/r at
large distances, and also that

f"+il'x 'I =0, (6b)

must be satisfied simultaneously subject to the
boundary conditions

s, y finite at x=0,

where
~.=ze(4"Dub O'D~*4'*)—(3a) )/Sedr =4zrQ.

is the current. We look for solutions of the type

4 =8(r)o' ', z.=(o, 4).
2 Nathan Rosen, Phys. Rev. 55, 94 (1939).The particle-like

solutions corresponding to this Lagrangian were independently
found by H. Jehle whose calculations have, however, not been
published.

Hence the constant of integration, Q, corresponds
to the charge of the particle, and may be fixed by
assigning the charge. It may now be shown that
(6) and (7) possess nodeless solutions' depending
on the four physical constants (c, o, e, Q); the
frequency co has a corresponding eigenvalue.
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The energy momentum tensor follows uniquely
from the equation

(9a)

where bl. is the variation in the Lagrangian when
only the g&" are varied. In the simple case considered
here one finds

—8„,. = 2 —I.g„,.
ag~"

(9b)

According to this definition of 8„„ the integral,—J'84&dr is equivalent to the gravitational rest
mass. The canonical tensor,

3IIc' = —)I 8icdr. (10)

M is a function of the four physical quantities
(c, s, 0, Q). For example, if eQ is small, Mc'
—e "Qa. The sign of M is negative for the La-
granian (1); it cannot be made positive by adding
a divergenceless tensor to 8„„without violating (9a)
which relates tt44 to the density of gravitational
mass. The sign of M is a fundamental defect of the
theory just described, but there are ways of avoid-
ing this dif6culty. For example, consider the
Lagrangian describing a scalar-scalar field with
pa11 coupllllg

I-= (8i4)(8-&4*) ~'A" -(8iy)(8-) y)+gA"y', (1)'
where g&0. This leads to the equations of motion

7'8+ (ra'/c' —o') 8 = —g8y',
~a= —get»

where P= 8e' ' and 8y/R =0. These may be brought
to the form (6) by the substitutions

q=g~r8; f'=g~ry; x=ur; a'=ir' —cv'/c'.

The boundary conditions at infinity are I'/x=s/x
=0. These correspond to (7b) if we put co=0.
Since the boundary value problem described by
Eqs. (6) and (7) has a solution when ~ =0, it may
be concluded that (4)' also have particle-like

(D.4)+I.g"= ~"
a(D„P)

in general must be corrected to agree with (9a).
One finds here

e„,= —,'~&.~&.g
+(D.*0*)(D.4)+&D.*4")(DA)

DD„*P*)—(D„f)+o'f*P jg„.. (9c)

This leads to the rest mass

solutions. ' It is easily shown that the energy of such
a particle is positive (the energy density is positive),
and so it is possible to display at least one unitary
theory which leads to particles of positive mass. '

A unitary theory also has the following property:
if the charge, Q, is fixed, a discrete spectrum of rest
masses follows uniquely, and one can hope to
identify the masses of the elementary particles with
this spectrum. ' On the other hand, in the unquan-
tized theory which we have described there is no
condition to fix the charge; it will be shown later
that the field quantization imposes a relation
between the minimum value of Q and the coupling
constant, e, namely: e=Q;, ./kc. It is not clear
whether the number Q; .'/Sc is also determined.

If one limits himself to classical theory, it is
natural to consider other Lagrangians, in particular,
the Maxwell-Dirac case, and to study solutions for
which q &0.' However, one would expect major
changes to be introduced by the field quantization,
and we therefore turn to this question. The theory
corresponding to the Lagrangians (1) and (1)' has
been given because it is the only unitary theory
which, as far as we know, has been carried to a
point where the existence of particle-like solutions
could be ascertained. It should be emphasized,
however, that the work to be given in the remainder
of this paper has not been specialized to a particular
Lagrangian, and so is not vulnerable to criticism
directed specifically against the forms (1) and (1)'.

QUANTIZATION

Since the field operators are fundamental and all
particle observables are derived in a unitary
scheme, the quantum theory of particles is already
contained in the quantized field theory; or in more
formal terms, the commutation relations between
the particle observables are already determined by
the postulated commutators of the field operators.
On the other hand, all the commutators of the new
theory must agree with those of the current theory
in the correspondence limit. Hence in this limit the
new theory must postulate the field commutators
of current theory and derive the particle commu-
tators which are now known to be valid. It was one
of the defects of the quantized Born-Infeld theory
that this condition was not met; in particular the
position and momentum of a particle were com-
mutable. The cause of this failure can be traced to
the fact that the corresponding classical theory was

'N. Rosen and A. Menius, Phys. Rev. 62, 436 {j.942}.
Solutions are found for which co=0.'I wish to thank D. Bohm for the remark that one can
expect to form a particle of positive mass by locking the Dirac
field to a scalar Yukawa field, and that one could perhaps get
a useful theory of the nucleon in this way.

« In unpublished calculations H. Jehle has found that the
Maxwell-Yukawa Lagrangian, with the usual choice of signs,
leads to particles of positive mass for the case of q /0.
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not strictly unitary insofar as particles were still
associated with field singularities. Since the posi-
tions of the singularities did not follow from the
field equations, it was necessary to regard their
coordinates, which were also the particle coor-
dinates, as independent of the field observables.
But since the theory was unitary insofar as mo-
mentum resided exclusively in the field, it followed
that the momentum, depending on the field ob-
servables only, commuted with position, which was
independent of the field variables. An attempt to
overcome the difficulty was made by Pryce, ' who
ascribed to the particles an intrinsic momentum
which did not reside in the field; but after this
amendment the theory was no longer unitary in
even a restricted sense. It will be shown here that
the quantization of a classical theory which is
strictly unitary does not lead to such difficulties.
This is a general fact which does not depend on
either the Lagrangian or the commutation relations
obeyed by the fields.

M),yv = TgyXr TyvXlp,

where

+2 (aP)$(P) ++ (13)
a, p 8(D„P(~))

bed{a)
—P P g& (aP)b&& P(P)

p

zcG, = T4+x = I 84+x,

is an infinitesimal Lorentz transformation. The
third term in (13) can be interpreted as the density
of spin angular momentum. One has Tq, , ), = 0,
8)„,), =0, and M),„,, q=0. Then if O„„and M),„„vanish
outside a 3-dimensional volume, the integrals

COMMUTATORS FOR FIELD VAMABLES

The field may be quantized according to either
Einstein-Bose or Fermi-Dirac rules. The former are

[zr('(x), P("), (x')] = zI'zb,—.b(x x'), —
(11a)

[zr*('(x), lP*")(x') j = —iIzb..b(x —x').

All other commutators vanish. The latter are

[lP')(x), ii*(")(x')]+——8 .8(x—x'),
(11b)[0"(x), 4 "(x')3+ = 8*"(x),4*"(x')j+=o

over that volume have the transformation proper-
ties of a 4-vector and an antisymmetric tensor,
respectively. Hence if there are solutions free from
singularities for which 8„„and Mq„„are concentrated
in a small volume, then this small region behaves
like a particle whose momentum is G, and whose
angular momentum is M„„.

In canonical variables the momentum now is

In the following Einstein-Bose rules are to be
understood unless the contrary is explicitly stated. and the angular momentum

MOMENTUM AND ANGULAR MOMENTUM

The density of energy-momentum in space is
defined as ( zT4„/c), w—here

81.
T"= —2 —(D.4")

-8(DA")

zV„.= JI (g„x, g.x„)dx+—Jt S„,'p'zr"$(p)dx, (15)

where

(~{a)D p(r)+D 4/8(a)~z(rr)) (16a)

g4 = —ic 'L —P.(zr(')D-4)i ('+D4*$*(')zr*('), (16b)

where+ (D.*4"*) +Lg" (12)
8(D 4P(a)4)

i czr = 8L/8 (D4&) = 8L/8(84&).

The sum over 0. means the sum over all components
of all fields assumed to be present, but D„ is to be
replaced by 8„ in those terms corresponding to the
Maxwell field. A symmetrizing term must be
added to T„„if (12) does not agree with (9a). The
density of angular momentum is similarly defined
as ( i&4„„/c)—, where'

' M. H. L. Pryce, Proc. Roy. Soc. 159, 3SS {1937).
'Wolfgang Pauli, Rev. Mod. Phys. 13, 204 (1941). The

notation for T„„and M)(,„„is slightly different here.

3E„„=JI (8„x.—8.x„). (15a)

The momentum and angu1ar momentum so
defined are obviously gauge invariant. The density

The "true" density of momentum, i.e. , the density
agreeing with gravitational theory, is, on the other
hand, 8 =— i84 /c, —where 8 p is the symmetric
energy momentum tensor. In terms of 8 the
angular momentum is
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of momentum can be written

(16c)

Now by making a Lorentz transformation on this equation
one can show that the same rules are also valid for the i4 com-
ponents.

where p„ is the form of g„when no electromagnetic
field is simultaneously present, and p is the charge
density operator:

All of these commutators can be summarized in the
tensor equation:

LM p, M~p (=(g pMp~+gp, M p
—g,Mpp

p = —ip Q(x('))p(' —p'('x*('))
Co)

(16d)
gpp—M, )ih (2.0)

From these definitions and the commutation rules
(11) one finds

Likewise one finds

LM.p, G,j=(G gp, Gpg „—)ih. (21)
8

LGi, f(x)g=ih + tq»'[p', f jdx',
~&I

where p' means p(x'). If f is gauge invariant, then

Lp' fj=0
and the integral vanishes. In the applications to be
made here f is gauge invariant. The commutator
with respect to 64 is similarly the x4 derivative but
this last relation, giving the equations of motion,
is not a consequence of the commutation relations
(11).One may write

LG, f]=ih(i)f/Bx. ) (x = 1 4. (17)

Similarly one shows that the space components of
G commute among themselves; and if T„„vanishes
outside the volume of the particle, i.e. , if there is
no external field, then LG;, G4]=0 also. Hence in
this case

LGs, Gp]=0 ix, t1=1. .4. (18)

The angular momentum (M„,) consists according to
(15), of two parts

Equations (20) and (21) depend simply on the
facts that 0 is a displacement operator and
that 3II p is an infinitesimal representation of the
Lorentz group. The Eqs. (18), (20), (21) show that
the momentum and angular momentum associated
with a small volume of space according to the
definitions (14) and (15) indeed obey the commuta-
tion laws ordinarily assumed for the corresponding
properties of particles.

NON-RELATIVISTIC DEFINITIONS OF POSITION

According to the last paragraph, the momentum
and angular momentum of the derived particles
appear very naturally in a field theory. The
concept of position is less fundamental. We give
two illustrations of non-relativistic definitions
before considering the relativistic case. If the par-
ticle results from the locking of a Maxwell field to
a Yukawa field, or to some other field, in the way
discussed earlier, a simple definition of position X;,
suggests itself, namely:

Gpp = (gpstg —gpxp)dx, (19a)

X; pdx = x;pdx. (22)

s„.= 5,' P)x'~)(P(P'dx.

6„,and s„„the orbital and spin contributions, are
not separately tensors although their sum is.

One now shows by the rules (11) that

t G'g, G)I )=&boih, LG;;, Gg,I/=0,
[siil sike=&hslal Piil s)))3=&(1

)6;;, sh~j=0, including the case k =j.
For example

fg, (p)g, ( )p ()y(p) ()p()'yd
NPyb

(gi.Cgx&) 5 .h(~&) g,~{o&)g, ,C&&) )~(tx)y C&)dx
aM

=iksia-

It followers that the total angular momentum obeys the rules

LM;;, M;g'j=ikM;I„~, j, 0= 1, 2, 3.

For p one can take the charge density (Eq. 16d). It
then follows from the commutation rules (11a)
that

LG)„X;]~ pdx= ihb), ;~ pdx—.

One can put J pdx=1 when (as for the Lagrangian
(1)) this integral is a constant of the motion. One
can also get (23) by taking p=tt*iP.

To prove (23) we calculate

Jig=ff x;Lp, gg fdxdx .

Note that pp, gh'j=fp, pk'(=I p, (~'Bhp'+(Dyp }'~")j,

ffx;$p, x'(sip)'gdxdx' ekf fx;lx=(pg!)'plx x')—
—~'PaI, 'b(X —X') I dzdx'

=ehf x;Bq(~)dx,

ffxcf p, '(8 (p )'jdxdx'= t)fxf 8 ( —p )dx
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Hence

J;f,= ikb;7, pdx.

follows. We require that in the proper system
(G;=0),

m;4=0.

X; ($~1$)dx = I x;($*1$)dx.'J (24)

Likewise if one considers a particle built out of the
Dirac-Maxwell field, a natural definition of position
ls

The motivation for the choice (27a) is the following.
One can put the definition (26) in a diR'erent form
by starting from

M;4 ——G;X4—G4X;+m;4.

In the proper system this becomes

cV;4 ———G4X;.

M;4 ——G;x4 —)t 04@;dx

f
g~;dx.

The weighting function in (24) is again the charge
density. Let us take a Dirac-Lagrangian' unsym-
metric in p and f*, such that m*=0 and x =ilia*. y (15a)
Then (24) is a special case of (22) and (16d), and
(23) is, of course true if one quantized the Dirac
field according to the canonical rules. Equation (23)
is moreover still true if one quantizes according to
the anticanonical rules (11b).

To show this one finds

x, 'p'dx', G» = f x p'dx', P»,

Hence

X;= (G4)-')t 8»x,dx. (28)
since Lp, p j=0. The hermitized momentum density is

P.= (@12)I
4*~ 0 - (~4)*0j.

One therefore calculates

J;»= —(iI»/2) Z ff x $P *'i ', ip~a»is5dxdx',
O. P

and the hermitian conjugate term. The following identity may
be used

That is, in the proper system (26) reduces to a
center of mass definition' since 84 is just the energy
density. This simple interpretation of (28) indicates
that the choice of the auxiliary conditions (27a)
is a natural one. These three conditions on m„„can
be written in tensor form

[ab, cd5 =aLc, b5+d c[a, d5—+b+ca[b, d5+ —Lc, a5+bd.

Then by (i1b)

j;»= —(ik/2) Z f x, (P *'b(x x')—
a

(27b),=0.

Equation (26) may be solved for X„ in any coor-
dinate system by multiplying by G„and summing

—P.*p.'aP(x —x') I dxdx'

= (ik/2)b;f» Z fp~*p dx
a

Since J;g~= J,l„ the total commutator is 2J;7,.
where

X.=G '(G„M„,+G,—T),
'

(29)

Thus, starting from the non-relativistic definition
of position (22), one arrives at the usual com-
mutators whether one quantizes according to F. D.
or E. B. brackets.

RELATIVISTIC DEFINITION OF POSITION
(CLASSICAL)

One can give a relativistic definition of position
(X„) in terms of G„, M„„, and a new tensor, m„„, in
the following way

3E„„=G„X„—G„X„+m„„. (26)

Here m„„ is to be interpreted as the intrinsic spin
of the particle. Let us first consider (26) as a clas-
sical equation; then if one assigns X4, there are six
relations to determine (Xi, X2, X~) and the six
components of m„,. It is hence necessary to have
three other relations; these may be chosen as

G=—G„G„, T=G„X„=G4&X4& = G&X4&,

where the index p refers to the proper system. 1t is
still necessary to connect X4& with the field time;
we do this by identifying —iX&4 with the field time
in the proper system. Hence

T=iG&, (29a)

e p~)GpM~g =0. (31)

where v is proper field time.
The Eqs. (29) and (29a) define the X„explicitly.

The m„, now follow from (26) and (29).

m„.= M„„+G '(G,G M „G„GM,). (30)—

If there is no spin angular momentum in the field,
s„„=0,but it does not follow that m„, =0. Equations
(26) are consistent with m„„=0 only if

G. Wentzel, Quantentkeorie der
Deuticke, Wein, 1943), Chap. V.

' Mpller has also used a similar definition in a paper to
8'elIen felder (Frany appear soon (Communications of Institute for Adv'anced

Study, Dublin).
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The conditions (31) are in general not satisfied for
extended particles, even if s„„=0.

T =iG&7., (32)

where v is the field time in the coordinate system
for which the expectation values of the G; vanish.

(32a)

The operator Eq. (32) agrees with the corresponding
classical equation in the limit 5~0.

From (32) it follows that T obeys the following
commutation rules

(33)

Further, since T is an invariant (for Lorentz rota-
tions) it commutes with the angular momentum

[T, M p]=0. (34)

One can now calculate from (21), (29), and (33)

[G, Xp]= —ih(g p
—G GpG '). (35)

Using also (34) one finds

[X,Xp]=[G 'G„M„„G 'G.M,p]

+[G 'G„M„, G 'GpT]

+[G 'G T, G 'G„M'„p]

= [G-'G„M, , G 'G.M'.p]
=G—'[G„M„., G.M.p].

And by (20)

[X., Xp]=ihG 'M.p,

and using (26) one gets

[m.p, G,]=0,
[m.p, m„i]=~h(mp, g +gpgmp„'

(36)

(37a)

—m „gpp' —mppg „'), (37b)

where g p'=g p
—G GpG '. According to Eqs. (37)

the m p do not quite obey the commutation laws
of a spin angular momentum. The Eqs. (18),
(35), and (36) are very similar to commutation

RELAT1VISTIC DEFINITION OF POSITION AFTER
FIELD QUANTIZATION

Let us now regard (29) and (30) as operator
equations definining the operators X„and m„„ in
terms of 3f„„G„,and r. It is assumed that these
equations have been hermitized. M„„and G„are de-
fined as operators in (14) and (15). It is now neces-
sary to define 1as an operator and, just as in the
classica case, to connect it with the field time. We
therefore postulate the following connection be-
tween rand the field time

rules appearing in a recently proposed formalism
which quantizes space. '0 According to our view,
however, these new uncertainty relations, stem-
ming from the commutation rules for the under-
lying 6elds, describe the particles rather than
space itself. The fundamental length appearing in
(35) and (36), corresponding to limits of observa-
bility for position, is simply the Compton wave
length of the particle. For the electron this length
is rather large but is not in disagreement with
Dirac electron theory where position is uncertain
in the region of the sitterbmegung.

We note that these results also apply to the case
in which there are several particles in the volume
for which the momentum and the angular momen-
tum are considered. In this situation Eq. (26) is a
center of mass defjjnition for the set of particles, and
(35) and (36) then apply to the coordinates of the
center of mass.

Although we wish to interpret 6 and M p as the
momentum and angular momentum of a particle-
like field, it should be noted that the commutators
(35) and (36) depend only on general properties of
the momentum and angular momentum, and the
definition of position in terms of them.

dM;, a3II;;
+—[G4, Mg]

dt at

because BM;;/Bt and [G4, M;;] vanish separately.
The M;4 components are also conserved since

We now show that the relativistic connection
between velocity and momentum of a free particle
is preserved by the definition (29). By (29)

dX;/dt = (dT/dt)G, G ', (38)

since dG„/dt and dM„„/dt separately vanish and by
(32) this becomes

(dX;/dt) = (G,G4-') (39)

as was to be shown.
One of the important advantages of a unitary

theory over a dualistic one is that the equations of
motion of the particle are in the unitary case de-
ducible from the field equations. This has been
shown in the classical limit. "One can show that

' Hartland S. Snyder, Phys. Rev. '71, 38 I'1947).

EQUATIONS OF MOTION

The angular momentum of a free particle is con-
served
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the equations of motion also follow from the field
equations in the quantum theory. For this purpose
assume that there is a weak external field. Then
one must add an interaction term, H'"', which
depends on the external field, to the Hamiltonian.
The change of momentum is caused by this term
alone.

In general

S = —44+ p (a)

(.) B(BQ( &/Bx )

BJ
(45)

B(Bf('"/Bx.)

so that the operator for the charge is

where g'~)&(x') is the density of the interaction
Hamiltonian

Q= ie —Q (s( &P('& —)r*( &P*")dx. (46)
(~)

The charge is conserved; it also commutes with the
momentum and angular momentum, since they are
gauge-invariant and as one may verify by the use
of (46).

Br( Bf" B)& B)r"
[s, G-']=K —+

l4 () Bp" Bx; B4r' Bx,

d)& )d)&q

dx Edx). 4

(47)

(48)

[Q. G-]=o

[Q 3I p]=0

[Q, M']=0. (49)

d M are commuting observables, the
usual classification of the elementary particles ac-
cording to charge and mass remains valid.

The charge current vector of the particle may
be defined in the customary way

dG; (' d)& f dr() ( (d)&'&
dx= —

i

] [
dx (40)

dx; ) dx,J,, a Edx;) . ,

and by (41)
where (d)&/dx) 4 is the partial gradient associated
with the dependence of g on the external field.
Then Since Q an

since the first term can be removed by an integra-
tion. This is the equation of motion: the rate of
change of momentum is the integral of the force
over the volume of the particle.

MASS AND CHARGE

I„=Q(dX„/dS) (50)

although J's„dx cannot be used for this purpose.

CONNECTION BETVfEEN CHARGE AND
COUPLING CONSTANT

Similarly,
AM = [G4, M] =0.

[G;, M]=0,

We define the rest mass by the operator

—3II'=G G.=G4'+G'. (41)

(42a)

(42b)

The solutions of Eqs. (4) contain two constants,
Q and e. Q is defined as the integral of the charge
density (Eq. (8)), whereas e is a constant appearing
in the Lagrangian in the combination 8,—icy„. In
the classical theory Q and 4 are unrelated, but we
shall now show that the field quantization imposes
a connection between them. 'The charge after field
quantization is given by Eq. (46).

and

[M (), M'] =0.

[M', X ]=0. (44)

Hence the rest mass is a constant of the motion and
can be specified simultaneously with the momentum
and angular momentum. From Eq. (35) it follows
that 3P also commutes with position

By the usual transformation

0 = (&/2)~( +0*), =~{&!2)'& *—0).
Equation (46) may be rewritten as

Q= (4I)/2lf [na4+n*u ss*—p*pgdx—,

where
I u(x), ~*(x')]=a(x —x'),
Q(x), P*(x'))=&(x—x'),

L (~), p(~')j=o.

(5) )

(52a)

It is possible to ascribe a charge to the particle.
Although fS dx is not a 4-vector, fS4dx is a scalar
since BS /Bx =0. This is defined to be the charge

Q= I s4dx.

The transformation (51) is usually made in mo-
mentum space but it is also useful in configuration
space since the charge operator contains no
gradients. Now replace the continuum by a discrete
set of points, each commanding the volume, v.
Then 8(x' —x)~() )8;, where the indices i, j replace
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e = e/h. (54)

Hence the connection between the coupling con-
stant e and the elementary charge cannot be
imposed on the theory in an arbitrary way, since
it follows from the 6eld quantization. In particular
the connection &=1/e suggested by Rosen' in an
interpretation of the Lagrangian (1), is not con-
sistent with the 6eld quantization.

ELECTRIC FIELD, MAGNETIC MOMENT, AND
CHARGE

The electromagnetic 6eld commutes with the
charge and magnetic moment of a particle. This
may be shown as follows. The commutators of the
6eld with itself are

[F e, F„']= ihc'}8—e,8» +6»Be, —be»8,

where
b.,a&„}D—(x x', t t')—, —

a., = 8'/rtx„8x»'

Jf s, is the current density one has, since F~,„=s,
[F-e, ~» ]= ihc }~ » e —~e»~

+h.,a&
'

}D(x x', t t')——

=ihc(8.» e -8 e» )D(x —x', t-t'),
since D=o. Since also 8= —8', it follows that

[F-e ~»']=0.
Hence

[F e, Q] = F e, )t S4'dx =0.

Since the magnetic moment is

r
(xiSt —xgse)dx,

x and x', and by the usual argument

Q = (ch/2) Q I (2N, +1)—(2Ng+1) }
=he+(¹ N—i,), (53)

where the sum extends over all lattice points. If e
is defined to be the minimum positive value of Q,
then

one also has
[F-e t ']=o (56)

EXTERNAL FIELDS

In the usual dualistic theory the following rela-
tions are satisfied

(57a)

(57b)

where X & and G & are the position and momentum
of a particle and A is any field quantity: Markow"
has proposed a modified theory which replaces
(57a) by a non-vanishing commutator, and Yukawa
has suggested a scheme in which the second relation
becomes [G ", A]=ih8 A Both o. f these proposals
can be regarded as consequences of a unitary theory
since the particle observables there become function
of the field observables, and hence the relations (57)
may not hold. The precise form of these commutators
depends on the way the external field is defined.
We hope to discuss this question in a later paper.

I wish to thank Professor C. Manlier for having
pointed out an error in (37b) as it appeared in the
manuscript. The remaining differences between our
commutators stem from the fact that he takes t to
be a c-number, whereas in this paper the proper
time is taken to be a c-number.

"H. Yukawa, Prog. Theor. Phys. 2, 209 (1947).
'2 M. Markow, J. Phys. U.S.S.R. 2, 453 (1940).

REPLACEMENT OF CLASSICAL DIFFERENTIAL
EQUATIONS BY OPERATOR EQUATIONS

Since the 6 are displacement operators according
to (17), the classical wave equation, for example,
can be replaced by the quantal equation

[G., [G., y]]=o.
Maxwell's equations have been similarly rewritten
in terms of commutators by Snyder" and Yukawa. "
The rule ihB,F~[G, F] was proposed by the
former in order to define differentiation in a lattice
space. In a unitary scheme, however, this substi-
tution is not an additional rule but an elementary
consequence of the theory.


