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and we do not believe that the discrepancy is
serious.

In concluding, it should be pointed out that
the experiments were essentially qualitative,
designed to test the hypothesis that we were
observing the Barkhausen effect, and were not
intended as careful studies. In making careful
studies, somewhat different techniques would be
desirable. We believe that the experiments prove
the existence of the ferro-electric Barkhausen
effect fairly conclusively, and that they further
suggest useful applications of the effect in study-
ing ferro-electricity, particularly in barium titan-
ate. We believe also that the three important
measurements for one crystal: size of Bark-
hausen region 10=° cm?, total volume which
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changes orientation discontinuously ~0.4 per-
cent of crystal (at 2000 volts/cm), and velocity
of propagation =10 cm/sec., are correct as to
order of magnitude.

We do not believe that the photographs in
Fig. 1 of de Bretteville’s letter® support the
conclusion that he was observing Barkhausen
jumps. They seem to us more consistent with the
hypothesis that his crystal contained regions of
different coercive forces. Further, our data do
not support his remark that ferro-electric do-
mains are larger than ferro-magnetic ones. In
the crystal which we used for most of our tests,
the volume of a domain was certainly less than
103 cm?®, while ferromagnetic domains are fre-
quently as large as 10~3 cm? or more.
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The increase in the electrical resistance of severely cold-worked metals has been calculated
by assuming that the important change which occurs during cold-work is the introduction of
large numbers of Taylor dislocations. The results obtained are as follows: The calculated
increase in the electrical resistance of polycrystalline copper is in good agreement with the
measured value. In case single crystals are considered, the calculations show that there is a
decided dependence of the dislocation resistance on the orientation of the electric field relative
to the crystallographic axes. In copper the ratio of the largest dislocation resistance to the
smallest is 8. This ratio is large for materials having a small Poisson’s ratio. It is found that if
the dislocations are not too closely clustered no interference effects will occur. The detailed
calculations for copper assume that clustering is unimportant. Measurements on single crystals

are in progress.

I. INTRODUCTION

T is found experimentally that if a metal is
severely cold-worked its electrical resistance
increases by several percent. The available data
are summarized in Table I.! In the table Ap
is the change in the electrical resistance produced
by cold-work, and p is the electrical resistance of
the annealed metal at room temperature. It
should be noted that except for the data on
* This research was supported by Contract N6ori-47
with the Office of Naval Research. Some of the work was
done while the author was a Westinghouse Research
Fellow in 1941.

tE. Schmid and W. Boas, Kristallplastizitit (Verlag
Julius Springer, Berlin, 1935), p. 214.

tungsten the specimens used were polycrystals
of undetermined purity.

It is the aim of this paper to calculate theo-
retically the magnitude of this effect and to
calculate the dependence of Ap upon the orien-
tation of the electric field with respect to the
various crystallographic axes in a single crystal.
The calculation will be made by assuming that
the important change which occurs during cold-
work is the introduction of a large number of
dislocations? of the type shown in Fig. 1. It will

2 F. Seitz, The Physics of Metals (McGraw-Hill Book

Company, Inc., 1943), p. 88, references to original work are
given.
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also be assumed that the standard quantum-
mechanical methods of calculating resistivities
are applicable to this problem.

An experimental investigation of the increase
in the electrical resistance of pure metallic single
crystals resulting from cold-work is in progress
in the Physics Department at the Carnegie
Institute of Technology. The measurement swill
be made at low temperatures where the disloca-
tion scattering will produce an appreciable con-
tribution to the total resistance.

II. INTRODUCTION—THE RELAXATION TIME
AND THE RESISTIVITY

Consider a metal containing N electrons per
unit volume. Suppose that each electron can
move freely for a mean time 2¢, after which it
suffers a collision and its momentum is destroyed,
¢ is called the ‘“‘relaxation time.” The resistivity
is then given by :3

p=m/(Next), 1)

where m is the mass of the electron and e is its
charge. It can be shown* that this equation is
still valid if quantum mechanics is used; the
classical and quantum treatments differ in their
calculation of ¢.

It will also be assumed that Matthiesson'’s rule
is valid so that

P = Pthermal Pdislocations (2)

where each kind of resistance is related to its
characteristic relaxation time by an equation
of type (1). These assumptions lead to the result
that

AP/P = Pdislocation/pthermal = tthermal/tdislocat'ion- (3)

Since termar has been calculated theoretically,’ a
comparison with experiment can be made when
taisiocation Nas been calculated. The calculation of
Laislocation 18 the principal aim of this paper.

A short discussion of the assumptions will be
given before proceeding. According to present
theoretical ideas,® the procedure adopted above

3N. F. Mott and H. Jones, The Theory of the Properties
of Metals and Alloys (Oxford University Press, London,
1936), p. 241.

4 See reference 3, p. 247 and following pages.

5 F. Seitz, Modern Theory of Solids (McGraw-Hill Book
Company, Inc., 1940), p. 517, and following pages.

8 A. Sommerfeld and H. Bethe, Handbuch der Physik
(Verlag Julius Springer, Berlin, 1933), Vol. 24, p. 554.
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TABLE L.*
Cu Ni W Ag Pt Mo
Ap/p 0.02 0.08 0.50 0.03 0.06 0.18

* See reference 1.

should be valid in two temperature regions:
First in the range where the temperature is large
compared with the Debye © of the material, and
second in the range where the temperature is
small compared with the Debye ©. Deviations
from Matthieson’s rule, if they occur at all,
should appear at temperatures in the vicinity of
the Debye ©. The experimental data available’
indicates that Matthiesson's rule is valid over a
wide range of temperatures, including the range
containing the Debye © of the material in
question. Deviations are sometimes found at very
low temperatures. The experimental tests include
cases where the temperature independent part
of the resistance was primarily produced by
impurities and other cases where it was caused
by plastic strains. In Table II some results of
experimental tests of the rule have been as-
sembled.” In this table Matthiesson’s rule has
been used to calculate pr(obs.), the ‘“‘observed”
thermal portion of the resistivity, and this
thermal resistivity has been adjusted so that it
takes the value one at zero degrees centigrade.
The calculated values of the thermal resistivity
pr(calc.) were obtained by using Griineisen’s
semi-emperical expression. Note that the ‘‘ob-
served’’ data has been made to fit the calculated
values at zero degrees absolute and at zero
degrees centigrade. The proof of the Matthiesson
rule stems from the fact that not just one set of
results gives an ‘‘observed’” thermal resistance
in agreement with ‘‘Griineisen’s relation, but
that several sets of data all give thermal resis-
tivities in agreement with the relation. The
values of pp give the ratio of the temperature
independent part of the resistance to the total
resistance at zero degrees centigrade for the
particular specimen in question. Similar data
has been obtained on other materials.”® The
data given in Table II also show that the thermal

7E. Gruneisen, Handbuch der Physik (Verlag Julius
Springer, Berlin, 1928), Vol. 13, p. 21.
( ;3\7\/7) J. DeHaas and G. J. VanDenBerg, Physica 4, 683
1 .
?W. J. DeHaas and J. DeBoer, Physica 1, 609 (1934).
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resistance can be calculated with good accuracy
using Griineisen’s expression.

III. THE INTEGRAL EQUATION GIVING THE
RELAXATION TIME

Consider an electron in the crystal lattice in
a state specified by the wave number k, where
|k] =27/\ and A is the wave-length of the elec-
tron. This electron may be scattered by any
deviation of the potential from a periodic poten-
tial. In such a scattering process the wave
number changes from k to some new value k’.

It is assumed that the Fermi distribution
function fo(k) describes the way in which the
conduction electrons are spread over the various
allowed energy states in the absence of an
external electric field. The Fermi function is:

fo(k) =1/exp(E—¢/KT)+1, (4)

where E is the energy of the stationary state
associated with wave number k, { is the energy
of the most energetic electrons when the absolute
temperature T is zero, and K is Boltzmann's
constant. It is assumed that the electron in state
k has an energy E given by:

E=E\+ak (5)

The Fermi function gives the fraction of states
having energy E which are occupied; thus the
number of electrons which occupy the region

—_—
Slip direction

F1G6. 1. A schematic diagram of a positive Taylor line
dislocation. Atomic planes above and below the plane of
the figure are identical with the plane shown. A negative
dislocation would be present if the extra atomic plane
would appear in the lower portion of the figure rather than
in the upper part as shown.
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dk.dk,dk, in k space is:10
(2/873)fo(k)dk Ak, dE.. (6)

If an external electric field e acts, then it can
be shown that the k vector of each electron
changes; the time rate of change is!®

dk/dt= —ee/#, (7

where —e is the charge on the electron and 7% is
Planck’s constant over 2x. The entire Fermi
function therefore drifts in k space, and the time
rate of change of the Fermi function produced by
the field ¢ is

(df/d8)gera =fol k— (ee/R)dt]—fo(k)/dt

= —afo/ok[e(e-k)/hE], (8)
where k represents the magnitude of k. Note that
fo(k) depends only on the magnitude of £ and
not on its direction. The second expression for
(df/dt)gerq 1s valid only because fo(k) is a spheri-
cally symmetric function in k space.

In Section II it was shown that it is admissible
to calculate the thermal and the dislocation
contributions to the resistance separately. We
therefore shall attempt to calculate the disloca-
tion contribution by supposing that in a specimen
at temperature 7" a large number of dislocations
exist (where it is supposed that the temperature
influences the Fermi distribution but that no
thermal -oscillation of the lattice occurs). In the
presence of the external field ¢ the Fermi dis-
tribution will drift in & space until a steady state
isreached in which the increase in the momentum
of the electrons per second produced by the field
is equal to the loss per second produced by col-
lisions with the distorted lattice in the vicinity
of the dislocations. This balance is described by

(df/dt)seaa+ (df/dt) = cotisions =0. )
The first term in this equation has already been
calculated; an expression for the second term
will now be obtained.

The decrease in f(k) per second produced by

collisions which change k to some other value k’
is given by the product of :

(a) The fraction of states % originally filled, i.e., f(k).

(b) The sum of the transition probabilities P(kk’)d.S’
to all other states of the same energy multiplied by the
probability that the state in question is unoccupied, i.e.,
by {1—f(k")}.

10 See reference 3, p. 259.
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Z \S THE DIRECTION OF TWE DISLOCATION
AXES

F1G. 2. Diagram showing the scattering geometry. The
xy plane is the slip plane; the dislocation axes are parallel
to z; k and k&’ are the wave number vectors of an electron
before and after scattering; € is the electric field.

This expression can be written in terms of the
Fermi function for the case where no field is
present by introducing the notion of the relaxa-
tion time. Consider a metal single crystal con-
taining a large number of dislocations which have
their axes parallel. If a field ¢ is suddenly
applied, the Fermi function will drift in % space
until collisions establish the balance mentioned.
The resultant distortion produced in the Fermi
function will depend on the orientation of the
field relative to the dislocations and on the direc-
tion of motion of the electron under consideration
relative to the dislocations. Figure 2 shows the
important directions involved in the problem.
The xz plane is the slip plane. Using the angles
just introduced, Eq. (8) becomes

(df/dt)gera = — (ee/1) (3fo/ k)
X {sine cos¢ sinu cosn

+sine sing sinu sing+cose cosu}.  (12)

In addition, using the fact that fo(k) is a spheri-
cally symmetric function in Kk space,

f(k) =fo[k—i(k, e)ee/h]
=fo(k) — (e(e-Kk)/k) (3fo/IR)i(K, €),

where £(k,¢e) is the relaxation time associated with
dislocation scattering. ¢ depends on k and on the
direction of e. A similar expression can be written

(13)

J. S. KOEHLER

for f(k’). Inserting the angles, one finds
fk&) =fo(k) — (ee/ %) (9fo/0k) (K, ¢)

X {sine cos¢ sinu cosn-sine sing

Xsiny sing+cose cosp}. (14)

The integral equation obtained by inserting (11),
(12), (14), and a similar equation for f(k’) into
Eq. (9) is

sine cos¢ sinu cosn—-sine sing sinu siny

~+cose cosu = V/47r2h(dE/dk)f| V(kR') |2dS’
-[t(k, ¢) {sine cos¢ sinu cosp

+sine sing sinu sinn-cose cosu }

—t(K’, €) {sin€’ cos¢’ sinu cosy

(15)

Note that since energy is conserved in a collision
E=F’. The integration k’ will therefore be over
the surface of a sphere in k space.

The integral Eq. (15) will eventually be
used to determine the relaxation time for dis-
location scattering t(k, €).

+sine’ sing’ sinu sing+cose’ cosp} .

IV. THE EVALUATION OF THE MATRIX
ELEMENT GIVING DISLOCATION
SCATTERING

The matrix element will first be evaluated for
a dislocation pair which have their axes parallel
to the z axis. The positive dislocation is located
at x=0, y=+4R/2; the negative dislocation is at
x=0, y= —R/2. The displacements produced by
the pair at a point x,y are'?

u.=A4 {tan~1((y—R/2)/x) —tan='((y+R/2)/x)}
+2Bx{(y—R/2)/x*+ (y—R/2)*
—(y+R/2)/x*+ (y+R/2)%},
yy=—Clog(x*+(y—R/2)*/x*+ (y+R/2)*)*
—2Bx?{1/x*+ (y—R/2)*
—1/x*+(y+R/2)?},

16)

where
A=\/2r, B=(\/87)(m/(m—1)),
C=(/4m)(m—2)/(m—1));
\ is the unit crystallographic slip distance, i.e.y
itis the smallest interatomic distance encountered

12 ], S, Koehler, Phys. Rev. 60, 398 (1941),
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considering atoms lying along the slip direction.
m is the reciprocal of Poisson’s ratio.

Let a; be a vector from the origin of our coor-
dinates to the lattice position of the jth positive
ion. The potential in which the valence electrons
move in a perfect crystal is taken to be

V(r)=2%; Vi(r—a;). (17)

The potential of a single ion, V;(r—a;) is taken
to be screened Coulomb field, i.e.,

Vi(r—a;) = —Ze? exp(—gq|r—a;|)/|r—a;|, (18)

where Ze is the charge of the ion and ¢ is the
screening constant. According to Mott!? the
value of ¢ for copper lies between 1.8 X108 and
3.3X103 cm™.

If all of the ions experience displacements, then
the deviation of the resulting potential from that
which occurs in a perfect crystal is approximately:

(19)

where u; is the displacement of the jth ion.
Using this as the perturbation, the matrix ele-
ment associated with the scattering produced by
dislocations is

AV(r)=—2ju,-gradV;(r—a;),

V(kE')=— 1/Vf exp(—1k’-7)

X (X juj-gradV;(r—a;)) exp(ik-r)dv, (20)

where V' is the volume of the crystal and where
the electronic wave functions associated with the
states & and k' have been assumed to be free
electron wave functions. The integration is over
the entire crystal. Exchanging summation and
integration and using as variable in the resulting
integral (r—a;), one obtains

V(kk')=—1/V X ;exp(—i(k’—Kk)-a;)
fexp(—ik’-(r—a,-))u,--grad V;
Xexp(ik-(r—a;))dv. (21)

Since all of the dislocations considered have their
axes parallel to z, and since each dislocation
therefore produces displacements which are per-
pendicular to z, the resulting #;, is zero. Equation

13 See reference 3, pp. 88 and 294.
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(21) can therefore be written:
V(kk') =2 ; exp(—iK-a;)[u:;P+u,;Q] (22)
where K= (k’—k) and

P=1/Vf exp(—1k’-1)(8/3X)

X {Ze* exp(—gqr)/r} exp(ik-r)dv

=(4miZe’/ V)K./(¢*+K?). (23)

Also,
Q= (4miZe?/ V)(K,/(g*+K?)). (24)

The sum over j can now be converted into an
integral. The deflection at each successive atom
is assumed to vary slowly with j. Then

V() =1/ Vs f exp(—iK-a)[u.P+1,0]da, (25)

where 7, is the volume associated with one atom,
and the integral extends over the entire crystal.

Let us calculate in detail the value of the
matrix element v(kk’) for the case where the
displacement % is that produced by a single pair
of dislocations. This matrix element is given by
(25) if the displacements (16) are used. The
integrations can be done using Bierens De Haan,
and one finds

(1672)222%¢|5(K ) |2 sin2(K ,R/2)

[o(kk") 2=
V2 V02(q2+K2>2
AK,? CK,® 16BCK.2K,?
K K* K

where the delta-function §(X,) is given by

]
5(K,)=fV exp(tK-z)dz

xp(t ViK,)—1
_fewGrK) -1

1K,

The appearance of this delta-function means that
only those transitions occur in which k, equals
k. . The possibility that interference might occur
between the wave scattered from the positive
dislocation and the wave scattered by the nega-
tive dislocation is manifest in Eq. (26) by the
presence of the factor sin?(K R/2). Assuming a
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uniform distribution throughout the solid, the
dislocations in a severely cold-worked metal are
separated by distances of the order of 10-% cm.!*
In the case of copper, K,/2 can take values from
zero to 1.36 X108 cm~. Thus as the direction and
magnitude of K are varied the argument of the
sine goes through many periods while the rest
of the matrix element is changing only slightly.
It is therefore appropriate to put the average
value of sin?(K,R/2) into the expression when
dealing with metals. It is interesting to note that
these diffraction effects could be of importance
if one were discussing the dislocation resistance
of a semi-conductor in which the wave-length of
the current carriers was about 10~% cm. Experi-
ments on such materials might yield information
on the way in which dislocations are distributed

sine cos¢ sinu cosn-+sine sing sinu siny-+ cose cosuy =

KOEHLER

in the solid. Diffraction effects might also con-
ceivably occur in a metal if the dislocations were
clustered along the slip bands, but this seems
rather improbable.'® If the average value of the
sine square is used, then the matrix element
appropriate for a large number of dislocation
pairs is

| V(kE')|*=n(|v(kE") |*)n,

where the averaged value of the matrix element
has been used. # is the total number of dislocation
pairs in the specimen.

(28)

V. THE SOLUTION OF THE INTEGRAL
EQUATION

Inserting (28) and (26) into the integral
equation as given by (15), one obtains

32n2Z%*n/ VV*(dE/dk)h

[as'16K 12/ (@+ K92 (4K Ko+ COK /K= 16BCK 2K /K

X [¢(ke) {sine cos¢ sinu cosn-sine sing sinu sinn-cose cosy }

The integrations can be carried out as follows.
In the first place the presence of the delta-
function enables one to reduce the integration
from a two-dimensional integration to a one-

—t(k'e) {sin€’ cos¢’ sinu cosn+sine’ cos¢’ sinu sing+cose’ cosn}]. (29)
be written in the following form:
t(k, ) =ao+a: cos2¢+a4 cosdo
+ag cosbp+ - - - +bs sin2¢
+0b4 sind¢p+bg sinbp+---.  (31)

dimensional integration. Since all quantities
except the delta-function vary slowly with k.,
the value of the rest of the integrand at the
position of the maxima of the delta-function can
be used with the integrated value of |8(K.)|2
The result of integrating € from 0 to = is

f dS'|8(K.) 2=k f sine'de'ds’ | 5(K.) |*

=47k Vide'. (30)

It is next assumed that the relaxation time can

14 See reference 12, p. 410.
. ' Diffraction effects would probably only be observable
if KyR/2 varied from zero to about 15. This would produce
about 10 oscillations in the scattering probability as the
electric field was shifted from the plane =0 to the plane
7=90°. The value of R for this limiting case is only 11X 107%
cm. Since this is only four times the smallest interatomic
distance in copper, it seems unlikely that such pairs will

The symmetry of the problem leads one to believe
that sine terms and cosines containing odd mul-
tiple of ¢ will not be needed. It should be noted
that the coefficients aq; depend on ¢, on k, and
on the field e. The integration of Eq. (29) can be
facilitated by introducing the angle u defined
as follows:

u=3%(¢'—9). (32)

When this is done and when the results of Eqgs.
(30) and (31) are used, the integral equation
becomes

be formed. This can be seen as follows: A dislocation pair
having the separation mentioned in copper can only be
separated if an external stress of 260 kg/mm? is applied.
The tensile strength of polycrystalline copper is 22.6
kg/mm?. If most of the dislocations in a cold-worked copper
specimen had the separation distance mentioned, it would
be impossible to account for the extensive plastic deforma-
tion which occurs prior to fracture.
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(1) cosp+(2) sing+(3) =

A * du[A? sin?(u+¢) + C? cos*(u+¢) — 16BC sin?(u+¢) cos*(u+¢) ]
w sinfe j; sin?u[ s2+sin?u ]2

X [+2a0(1) sinu sin(u+¢) —2a,(2) sinu cos(u+ ¢)+a2(1) {sinu sin(u+¢)+-sin3u sin3(u+¢) }
~+a2(2) {sinu cos(u+¢) —sin3u cos3(u—+¢) } +2a2(3) sin2u sin2(u+¢)

+ay(1) {sin3u sin3(u+¢) +sinSu sin5(u+¢) } +a4(2) {sin3u cos3(u+¢) —sin5u cos5(u+¢) |
+2a4(3) sindu sind(u+¢)+ - - - +b2(2) {sinu sin(u+¢) —sin3u sin3(u+¢) }

—by(1) {sinu cos(u+¢)+sin3u cos3(u+¢) } —2b5(3) sin2u cos2 (u+ ¢)+b4(2) {sin3u sin3(u+¢)

—sinSu sin5 (u+¢) } —ba(1) {sin3u cos3(u-+ ¢) +sin5u cosS(u+¢) } —2b4(3) sindu cosd(u+¢)+-- -],
(33)
where

A=2rZ2%'n/ ViV 2akth, s2=q?/4k?sin%, (1)=sinesinucosy, (2)=sinesinusing, (3)=cose cospu.
Since (33) is an identity in ¢ the coefficients of cosn¢ must be equal.
Coefficient of cose:
4(1) sinfe/Ar =2a0(1)d, {342+ C*—8BC}+ay(1) {d1(342+ C?—8BC(C) —d;s(A*— C*4-4BC) }
+as(1) { —d3(A2— C>+4BC)+ds4BC} +as(1)dsd BC+b2(2) {d1(34%24-C2—8BC)
+d3(A2— C2+4BC) } +b4(2) { —d3(A2— C*+4BC) —ds4BC}+b6(2)ds4BC.
Coefficient of cos3¢:
= —2a0(1)d3{A?— C*+4BC}+a:(1) { —ds(A>*— C*+4BC)+2(d1+ds+ds) (A*+ C*—4BC() }
+a4(1) {2(d1+ds+ds) (4°+ C*—4BC) — (ds+ds+d7) (A2 = C?) } +as(1) { — (dst+ds+di)
X (A2—C?)+ (ds+d1+de)ABCY+ - - - +b4(2) { —d3(A%2— C*4+4BC) —2(d1+ds+ds)
X (424 C*—4BC) } +b4(2) {2(d1+ds+ds) (A+ C*—4BC) + (ds+ds+d7) (4> — () }
+06(2) { — (ds+ds+dr) (42— C?) — (ds+dr+de)4BCY+ - - -.
Coefficient of cos5¢:
0=+2a,(1)dsdBC+as(1) { +ds4BC— (ds+ds+d7) (A2 — C?) } +a.(1) { — (ds+ds+d7) (42— C?)
F2(dit - +d0) (A2 C—4BC) ) +ao(1) {2(d1+ - - - +ds) (424 C2—4BC)
— (st ) (42— C) | +52(2) [ +ddBC+ (datdstd) (42— D)
+54(2) [ = (dotdstdn) (42— C) = 2(dut -+ +d0) (424 C:—4BC)
+b6(2) {2(d1+ - - - +do) (A2 4+ C2—4BC)+ (ds+ - - - +du) (42— C) } + - - -
Coefficient of cos7¢:
0=+as(1) {(ds+d:+de)4BC} +as(1) {+ (ds+dr+de)4BC— (dat+ - - - +dn) (42— C?) }
+as(1) { — s+ - - +du) (42— C)+2(d1+ - - - +d1s) (A*+ C*—4BC) | + - - -
—b3(2) {(ds+d1+de)4BC} +b4(2) { + (ds+d74de)4BCH+ (ds+ - - - +d11) (A2—C?) }
+862) ([~ (ot - Fda) (7= C) = 2(di - +d) (A2 C—4BO) |-+, (34)
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Coefficient of sing:
4(2) sin®e/Ar =2a,(2)d1{A+3C*—8BC} +as(2) { —d:1(A*+3C?—8BC) —ds(A*— C*—4BC)}
+a4(2) {+ds(42— C2—4BC)+ds¢BC} —ae(2)ds4BC+by(1) {+d1(A2+3C2—8BC
—d3(A2— C*—4BC) } +b4(1) { —d3(A2— C2—4BC)+d4BC} +bs(1)dABC.

Coefficient of sin 3¢:
0= —2a,(2)d3s(42— C*—4B(C)+a2(2) {d3(4*— C*—4BC)+2(d1+ds+d5) (A2+ C2—4B() |
+a4(2) { —2(d1+ds+ds) (A2 + C?—4BC) — (ds+ds+d7) (42— C?) } +a4(2) { (ds+ds+dr) (42— C?)
+(ds+dr+do)4BCY+ - - - +ba(1) { —ds(4*— C*—4BC) +2(d1+ds+ds) (424 C*~4BC) |
+04(1) {+2(d1+ds+ds) (A2+ C2—4BC) — (d3+ds+di) (42— C?) }
+06(1) { — (ds+ds+dr) (A= C*) + (ds+dr1+de)4BCY + - - -

Coefficient of sinS¢:
0=+20a¢(2)d4dBC+a(2) { —dsABC— (ds+ds+d7) (A2 — C?) } +au(2) { + (ds+ds+d7) (42— C?)
+2(dit -+ +da) A2+ C—4BC) | +as(2) | —2(ds-+ - - - ++de) A2+ C2—4BC)
— (st +du)(A*=C) }+ - - - +02(1) {(+dsdBC— (ds+ds+dr) (42— C?) |
+b4(1) { — (ds+ds+d7) (A*— ) +2(d1+ - - - +do) (424 C*—4BC() }
+b6(1) {+2(d1+ - - - +do) (A*°+ C*—4BC) — (ds+ - - - +d1) (A2 = CO) } + - - -.

Coefficient of sin7¢:
0=+a2(2) {(ds+d:+ds)4BC}+ae(2) | — (ds+dr1+de)dBC— (ds+ - - - +d11) (42— C?) }
+as(2) {+ s+ - - - +du) (4= C) +2(dr+ - - - +d13) (A2 + C2—4BC) } + - - -
+6.(1) {(ds+d1+de)4BC} +b4(1) {+ (ds+dr1+de)4BC— (ds+ - - - +d11) (42— C?)}
+oe(1) { —(ds+ -+ +du)(A* = C) +2(di+ - - - +d15) (A2 C*—4BC) 4 - -+, (35)

where the d; are the following functions of s:

di= (1428253 {142}1),

dy=—2/s {1+ )+ §(14+252/58 (14570,

ds=16—3(20+32s*/s {1+ }) +3({5—16s'} {1+257}/s* {1+ }1),

dr= (1124 1285?) — 32+ 3(56+ 2245+ 1925/s {1+ 52 }3) + 3 ({7 —1125* — 12855} {1252} /s3{1+s2}1),

do= (4324 115252+ 7685*) — (288+25652) + 96 — 3 (120 86452+ 17285+ 102458 /s {1+ 52} 1)
+1(9—4325*— 115255 — 76853 {14252} /s? {1+s2}1).  (36)

In general,

doip1= 1/1rf du sin(27+1)u/sinu {52+ sin2u |2, (37)
0
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If s is much less than one, then
daiv1=21+1/25%

If s is much greater than one,

daip1=1%/5*— (142) /2S04 0/s2H5 4 - .. (39)

Equations (34) constitute the requirement
that the drift of the Fermi function produced by
the x component of the field by balanced by col-
lisions. Equations (35), if satisfied, guarantee that
the drift produced by the y component of the
field will be balanced by collisions. Sines and
cosines of even multiples of ¢ also appear in the
integral equation. The equations obtained by
considering these terms govern the drift produced
by the z component of the field. We have sup-
posed that all dislocation pairs have their axes
parallel to z. In this case if thermal scattering is
neglected there will be a steady drift of the Fermi
function in the k, direction, i.e., the equation
which governs the drift produced by the z com-
ponent of the field cannot be satisfied.

Equations (34) and (35) are solved for the
coefficients aq; and bs;, and the resulting relaxa-
tion time is averaged over all directions of k,
since electrons traveling in all directions are
present. The relaxation time ¢ which results will
depend only on the orientation of the field direc-
tion relative to the array of dislocations. It can
be seen from (31) that only a, will contribute to
i, since the other contributions average out. The
{ then gives the dislocation resistance when used
in Eq. (1). The method used in practice to carry
through these calculations will be described in
the next section where the averaged relaxation
time is calculated numerically for copper.

(38)

VI. THE NUMERICAL EVALUATION OF ¢ FOR
COPPER

It is assumed that copper has one valence
electron per atom. The effective mass of this
valence electron is taken to be just the mass of a
free electron.'® The width in energy of the filled
portion of the Fermi band is' 7.04 ev. This,
together with the values just quoted, gives
k=1.36 X10" cm™ and a=6.095 X102 erg cm?2
The other numerical constants used are given in
Table I11. The values of the first three constants

16 See reference 5, p. 153.
17 See reference 5, p. 146.
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are taken from a paper by Koehler.!® The density
of dislocation pairs is chosen to give the correct
value for the energy stored in copper during
work hardening. The pairs are assumed to be
uniformly distributed. The value of V, is that
given by Mott and Jones.!® The thermal portion
of the electrical resistivity is the value quoted in
the Handbook of Chemistry and Physics (Chem-
ical Rubber Publishing Company, Cleveland,
Ohio) (30th edition, 1947).

There are two cases in which the value of @,
can be calculated simply. If the electric field
vector lies in the xz plane, # equals zero, and
since (2)=sine sinu siny is also zero, the coef-
ficients of the b; terms in (34) vanish ; similarly,
the coefficients of the a,; terms in (35) vanish.
Equations (35) are then a set of linear homo-
geneous equations in the by;s. Since the deter-
minant of the coefficients is not, in general, zero,
the coefficients by; must be zero in this case.
Equations (34) can then be solved for the as:;5—
in particular for ao. The fact that the bs; should
all vanish can also be seen from the symmetry
conditions which exist in this case. The sym-
metry of ¢ is determined by that of the matrix
element and by the orientation of the field with
respect to the dislocations. In the case under dis-
cussion it is easily seen that ¢ should be an even
function of ¢, and hence all the sine terms must
be zero. Substituting the numerical values into
(34) one obtains the following equations for the
case where 7 is zero:

T = +-1.048090a0+0.094359a,
—0.302463a4+0.127223as,
= —0.859372a,+-0.815058a.
+0.278139a,—0.581710as,
0=+40.254447a,—0.839382a,
+1.247998a,44-0.590756as,
0=+40.384895a,—1.238952a,+1.556807as. (40)

The terms in ag and in higher coefficients are
assumed to be unimportant for the determination
of a,. Solving this, one finds that

ao=+0.974020T, when 7 =0, (41)
where

T =167 sinf/AN2

18 See reference 12, pp. 409 and 410.
19 See reference 3, p. 318.
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TaBLE 1II. Constants used in calculations on copper.

m=reciprocal of Poisson’s ratio=2.941
A=unit slip distance=2.552X10"% cm
n=density of dislocation pairs (when highly cold-worked)
=1/2(xR?) =2.906 X 10" cm™2
Vo=volume occupied by one atom=1/N=1.1708X 10723
cm?
g=the screening constant for the atomic potential in
which the electron moves=2.5X10® cm™ (Mott*
gives 1.8 X108 ¢<3.3X 108 cm™)
o —=02/2b2 =
s = T sintoon, q%/2k?=1.692
d1=+40.22549
di=+0.32836
ds=+0.34629
d7=+0.35235
dy=dn=dis=du=d11=1/5*=0.349301
Pehermai(bserved  20°C) =1.692% 10~ ohm cm=1.889
X107%# e.s.u. (sec. cm™?)

* See reference 13.

Similarly, if the electric field lies in the yz
plane 7 is 90° and (1) =sine sinu cosy is zero. In
this case the coefficients of the b,; terms in (35)
vanish and Egs. (34) become a set of linear
homogeneous equations in the b&;; which are
again zero. In this case, as before, ¢ should be an
even function of ¢, and again symmetry con-
ditions enable us to understand the vanishing
of the coefficients b.;. Substituting numerical
values into (35), the following equations are
obtained for the case where 7 is 90°:

T=+0.199172a,—0.288000a.
+0.315637a,—0.127223as,
= —0.376828a,41.433158a,
—2.211349a4+1.351500as,
0=+40.254447a,—1.093828a,
+3.181208a,— 3.838450as,
0=+0.384895a,—2.008742a,+4.804501as, (42)

where T has the value previously given. The
value of @, in this case is

ao=48.037938T, when n=90°. (43)

It is more difficult to solve the equations for
other values of 5. Because of the symmetry of
the problem, the complete dependence of  on
n is known if its behavior from 0° to 90° has
been obtained. We have also solved the equations
for the case where 7=45°. Some simplification
then occurs because (1) equals (2). The equations
which result are:

KOEHLER

T'=+1.048090a,-+0.0943592,4-0.953731b,
—0.302463a4—0.556909b,4
+0.127223a6+0.127223bs,
T=+40.199172a,—0.288000a, — 0.088828b,
+0.315637a,—0.061191b,
—0.127223a6+0.127223bs,
0= —0.859372a,+0.815058a,—1.6744300b,
+0.278139a4+2.2113490,
—0.581710as—1.3515000s,
0=—0.376828a,+1.433158a,+41.0563300,
—2.211349a4+0.278139b,
+1.351500a¢—0.581710bs,
0=+40.254447a,—0.839382a,+1.093828b,
+1.247998a4,—3.1812085,
+0.590756as-+3.8384500s,
0=+40.254447a,—1.093828a,—0.8393825,
+3.181208a,4-1.247998b,
—3.838450as+0.590756bs,
0=+0.384895a,—0.3848956,—1.238952a,
+-2.0087425,

+1.556807a5—4.804501bs, (44)

where the first, the third, the fifth, and the
seventh equations are from (34). The others are
from (35). Solving these equations one finds that

ao=-+2.518534T, when n=45° (45)

The angular dependence of the average re-
laxation time can now be determined. The sym-
metry of the problem is such that di/d7 is zero
at =0 and at n=90°. { can therefore be written
in the following form:

t=ao(un) =T {ao+Bo cos2n-+ v, cosdn

+ 8o cosbny+---}. (46)

Since the matrix element contains terms in cos4y
but does not contain more rapidly oscillating
terms, one would expect that the first three coef-
ficients in (46) would be large in comparison with
higher coefficients. It is assumed here that &,
and higher coefficients are negligible. The values
of ay given in (45), (43), and (41) then suffice
to calculate the coefficients; they are:

ap=+3.498157,
Bo= —3.531951,
vo=+1.007815.

(47)

The value of the dislocation resistance can
now be calculated. The value of A is found using
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the expression given below (33). The result is
used to obtain T which is given by the relation
below (41). The average value of sin® is inserted
in the expression for T" (i.e., 15/48). The dis-
location resistance is then obtained by sub-
stituting from (46) and (47) into (1). The result
for copper is

Ap=1.491X10-2/(1.000 —1.010 cos29
+0.288 cos41) e.s.u.  (48)

It should be noted that Ap does not depend
on u, the angle between the field direction and
the dislocation axes. This can be qualitatively
understood as follows: As u decreases from 90°
towards zero the magnitude of the matrix ele-
ment and hence the scattering probability de-
crease and become zero when p is zero. On the
other hand, the time spent in the perturbed
regions around the dislocations by the electrons
which contribute the largest part of the dis-
location resistance (i.e., the electrons moving
along the field direction) increases as u decreases;
this times goes to infinity when u is zero. Thus
the two effects tend to cancel out.

The dependence on % is most interesting. The
values of the dislocation resistance in the slip
direction, at n=45° and perpendicular to the
slip direction in copper are

Apy—pe=5.37X1072 e.s.u.,
Apy_sr=2.09X10"2 e.s.u.,
Apy_9e°=0.648 X100 e.s.u.

The ratio of the extreme values is
Ap,,=0°/Apﬂ=go°=8.30.

This means that the dislocation resistance
depends sensitively on the direction of the electric
field. The ratio of the extreme values depends on
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Poisson’s ratio for the material and is large for
materials having a low value of Poisson’s ratio.

In a polycrystalline material all values of 7
are equally likely. If the relaxation time is aver-
aged over 7 and is then used in (1), the result
obtained is appropriate for comparison with the
experimental results on polycrystals mentioned
in the introduction. In the case of copper the
result is

(Ap)w=1.491 X102 e.s.u.

The averaged dislocation resistance in highly
cold-worked copper is therefore calculated to be
slightly less than 1 percent of the thermal portion
of the electrical resistance at 20°C. Experimen-
tally, (see pipermar in Table III) the dislocation
resistance amounts to 2 percent of the thermal
resistance at room temperature. Considering the
complexity of the calculation, the agreement is
remarkable.

The treatment given here is incomplete in
two respects. First, similar calculations should
be made assuming that the electrons are scat-
tered by screw type dislocations.? Second, studies
should be made to determine just what kind of
three-dimensional dislocation arrays are present
in the various types of crystals when they
undergo certain simple kinds of plastic strain,
such as simple glide in one slip direction on one
slip plane.

In conclusion I would like to thank Professor
Frederick Seitz for suggesting the problem and
for numerous helpful discussions. I would also
like to thank Mr. John Pittenger and Miss
Nancy Michener for help with the numerical
calculations.

20 J. M. Burgers, Proc. K. Akad. Amst. 42, 263, 378
(1939).



