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kev were not used in the present analysis partly because, as
remarked by J. K. Lubansky and C. De Jager, '~ these observa-
tions do not agree very well with other measurements and
primarily because these data were taken mainly in order to
confirm the smallness of scattering at 90' in the center of mass
system rather than for quantitative purposes.

The values and experimental uncertainties for 8=4.2, 7.03
Mev have been used in accordance with published statements
of May and Powell and of Dearnley, Oxley, and Perry. The data
of R. R. Wilson and E. C. Creutz4at 8 Mev, R. R. Wilson4 at
10 Mev and of Wilson, Lofgren, Richardson, Wright, and
Shankland were treated in the following manner. The values
of the phase shift and of y, Y at 8 Mev were determined from
the value a 2.7~0.2&(20 '~ cm' for the scattering cross
section in the laboratory system of Wilson and Creutz. This
was compared with a theoretical value of 2.75&20 '~ cm'
which corresponds to Eo=53.6', which is the value of
Hoisington and Thaxton4 at E=8 Mev for b =e'/mc',
D =10.5 Mev. By means of the relation

a F = —ps-2sE„ {I,1)
which applies to small changes in the logarithmic derivative
and phase shift and the approximate first-order relation:

~Ho=tank 0(~0./2cr) (I, 2)

gave B V=0.027. This is the estimated difference between Y
for the experimental cross section and the Y corresponding
to b =e'/mc', D = 10.5 Mev. The limits of experimental uncer-
tainty were drawn in so as to correspond to the uncertainty
~0.2&20~' cm2 in cr.

At 8=14.5 Mev it was assumed that the value of y for a
scattering angle of 45' in the laboratory system is about

'~ J. K. Lubansky and C. De Jager, Physica XIV, 8 (1948).

0.0225X 20 "cm~ higher than that expected for a square well
with b =e'/mc', D = 10.5 Mev. The reason for this assumption
is that the experimental point for the above mentioned scat-
tering angle is about 0.025X10 " cm' higher than the S
wave curve in Fig. 3 of Wilson et al. It appears that a shift
of the S wave curve up by about the assumed amount would
fit experiment reasonably well. On this admittedly rough and
somewhat arbitrary interpretation it was calculated that,
BED=2.2(8)' and by means of (I, 1) it followed that BV=
—0.031. The approximation (I, 2) agrees with this estimate
within about 10 percent. Since 8Y is used as an addition to
the Y of the square well the accuracy required is moderate.
The experimental uncertainty was made to correspond to an
uncertainty of ~0.2)& 20 "cm' in O.,m the cross section in
center of mass system. Rough checks were made on the curve
marked 5 in Wilson et al.

Since for 10 Mev absolute values of the cross section are
not available the experimental error was taken to be about
the same as for 8 Mev and 14.5 Mev. The relative values of
the cross section at different angles do not determine Xo with
good accuracy even on the assumption that other phase shifts
are absent. It is difFicult to do much with the value at 10 Mev.
The value of Y for this energy was somewhat arbitrarily taken
to be on the D = 10.5 Mev line. This position fits in which the
points at 8=8, 14.5 Mev but the point at 8=10 Mev has
very little weight in comparison with the others.

The experimental uncertainties in the 8 Mev —14.5 Mev
region are so large that accurate calculations appeared out of
place. It was assumed throughout that only S wave scattering
enters close to 0=45'. This assumption can be doubted. It
was made only because it is impossible to evaluate the com-
plicated effect of higher phase shifts and because there is no
decisive experimental evidence indicating their presence.
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The separation of a binary gas mixture by diffusion through a capillary of radius r depends on
the fact that the molecules have different masses m; and mean speeds 8;. When the inlet pressure
is so low that the mean free path X is much greater than r, the flow is diffusive and the separation
factor (at zero outlet pressure) has its maximum value (m~/mi)&. At high pressures () &&r) no separa-
tion occurs. This paper treats the intermediate case () =r) where the transfer of forward momentum
from light to heavy molecules in unlike collisions equalizes the transport velocities and decreases
the separation factor. As the inlet pressure rises, this effect makes the How non-separative before it
becomes viscous. Flow equations are derived by equating the momentum acquired by the light
component from the pressure gradient to the momentum lost to the wall plus that transferred to the
other component. The viscous effects are treated as a small additive perturbation on the Row. The
integrated Row equations express the separation factor as a function of the inlet and outlet pressures.

INTRODUCTION

OR purposes of orientation, we consider Erst
the effusion of a gas mixture through a circular

* This article is based on work performed by the authors
while members of the sta8' of the Columbia University Divi-
sion of War Research, SAM Laboratories. The main reference
is to Manhattan Project Reports A-1289, Part I, June 8, 1944,
and Part II', September 5, 1944. A preliminary abstract was
published in Phys. Rev. 59, 259 (1946).

ori6ce. The nature of the fiow depends on the
comparative magnitude of the mean free path X and
the radius r of the opening. When the opening is
large (r»X), many collisions occur in the vicinity
of the orihce and, if two kinds of molecules are
present, there is a continual transfer of momentum
from the lighter, faster molecules to the heavier,
slower molecules with the result that both kinds of
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molecules pass through the opening together with
a common mass motion. Such a flow may be treated
by the methods of hydrodynamics and the results
are well known. Since both components travel with
the common drift velocity, the flow is non-sepa-
rative. In the other limiting case (r«X), a molecule
traveling through the hole has very little chance of
colliding with another molecule in the vicinity of
the hole, i.e. , the molecules eftuse through the
orifice independently with a velocity component
proportional to the mean speed 8 of thermal agita-
tion and inversely proportional to m&, where m
denotes the molecular mass. Hence the flow in this
limit is separative. If the molecular particle density
in front of the orifice be denoted by np and behind
the orifice by I&, the net molecular flow per unit
time per unit area of the opening is (I/4)e(nv ns—)
according to elementary kinetic theory. The inter-
mediate or transition region where ) and r are
comparable is very difficult to treat. However, it is
qualitatively clear that the nature of the flow and
the amount of separation will depend essentially on
the parameter r/X. For a given hole size the separa-
tion can be improved by decreasing the pressures
and thus increasing the mean free path or, con-
versely, if the pressures are fixed, the separation is
improved by decreasing the size of the orifice We
are primarily interested in the transition region
where r and X are comparable. The practical
separation of gas mixtures by low pressure diffusion
is accomplished through the use of some kind of a
porous medium or "barrier. '" It has been shown
experimentally that the flow through a porous
medium is in essential respects similar to the flow
through a long capillary tube and quite unlike the
flow through the orifices of a thin perforated
membrane. ' Thus, at high pressure the pressure
dependence of the flow through a porous medium is
that of capillary viscous laminar flow and not that
expected for orifice flow. At very low pressures the
order of magnitude of the permeability or inverse
flow resistance is compatible with the capillary
flow value but not with the orifice flow model.
Therefore, the case of capillary flow at pressures in
the transition region is of greater practical interest
and, in addition, is more amenable to theoretical
treatment than the analogous problem for orifice
flow.

The nature of the flow of a gas through a long
circular capillary of radius r depends again on the
comparative size of r and ). If X«r, the flow is
given by the Poiseuille formula; in the case of a gas

mixture both components are transported with the
drift velocity and no separation takes place. In the
other limit (X»r) the How obeys the well-known
Knudsen formula, '

I'= —(16r/3xmv)dp/dx= —(2vr/3)dm/dx, (1)

where F denotes the mean flow in molecules per
unit area per unit time in the x direction (axis of
the capillary). The How per unit area I' varies with
the distance from the axis' and I' represents the
total flow divided by the area of cross section rr'.
Formula (1) has been confirmed by both Knudsen'
and Adzumi in experiments with bundles of capil-
lary tubes at very low pressures. Equation (1) will
be referred to as the Knudsen or free-molecule
flow formula and it is valid only when )»r. It
clearly represents a diffusive flow and the diffusion
coeScient is 26r/ 3. This corresponds to a mean
random-walk step-size of 2r; i.e. , the mean free
path for intermolecular collisions (ordinary gaseous
di6usion) is replaced by the mean free path for
wall collisions (Knudsen diA'usion). Since the mole-
cules diffuse independently of each other, Eq. (1)
can be applied to both components of a gas mixture
if the partial density gradients are used. We denote
the concentration or mole fraction of the lighter gas
at the inlet of the capillary by X and at the outlet
by v. The separation factor f is customarily defined
by

(2)

When X&&r and the outlet pressure is zero, the sepa-
ration factor has its maximum or "ideal" value f+
It follows immediately from (1) that f+=(mm/mi)&,
where m2 is the molecular mass of the heavier and
mi of the lighter gas. According to Eq. (1), when
the outlet or back pressure is zero the composition
of the flowing gas is constant down the length of
the tube and changes discontinuously at the exit to
the composition of the enriched outlet mixture.
This may be understood as follows: the concentra-
tion ratio of the two components in the outlet
mixture is the same as the flow ratio of the two
components in the tube; however, the flow ratio is
equal to the concentration ratio times the ratio of
transport velocities and the latter is constant and
equal to (m2/mi)i. When the back pressure is not
zero the outlet mixture diffuses back into the tube
and, according to Eq. (1), the concentration of
light gas increases monotonically from the inlet to
the outlet. In this case f obviously decreases as
ps/pv, the back- to fore-pressure ratio, increases.

'H. de W. Smyth, Atomic Energy for Military Purposes
(Princeton University Press, Princeton, New Jersey, 1945).

R. R. Sullivan and K. L. Hertel, Advances in Colloid
Science (Interscience Publishers, Inc. , New' York, 1942),
Vol, I, pp. 37-80; %'. G. Pollard, A-2136, September 25, 1944.
References to non-project work may be found in the former,
to project work in the latter.

~ M. Knudsen, Ann. d. Physik 28, 705 (1909).
4As shown in reference 7, appendix II, F is equal to—)Sate(r/a)dn/dx where r is the distance from the axis, a the

tube radius, and 8 denotes the complete elliptic integral of
the second kind.

~ H. Adzumi, Bull. Chem. Soc. Japan 12, 285, 291, 295, 304
(1937); 14, 343 (1939).
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Knudsen, ' Gaede, ' and Adzumi' measured the
Rom of pure gases through capillaries over the
entire pressure range from X»r to X&&r, and Gaede
also made similar measurements of the Row between
parallel plates. At high pressures their results can
be represented in the usual way by the Poiseuille
formula for viscous laminar flow plus a small
correction term proportional to the pressure gradi-
ent. 'Ihis correction term, which was originally
attributed by Maxwell to "slip, " has the same form
as, but is smaller than, the free-molecule Rom.
When the specific flow (total flow/pressure drop)
was plotted against the mean pressure, all three
investigators found evidence of a slight minimum
at low pressures when the mean free path was nearly
equal to the tube diameter. Thus the specific flow
initially decreases slightly (10 to 20 percent) below
the free-molecule value and then increases linearly
with the pressure according to the Poiseuille law.
A theoretical treatment of self-diffusion through a
long capillary tube valid over the entire pressure
range from )»r to )«&r has been given by Pollard
and Present. " Their work explains the existence of
the minima observed by Knudsen, Gaede, and
Adzumi; furthermore, it predicts the absence of
such minima in the case of flow through porous
media. Observations' on the flow of pure gases
through many types of porous media have shown
the relation between specific flow and average
pressure to be accurately linear down to pressures
for which the mean free path ) is of the order of
several hundred times the mean pore radius r.
These results imply that the flow through a porous
medium can be accurately represented over the
entire prpssure range from X»r to X«P by an
expression of the form

(ci/m&)dp/dx+(ci/s)pdp/dx, (3)

i.e. , by simply adding a laminar flow (viscosity g)
to a free-molecule diffusive flow. Therefore, both
theory and experiment have shown that the two
types of flow, mhile not strictly additive in long
capillary tubes, appear to be so in many porous
media.

Further experiments performed at the SAM
laboratories' indicated that, in the case of a binary
gas mixture flowing through a porous medium, the
separation factor at intermediate pressures (X r)
could not be accounted for by assuming an equation
of the form of (3) to hold for each component. At
fore-pressures for which f (measured at zero back-

' W. Gaede, Ann. d. Physik 41, 289 (1913).
~W. G. Pollard and R. D. Present, Phys. Rev. '73, 762

(1948).
~ H. Kuhn, letter from N. Kurti to F. G. Slack, March 8,

1944; A. D. Callihan, M-1157, September 4, 1944; K.
Schleicher, M-1472, January 5, 1945.

9This work was performed mainly by Lagemann, Weil,
Schleicher, Slack, Callihan, and Roberts, of the SAM Labora-
torjes.

pressure) was well below its ideal value f+, flow
measurements showed that the non-separative
viscous Row could be altogether negligible; i.e., the
Row of the mixed gas mas simply proportional to
the pressure gradient. The experiments thus indi-
cated the existence at intermediate pressures of a
non-separative non-viscous component of the flow
which, when added to the separative free-molecule
flow, gives rise to a total flow proportional to the
pressure gradient as observed. Epstein'0 came to
the same conclusion from a theoretical argument
and Badger" made this the basis of a semi-empirical
flow equation. Badger assumed that in a mixed
Row the separative Knudsen diffusion should be
weighted by a factor 1/1+cp and he added to this
a non-separative diffusion term weighted by the
factor cp/1+cp. Apart from the effects of viscosity,
which were neglected by Badger, his equations are
very similar to, though not identical with, those to
be derived in the following section.

NONENTUN TRANSFER THEORY

Let us consider first the changes that take place in
the character of the flow as X decreases from an
initially large value. In a long tube of length I)&r
there will be no intermolecular collisions so long as
)»I-. If L»X&)r, a molecule will make many
intermolecular collisions before reaching the outlet,
but for every collision that a molecule makes with
another molecule, it will make many collisions with
the wall. Now the Row is ideally separative as long
as intermolecular collisions can be neglected; when
these occur momentum is transferred on the average
from the lighter to the heavier gas so that the flow
rates tend to equalize. If X»r, the eAect of a
momentum transfer in an intermolecular collision
is efI'aced during the many subsequent collisions
with the mall which precede another intermolecular
collision, and in which the molecule comes into
equilibrium with the molecules of the wall. 'Thus
the flow remains ideally separative Knudsen flow
until the mean free path X becomes comparable to
the diameter of the tube. When ) ~r the e8'ect of
an intermolecular collision persists until the next
intermolecular collision, and the cumulative eBect
of collisions between unlike molecules is to equalize
the flow rates and diminish the separation efficiency.
The transfer of forward momentum from the lighter
to the heavier gas can take place in the absence of
an appreciable gradient of the drift velocity normal
to the tube axis, whereas the viscous transfer of
momentum sets in only after the transverse velocity
gradient has been established. We calculate first
the non-separative eA'ect of collisions between
unlike molecules on the free-molecule flow, neg-
lecting viscous effects.

"P.Epstein, A-1707, December 3, 1943."R. Badger, A-1751, March 30, 1944.
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Consider the steady-state Row of a mixed gas
through a long capillary of radius r extending in
the x direction. Regarding a cylindrical element of
gas of length dx, it is clear that the molecules of
component 1 will receive a net forward momentum
per unit time equal to rrr'—(dpi/dx)dx, where pi
is the partial pressure of gas 1. If component 1 is
the lighter gas, this momentum is transferred partly
to the wall and partly to gas 2; on the other hand,
gas 2 receives momentum from the pressure gradient
and from collisions with gas 1 and transmits it to
the wall of the tube. Consider first the momentum
transfer to the wall and let us denote by u~ the trans-
port or mean x-component of velocity of gas 1. If the
molecules leave the wall in completely random di-
rections after a collision with the surface (an assump-
tion well confirmed by experiment"), they must —on
the averag- -communicate their whole forward or
x component of momentum to the wall. The mo-
mentum transferred each second would then be
expected to be mu (nv/4) 27rrdx for a pure gas.
This is confirmed by a direct calculation using an
approximate distribution function for a drifting gas
(see reference 7, Appendix I). However, this result
implies no variation of n, u, and F=nu over the
cross section of the tube and, as previously men-
tioned, ' 1" varies with distance from the axis in
free-molecule flow. From Eq. (1) we obtain

dP/dx = —(3v mV/16r) I' = —(3rrmvnu/16r), (4)

where u represents the drift velocity averaged over
the cross section. Multiplying both sides of (4) by
mr'dx, the left-hand side becomes the resultant force
on a cylindrical element as a result of the pressure
gradient and the right side then represents the
mean transfer of momentum from the gas to the
wall per unit time: (3s/8) mu (nv/4) 2s.rdx This.
result, which differs by a factor of 3x/8 from that
first given, will be used in the following.

Ke come next to the calculation of the momen-
tum exchange between the two components of the
gas mixture in the cylindrical element. Assume
u~ &u2 so that the molecules of gas 1 give up forward
momentum on the average when colliding with
molecules of gas 2. For purposes of orientation let
us first assume, as in the hard elastic sphere model,
that the scattering is isotropic in the center of mass
system. Then the average momentum of molecule
1 in the x direction after collision mill be nz~u,
where u, is the x component of the mean velocity
of the center of mass and is given by

u, = (m,u, +m2um)/(m, +my).

The average momentum of molecule 1 before colli-
sion is ns~u~ ', therefore, the average amount of

"Blankenstein, Phys. Rev. 22, 582 (1923}.See also L. B.
Loeb, Kinetic Theory of Gases (McGraw-Hill Book Company,
Inc., Neer York, New York, 1927).

forward momentum lost in one collision is mi(ui —u, )
or m+(ui —um) in terms of the reduced mass. The
number of collisions per second per unit volume
between unlike molecules is

nin2s di~'(vi'+ vg') &,

where d~2 is the collision diameter for unlike mole-
cule encounters. Hence the momentum transferred
per second from gas 1 to gas 2 per unit volume
(M,~) would appear to be

(ui u2) 'nin2&d12 ' (vl +v2 )

on the average; however, the average momentum
transferred is not quite the same as the average mo-
mentum loss per collision multiplied by the average
number of collisions. Furthermore, the assumption
of "hard elastic sphere" molecules is unnecessarily
restrictive. It is readily seen that the momentum ex-
change M~2 can be expressed directly in terms of the
coefhcient for ordinary mutual diffusion a~2 without
special assumptions about the law of force or the
distribution-in-angle of the scattering. Provided
only that the drift velocities u~ and u2 are small in
comparison with the thermal velocities 0~ and 82,
the momentum transfer M» will be simply propor-
tional to u~ —N2 and will not otherwise depend on
the drift velocities (see Appendix I). Consider now
a mutual diffusion of the same gas mixture at
uniform total pressure with no total flow of mole-
cules. Denoting the momentum transfer per unit
volume per unit time from species 1 to species 2 by
&~2&~' under the special conditions of mutual
diffusion, we have

Mlm/M12 (ui u2)/(ui u2 )
(ui u2)nln2/nf 1 (5)

since I'i' &+I'2'n' =niui' '+nmu2&D' =0. Considering
now a steady mutual diffusion in the x direction
through an element of gas of unit area and thickness
dx, it is evident that the momentum received by
component 1 from its partial pressure gradient is
transferred to component 2 giving

(dp, /dx) dx+ M, 2&~&dx =0,
whence

and therefore

Min = (ui —ug) (ningk T/nDim).

Equation (6) is independent of the law of force
acting between the molecules and for small drift
velocities is practically independent of the distribu-
tion function. In the special case of "hard elastic
sphere" molecules, the value obtained for D~~
either by Stefan's momentum transfer method" or

'~ See the review article by W. H. Furry, Am. J. Phys. 16,
63 {1948).



R. D. PRESENT AND A. J. DE BETHUNE

in the first approximation of the Enskog-Chapman
theory'4 is

D12 = g(rrkT/2m+)1 (1/n2rd12 ). (7)

Introducing (7) into (6) and replacing 8kT/2rm+ by
v/+822 we obtain

3f12 (4/3)m (u1 u2) 'nln22rd12 ' (211 +82 ) (6 )

which divers by a factorof 4/3 from our preliminary
result. Formulas (6) and (6') apply to any volume
element in the flowing gas. The momentum transfer
from gas 1 to gas 2 in the cylindrical element
bounded by the wall of the capillary is then M~xr'dx
provided that ui and u2 are interpreted as the drift
velocities averaged over the cross section. The
following equations express the momentum balance
in the cylindrical element:"

—2rr (dP1/dx) = (3 r/28) m1.u1(n181/4) 22rr

+ (u1 u2) ' (nln2kT/nD12) ' 2rr
—«'(dP2/dx) =(32r/8) m2u2. (n2v2/4) 22rr

—(u1 u2) —(n1n2kT/nD12) 2rr'. (8)

Adding and introducing the molecular flows per
unit area G~ and G2 averaged over the cross section,
i.e. , G; =n;u, , we find

r(dp/dx) = ( 3—2r/1 6)(m181G1+m282G2) (9.)

Since the right-hand side of (9) is a constant, the
total pressure decreases linearly along the tube.
Introducing the abbreviations

8r (2rkT) & (m&)11 1
bye =—

] (10)
3x &2m+) (m, +m2)» pD12

(m1)1r Xm1&+——(1 —X)m2&,

where X(x) denotes the mole fraction of gas 1 and
using the Maxwellian value of 8, one finds from
Eq. (8) that

8t ~q» 1 dip)
32r 42kT) m1& 1+b(X)p dX

b(X)p dp
+

(m&)„1+b(N)p dx

The first term, which is inversely proportional to
m&, is ideally separative. The second term is non-
separative, it vanishes as the pressure goes to zero
(X»r), and for large pressures () C(r) it is negligible
compared with viscous flow. In the case of a pure

~4 S.Chapman and T. Cowling, Mathematical Theory of ¹n-
Un~form 6'ases (MacMillan Company, Inc. , New York, New
York, 1939).

'I It is readily seen that under the specified conditions of
low pressure flow through long tubes the dynamical inertia
term proportional to u8u j8x can be neglected.

gas (%=1) the two terms coalesce to give the
free-molecule IIow formula (1). It is readily seen
that if the capillary has a uniform non-circular
cross section, the same expressions for b and Gi are
valid if r is interpreted as twice the cross-sectional
area divided by the perimeter. Badger's" semi-
en1pirical equation is similar to (11); however, in
his formulation b(X)/(m&)~ was not independent of
concentration. The second term of (11) representing
a non-separative diffusion becomes important when
b(X)p 1. In the case of an isotopic mixture it is
evident that

bp = [2r/3]. (8kT/2rm) & L I/D11]
=D /D„=K(r/X), (12)

where Dii is the self-diffusion coe6cient and DI;
the Knudsen coefficient 2vr/3 for free molecule
diffusion. The mean free path X has been introduced
in connection with the isotopic mixture and E
denotes a numerical factor in the neighborhood of
unity whose precise value depends on the relation-
ship assumed between D~~ and ). It follows from
(11) and (12) that the separation ceases to be ideal
when X becomes comparable to r.

CAPILLARY THEORY OF SEPARATION

In the preceding section it has been assumed that
the effects of viscosity could be neglected in first
approximation because of the small transverse
gradient of the transport velocity. However, the
transition to viscous flow takes place in the same
range of pressures (X r) in which the non-sepa-
rative diffusion becomes important. Consequently,
although the effects of viscosity on separation are
small in this range of pressure, they cannot be
neglected. At higher pressures the entire diffusive
IIow (11) becomes negligible compared to the
viscous flow. We now assume that the flow of a
mixture of two gases at intermediate pressures can
be represented by adding the viscous laminar flow
to the diffusive liow of Eq. (11). In the case of
pure gas flow through capillaries the transition
region can be represented only approximately by
adding the free-molecule and laminar flows. The
minima found by Knudsen, Gaede, and Adzumi in
the curve of specific flow versus mean pressure
indicate that the flows are not strictly additive.
Fxcept at high pressures and low separation effici-
encies, however, the effect of the viscous term is
smal1 and the error made by assuming exact
additivity is of second order. The Poiseuille term
in the following formulas may be regarded as an
additive perturbation on the main diffusive flow.
As previously noted, the assumption of additivity
is a better approximation for porous media than
for capillary tubes.

Equation (11) is now rewritten for each compo-
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nent to include the viscous Row:

d(NP)Gi f+

g 1+b(Ã)p dx

f(&)b(&)P dP dP
+ ~ X +—Xa (E)p-

1+�(E)p dx dx'
(13)

g 1+b(X)p

where

d(1 —X)p f(N)b(N) p+
dx 1+b(X)p

dp dp
(1—N)—+ (1—N)a(X) p—,

ox dx

g = (8/3s ) (s./2h Tmn) &r,

f(X) =mn&/(m&)~, (14)
a(E) = 3r/16'(N) vg.

The value of a is obtained from the Poiseuille How

through a circular capillary divided by the area
of cross section: (r'p/8g)de/dx. All three terms in
(13) represent averages over the cross section of
the tube. The relative importance of the non-
separative diffusion and the viscous fiow term is
measured by the ratio X(X)=b(1V)/a(X). It fol-
lows from Eqs. (10) and (14) that

256 (m&)„(m)„s(X)
X(X)= (15)

9s. m2mi& p(N)Di2

where p(X) is the mass density and (m)~=Km&
+(1—Ã)m2. In the case of an isotopic mixture Di~
reduces to the self-diffusion coefFicient Di~. The
dimensionless constant pDii/rl may range in value
from 1.20, corresponding to "rigid elastic sphere"
molecules, up to about 1.5 for molecules repelling
nearly as the inverse fifth power of the distance.
In practice, pDii/s lies usually between 1.30 and
1.40; hence, the value of X for an isotopic mixture
is roughly independent of the gas. Experiments"
indicate that the best value of pDii/s for the UF6
isotopic mixture is in the neighborhood of 4/3,
corresponding to X=64/3s.

The differential equation of separation will now
be obtained. Let v denote the molar fraction of the
first gas at the outlet; then Gi/G2 ——v/1 —v, ex-
pressing the condition that the composition of the
gas at the exit is determined entirely by the Qow
rates through the tube. By substituting Eqs. (13)
in this relation and writing dN/dx = (dX/dp) (dp/dx)
one obtains

p(dN/dp) {f+(1 v)+v j+(& v) (—(fb+a) p—+abp'}
+f+X(1—v) —v(1 —X) = 0. (16)

Let y=X —v and h(v) =1+(f+—1)(1—v). Then

"E.P. Ney and F. C. Armistead, Phys. Rev. 71, 14 C'1947).

(16) becomes

hp(dyjdp)+Lh+ {fb+a(y) }p+a(y)b(y)p'jy
+(f+ —1)v(1 —v) =0. (17)

Evidently v and fb are constants but the parameters
a and b depend on the composition at every point
through g(1V) and (m&)~, respectively. Since (m&)+
is a linear function of X and since 1/g(Ã) can be
approximately represented by a linear function
over not too large a range, we may rewrite Eq. (17)
in the form (neglecting the small terms py' and p'y')

P(dyjdP)+ {1+cp+&p'}y+mp'y'+~=0. (18)

The solution of Eq. (18) can be obtained analyti-
cally in terms of conAuent hypergeometric functions
(see appendix II) or more simply by numerical
integration. However, even in the case of a gas
mixture in which the molecular mass ratio and the
change of composition are large and the coeHFicient
of p' in (17) varies considerably, e.g. , H~ —CO2,
the solution of (17) is found to diRer by only a few
percent at low and negligibly at high separation
efficiencies from the solution in which a and b are
treated as constants and given their values at the
inlet. Since the composition of the gas in ideal
Knudsen Row is constant at the inlet value through-
out the length of the tube, it is obviously preferable
to use the inlet rather than the outlet values of c
and b. Hence for all mixtures in which the molecular
mass ratio of the components is not too large, we
may replace (17) by

h( )p(dyjdp)+ {h( )+c p+"p'jy
+(f' —1)v(1 —v) =o, (19)

where ci=fb+a and'c2=ab. On integrating from
the outlet to the inlet we obtain

(f+ 1)v(1 v)
y(pv) =Xo—v=-

h(v) pv

$$ ~
exp((ciP+(c2/2)P')/h(v) jdP

&B

(20)
exp {(ciPv+ (c~/2) Pv')/h(v) j

where pv and ps denote fore- and back-pressures
and No the inlet concentration. We de6ne the
separation efficiency Z as the ratio of the actual
enrichment to the idea1 enrichment at constant
back-composition. It is readily seen that

(v —Np) h(v)
Z=

(f' —1)v(1 —v)

4~

J
e p({x(1+X/)@+(X/2)4"3jh( ) }4

(21)
@ «p(L(1+Xf)4 +(X/2)4 ']/h( ) }
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where the "reduced pressure" p=ap=3rP/16itti~
has been introduced. A curve of Z eersls pg for
fixed Qs/Qi will be referred to as a "fore-pressure
curve. " It is apparent from Eq. (21) that there is
no universal fore-pressure curve which would be
independent of the gas mixture. However, since
the X of an isotopic mixture is approximately
independent of the gas, one may, to good approxi-
mation, use a universal fore-pressure curve for
isotopic mixtures. In this case ()=1, h(i) =1) Eq.
(21) reduces to

Z(s p, ~rs) =
exp {1.430s.+0.1142s'}ds.

(21i')
s p exp{1.430si+0.1142s.i'}

Numerical results from Eq. (21i) are insensitive to
variations in X arising from the slightly difkrent
values of paii/it appropriate to dilferent gases.
When m.s=0 a good approximation to Eq. (21i') is
given by

Z '=1+0.662irp+0. 338~&' 0& vari &2. (21i")

In the stated range of fore-pressures this formula is
nowhere in error by more than one percent,

In the case of a general binary gas mixture it is
convenient to introduce the variable

t = (X/2It) ~y+t„ ta ——(1+Xf)/(2&X) '.

Equation (21) can then be written in a general form
for all gas mixtures as the simple three-parameter
function

fy

Z(ti, ts, to) = t exp[t']It/(t p —to) exp[ti ']. (22)
t~

The integrals are conveniently evaluated from the
following formula" based on an approximation by

'~Equation (21i') was derived independently by C. H.
Bosanquet from a quite di8'erent point of view. Bosanquet's
results, which were communicated to R. Peierls in letters
dated May 8 and I9, f944, were obtained slightly earlier than
those of the present authors. The considerations of Bosanquet
were restricted to isotopic mixtures; however, it ha, s been
shown by Pollard (A-3813, November 23, 1945) that the
method of Bosanquet can be generaIized to an arbitrary gas
mixture.

"This formula was calculated for us by Dr. C. Lanczos.

exp {(1+X)it+ (X/2)it'}dit

(21i)
yp exp{(1+X)yp+(X/2)gi'}

It is convenient for purposes of comparison with
experiment to have the pressures expressed in
terms of p~o, the fore-pressure at which Z=0.50
when the back-pressure is zero. Using X=64/3s,
one Ands that Z =0.50 when p p =0.1834 and
p~ =0. Introducing the "relative pressure" s. =P/Pqo
=p/@„, Eq. (2li) becomes"

fschebysche8 polynomials and having in the range
2&@&~ an error nowhere exceeding 1 part in
2000:

exp[t']dt = (exp[x'] /2x)

X {0.9995+0.1489(2/x)' —0.1361(2/x)4

+0.4525 (2/x) 6 —0.2184(2jx) s }—0.56. (23)

1 a'(m&)~pt dp—G/g' = 1+ ~~
(m&) „ it(N) dg

(24')

which may be compared with the corresponding
formula for a pure gas:

a'm&P} ZP—G/g'= —.1+ ~ ~

m~ { , I ~x
(24")

Graphs of Z vs. tI for selected values of t~ and to

can be simply prepared and applied to the separa-
tion of various binary gas mixtures for the two
cases of constant fore-composition and constant
back-composition.

The integration of Eq. (19) from the outlet of
the capillary (at given back-pressure and back-
composition) to a variable pressure p enables one
to plot N as a function of p. Starting from the
inlet value No, ¹isfound to decrease monotonically
along the tube when ps=0 and then jump discon-
tinously to the value i at the exit; when Ps is small
but finite the concentration of light component
first decreases and then rises steeply but continu-
ously near the exit. fhe explanation of the initial
decrease in X is as follows. The ratio of the light
component transport velocity to that of the heavy
component is not constant as in free-molecule flow
but increases as the lower pressure region of the
tube is reached because of the decreasing frequency
of collisions between unlike molecules. Since the
ratio of concentrations is inversely proportional to
the ratio of transport velocities, the light component
concentration must decrease down the tube rising
near the outlet because of back-diA'usion.

This article will be concluded with a brief
consideration of the total flow of a mixed gas
through the capillary tube. The total flow of the
mixture is obtained by adding together the two
Eqs. (13) and eliminating the term in dN/dP by
the use of Eq. (16). The result for G=Gi+G2 is
simply

G/g =f(v)—dp/dx+ {f(v)/f(N) }a(N)pdp/dx, (24)

where f and a are defined by Eqs. (14). Introducing
g'=gm2& and a'=a(N)it(N)m2 &=3r/1682m2& into
(24), one obtains
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The first term of Eq. (24'), which represents the
free-molecule Bow of a mixed gas, is seen to be
inversely proportional to the average value of the
square root of the molecular mass, the average
being taken with respect to the outlet composition.
The integration of Eqs. (24) or (24') is complicated
by the fact that the coefficient of pdp/dx is a
function of composition and the composition varies
with the pressure as the gas Aows from the inlet to
the outlet. Details will not be given here. "

APPENDIX I
3fomentuns transfer ie the gus. It will be shown here that

for simple approximate distribution functions the momentum
transfer is proportional to the difference in transport velocities
ui —ug. Since very similar derivations are to be found in the
literature [see reference 13or E.H. Kennard, Kinetic Theory of
Gases (McGraw-Hill Hook Company, Inc. , New York, 1938},
p. 190), the discussion is abbreviated.

Let V=vi-v& be the relative velocity of two unlike mole-
cules before an encounter and let P denote the angle between
V and the relative velocity after collision; i.e., f is the angle
of deflection in the center of mass system. Assuming a spheri-
cally symmetrical interaction, the angle P evidently depends
only on the relative speed V=

~
V

~
and the impact parameter

b. The number of un1ike molecule collisions per unit volume
per unit time between molecules with velocities in the range
vi to vi+dvi and molecules of the other type with velocities
between vq and vg+dvg is deidegV 22rbdb for impact param-
eters between b and b+db. It is readily seen that the momen-
tum transferred to molecule 2 in a single collision has a
component ns+V(1-cosP} in the direction of V and that the
perpendicular component averages to zero. Hence the mo-
mentum transfer per unit volume per unit time from the
group dpi to the group ding is dnidngns+V Va(V) where

&t(V) =f 2s bdb{1 —cos&k)
0

is the cross section for momentum transfer (in the case of
hard elastic spheres cr =mdiP where di~ is the mean diameter).
Evidently dn;=ng;dv;, where f; is the velocity distribution
function for gas i drifting in the x direction with velocity u;.
Provided that u;&&0;, a good approximation is obtained by
taking

f;dv; = (P;/m)& expL —P;(v;, —u;}']dv;,
&&exp[ —p;s;„t]dsgt exp[ —p;s;.tgs;,

=(Pt/tt)&exp[ —P;s;t](1+2P;tt;t&;,)dv;,

where P =m;/2kT. The total transfer of momentum per unit
volume per unit time in the x direction is then

s~ —~+@i~ dvi dvgi(0)f ~(0)

X (1+2piuivi )(1+2pgu2v2, ) V V~(V)

=2ttt+tt&tttf dv,fdvtf, «&ft«&(P&tt&s& +Pstttst ) V, Vs( V)

using the abbreviation ft& & = (p&/s )1 exp[- p;r;t). The simphfi-
cation of the above equation follows from considerations of
parity. %e transform coordinates from vi, vg to C, V, where
C is the velocity of the center of mass. It is readily found that

ttt tt&tttf dcf~ & &f & & V

X f(miui+msu~)C, +m+(ui —us) V f,
"The calculations of this final paragraph were made by

deBethune and Polrard, A-2145, October 18, 1944.

APPENDIX II

Equation {18)is rewritten

pdr/dp+ t1+cp+&p' )r+~p y'+s =o

where c, l, ns, and s are constants characteristic of the gas
mixture. The solution is subject to the condition that y=O
when p= p&. Let u=py, then Eq. (A) becomes

du/d p+ (c+lp)u+ @su'+s =O.

This is Riccati's equation. It can be transformed into a second-
order linear equation by the substitution u=(mm)-du/dp
and the resulting equation is

d'm/dp'+ (c+lp}dm jdp+ msv/f =0.
Let z =l 'd(c+Ip} and a= ms/2l. Then

dW/dzm+sdm/dz+2~ =0. (B)
The general solution of Eq. (8}can be written in terms of the
confluent hypergeometric functions. In the notation of
Jahnke-Emde and %'ebb-Airey the solution is

1 z~ 13 s~
nr=A3f a ———+Bz23f a+- — ——'2' 2 2' 2' 2 '

3 zR

dmjdz= —2asAM a+1, —,——'2' 2

13 z~
+(B/2}s &M a+-, —,——

2' 2' 2

—Bz ((2a+1)/3}M a+-, —,——,

(C)

where A and B are arbitrary constants, the ratio of which is
fixed by the boundary condition: y=O at p=pz. Hence
dm/dz=O when z=sg=l&pg+cl &.

3 zgP

. B 12azg 3f a+1, —,——'2' 2
''A 1 3 zing 3 5 spy

3M a+-, —,———(4a+2}z~~M a+- ———
2' 2' 2 2' 2' 2

By using the asymptotic value of M(a, p, x) for large x, the
asymptotic solution for large fore-pressures is found to be

dm/dz~ —2a/s, z~ te,
y —s/lp, p

The asymptotic form of the solution for large fore-pressures
indicates that the separation eSciency falls o8 as the inverse
square of the pressure. This is in agreement with the result
for high pressure differential diffusion based on the Chapman-
Enskog diffusion formula I G. J. Kynch, MS-103 (Declassified
British report) j.

The formal solution {C}is inconvenient for numerical work.
Actual calculations were carried out by two methods. In
method I we made use of the fact that the solution of (A)
was known for the case m=O from previous work in which
the variation of C& with y was neglected. Since the term in
p0y0 is initially small, the previous solution in terms of the
tabulated integral J'0 expt t0jdt was used for the first part of
the interval and the Runge-Kutta method of numerical
integration the rest of the way. In method II, Eq. (8) was
solved by power series after first changing the independent
variable to s—zg. This method cannot be used when pg =0.

where
fo&s& = (ttt&+tttt/2trkT)t exp[- (ttt&+ttts/2kT)C g

and
fv&s& = (ttt+/2ttkT)t exp[- {ttt+/2kT) V g.

The term in C vanishes since the integrand is odd. M& is
therefore proportional to ui-ug.


