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ported here were confirmed, but the latter, obtained
from P-ray spectrometer and coincidence measure-
ments, are given in greater detail than in the present
paper.
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The paper is divided into five sections the first of which is
an introduction. In the second the possibilities of describing
phase shifts by means of a boundary condition at a distance
small compared with e'/mc'=2. 8&10 "cm is discussed. It is
brought out that the irregular solution of the wave equation
in a Coulomb field has a logarithmic infinity which masks the
features of the wave function which have to do with phase
shifts and therefore with observation. In Table I approximate
values of essential quantities are listed. In Section III bound-
ary conditions at moderate distances are studied. It is found
that one can replace the "potential energy curve" description
by the requirement that the logarithmic derivative of the
wave function have an energy independent value at a distance
of ~0.47 e'/mc'. Similarly the 'S proton-neutron interaction
can be approximately described by requiring the logarithmic
derivative to have an energy independent value at ~0.49
e'/roc~. In the convention of dealing with distance times
radial function the values of the logarithmic derivatives are

0.08, 0.06 for the proton and neutron cases, respectively.

It is also possible to require a linear variation of energy for
the logarithmic derivative within limits and to retain agree-
ment with experiment. It is pointed out in the introduction
that theoretical arguments for considering a failure of the
potential energy viewpoint exist and that the agreement of
the boundary conditions of Section III with observation may
be more than an accident. In Section IU the adjustment of
the range of force is treated and evidence for a somewhat
smaller value than 2.8X10 " cm, perhaps 2.6X10 " cm is
discussed. Use is made of simple relationships between effective
depth variation with energy and range. In Section V the
function f of BCP is expanded in powers of energy E, the
relations for potential energy curves of different shapes are
taken up regarding equivalence of range, the deviations from
linearity of f with 8 are discussed from the viewpoint of
equivalent error in scattering, and a rapid procedure for
finding the equivalent square well range by means of suc-
cessive approximations is given.

I. INTRODUCTION

HE work reported on in this paper has two
objects: (1) To investigate on an empirical

basis the possibility of replacing the potential
energy point of view for proton-proton scattering
by boundary condition requirements; (2) to sys-
tematize the treatment of theoretically expected
proton-proton scattering by bringing out the way
in which different compact potential energy curves
can give similar results and to make available con-
venient ways of adjusting the nuclear potential
well parameters to experimental data.

The first of the two objects is related to the
general desire of describing the collision process
with a minimum of detailed hypothesis concerning
the mechanism of the interaction. I t has been
brought out' that a description entirely by means
of phase shifts is a possible one and that the isotropy
of space implies certain restricting conditions on the

~ Assisted by ONR, Project NR 024-055.' G. Breit, nuclear physics volume of the University of
Pennsylvania Bice&nng) Conference, N-15-15 (University of
Pennsylvania Press, Philadelphia, 1941).

possible set of phase shifts. This point of view is
closely related to Heisenberg's 5 matrix. ' VJhile it
is possible to describe the collision process in such
a generalized manner, it is difFicult to make such a
theory quantitatively specific and to establish rela-
tions between difII'erent phenomena such as those of
proton-proton scattering and of the meson field. For
this reason it appears advisable not to neglect an
approach of intermediate generality with the hope
that the investigation might eventually be of help
in the formation of a theory of nuclear forces. The
question of representing the proton-neutron inter-
action by means of a suitable boundary condition
at zero distance between nuclear particles has been
thought about by signer about 15 years ago' but
subsequent calculations on binding energies and
other nuclear phenomena have pointed to the
potential energy curve of finite width as the more
promising temporary expedient. The possibility
that the interaction between protons might be
confined to distances of negligible amount on the

2 W. Heisenberg, Zeits. f. Physik. 120, 513, 673 (1943).' E. P. Wigner, private communication.
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scale of an electronic radius has been borne in mind
in the early work on proton-proton scattering' and
for this reason a formula t Eq. (7.9) of BCPj has
been given by BCP' by means of which the phase
shift expected for an interaction at any energy can
be obtained from a preassigned phase shift at one
energy. Figures 8, 9, 1.0, and 11 of BCP show the
comparison of the variation of the phase shift
according to this formula with variations to be ex-
pected for interactions of finite range and the then
available experimental material. It was clear from
this as mell as the later work of BTE that on the
hypothesis of zero range of force the phase shift
increased much too fast with energy. The relation
under discussion was obtained by going to the limit
of an interaction potential of zero range which was
made to fit the preassigned value of the phase shift
at a preassigned energy during the limiting process.
The interaction energy in the limit of zero range is
infinite.

Although experiment speaks in favor of inter-
action potentials of finite rather than zero range,
one cannot claim that the potential energy curves
are more than convenient and temporary expedients.
In particular the meson theory of nuclear forces'
implies that when the protons are close together
they exist part of the time as neutrons and positive
mesons or as protons and neutral mesons. The
meson theory, ' while similar to quantum electro-
dynamics diEers from the latter in two important
respects: (a) the finite rest mass of the meson as
contrasted with the zero mass of the photon, (b) the
relatively large value of the parameter which cor-
responds to the fine structure constant: e'/hc.
Meson theory does not presuppose the existence of
interactions between mesons other than the ordi-
nary electromagnetic interaction. It is not known,
however, that such interactions do not exist. Sup-
posing for the moment that they are present, one
would have a theory of nuclear forces somewhat

4G. Breit, E. U. Condon, and R. D. Present, Phys. Rev,
50, 825 (1936), referred to as BCP. G. Breit, H. M. Thaxton,
and L. Eisenbud, Phys. Rev. 55, 1018 (1939), referred to as
BTE. L. E. Hoisington, S. S. Share, and G. Breit, Phys. Rev.
56, 884 (1939), referred to as HSB. E. Creutz, Phys. Rev. 56,
893 (1939).Leslie L. Foldy, Phys. Rev. 72, 125, 731 (1947).
R. E. Peierls and M. A. Preston, Phys. Rev. 72, 250 (1947).
G. Breit, A. A. Broyles, and M. H. Hull, Phys. Rev. 73, 869
(1948), referred to as BBH.

M. A. Tuve, N. P. Heydenburg, and L. R. Hafstad, Phys.
Rev. 50, 806 (1936). Herb, Kerst, Parkinson, and Plain,
Phys. Rev. 55, 247 (1939), referred to as HKPP. L. R.
Hafstad, N. P. Heydenburg, and M. A. Tuve, Phys. Rev. 56,
1078 (1939),referred to as HHT. G. L. Ragan, W. R. Kanne,
and R. F. Tashek, Phys. Rev. 60, 628 (1941), referred to as
RKT. A. N. May and C. F. Powell, Proc. Roy. Soc. AIQO, 170
(1947). R. R. Wilson and E. C. Creutz, Phys. Rev. 71, 339
(1947). Robert R. Wilson, Phys. Rev. 71, 384 (1947). Wilson,
Lofgren, Richardson, Wright, and Shankland, Phys. Rev. 72,
1131 (1947}.I. H. Dearnley, C. L. Oxley, and J. E. Perry, Jr. ,
Phys. Rev. 73, 1290 (1948). Blair, Freier, Lampi, Sleator, Jr.,
and Williams, Phys, Rev. 74, 553 (1948), referred to as
BFLSW.

~ H. Yukama, Proc. Phys. Math. Soc. Japan 17, 48 (1935).

analogous to that of molecular forces. The ratio of
the meson mass to the proton mass being much
larger than the corresponding electron-nucleus ratio
for the molecular case one expects the picture of a
static potential energy curve to be relatively much
poorer. For the same kinetic energy the residual
proton's or neutron's velocity is only about
(1836/330)&=2.4 times smaller than that of the
meson. The conditions of the Born-Oppenheimer
approximation are satisfied on this crude picture
very poorly. It appears doubtful, therefore, that the
usual type of wave mechanical treatment of
nuclear particles inside the potential energy hole
can be taken literally. This appears to be especially
questionable in relation to the assignment of the
same effective mass to the protons in the region
where the interaction takes place as when they are
free. The two-particle wave equation in this region
is only a substitute for a many particle equation of
a character which cannot be definitely stated until
the meson theory is more fully developed. It would
not be surprising, therefore, if the rather gqod
agreement of calculations making use of potential
energy curves mere somewhat accidental. It was
thought of interest, therefore, to look into the pos-
sibility of describing the '5 interaction on a basis
intermediate between that of a boundary condition
at zero distance and a potential energy curve. It
was found that if one assumes that the logarithmic
derivative of the wave function has a value inde-
pendent of the energy at a suitable distance then
the agreement with experiment is about as good as
for a potential energy well. The distance at which
this is the case is about 0.47 e'/mc' and the value
of the homogeneous logarithmic derivative F is
about 0.08. The function of which the derivative
is taken is the distance times the radial function so
that the homogeneous logarithmic derivative of
the radial function is —0.92. It is supposed in this
consideration that the radial function is continued
from large distances down to the point at which F
is calculated without any interaction potential
except for the Coulomb energy. If such an explana-
tion had a literal significance it would imply that
the kinetic energy before collision has no inHuence
on the wave function of the protons just inside the
boundary distance. This cannot be true, of course,
except as an approximation, and it is not desired to
emphasize the rather good fit with experiment which
one obtains except insofar as it shows that the
extreme requirement of energy independence of F
is in no worse agreement with experiment than the
requirement of an energy independent potential
energy curve. If the boundary condition under dis-
cussion were to be taken literally, one would have
to conclude that the kinetic energy before collision
becomes subdivided among mesons and nucleons
inside the sphere of interaction to such a degree
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that the emerging protons, although possessing the
original kinetic energy, have shared it with other
particles almost up to the instant of emergence. The
logarithmic derivative could conceivably be deter-
mined under such conditions mainly by other
factors than the external kinetic energy. In this
connection it is natural to consider the fact that
for a single body problem with potential energy
there is a connection between the logarithmic
derivative and the probability of the particle being
inside the boundary. This states that the rate of
change of the logarithmic derivative with energy
is proportional to the ratio of the probability of
finding the particle inside the boundary to the
square of the wave function at the boundary. This
relation is the last of the three formulas under
Eq. (&0.3) of BCP and is in the notation of BCP
as mell as that of the present paper;

8 (8$~ 1

aE' &Jar) Q' ~0

If such a connection were to exist in the physical
problem, the requirement of energy independence
could not be maintained. It is seen, however, that
if the lower limit in the above integral were to be a
number close to the upper limit the value of the
right side could be appreciably decreased. The
change in the lower limit corresponds to applying
the one-body wave equation to a part of the region
inside the boundary and this fits in with the picture
of the protons forming themselves in the physical
state in which they emerge a short distance inside
the boundary sphere. The evidence for the empirical
validity of this boundary value description is dis-
cussed in Section III. It is pointed out there that a
similar description of the proton-neutron inter-
action in the '5 state is possible and that slow
neutron scattering data point to approximate con-
stancy of the logarithmic derivative at 0.49
e'/nsc' and with a value of Y' 0.06, values not
very different from those for proton-proton scat-
tering. The data on scattering of neutrons of ortho-
and parahydrogen are not discussed because the
scattering in the triplet state is essential here and
because it involves the "tensor force" which
provides additional parameters. From the point of
view of the boundary condition, calculations of
nuclear binding energies by means of Hamiltonian
functions with customary exchange forces would
require formal changes. Since the evidence con-
sidered here is concerned only with the '5 states,
it is possible to avoid difficulties with the saturation
of nuclear forces by imposing suitable requirements
on states with other orbital and spin angular
momenta. It would be possible to attempt to form
a theory in which interactions of nuclear particles

would be primarily in S states. ' On such a view p
scattering for nuc1eons would be expected to be
present for nuclear particles in a subordinate way
if at all. While there are claims of appearance of p
waves for proton-proton scattering~ the experi-
ments used are subject to many sources of error and
it is possibly premature to draw a definite conclu-
sion. In closing the preliminary discussion of the
energy independent logarithmic derivative, it
appears appropriate to emphasize three negative
points: (a) There is no evidence so far that the new
description is better than the potential energy
point of view. (b) It is not probable from the view-
point of field theories that it can be more than an
idealization of a more involved condition. (c) It is

possible to fit experiment on the assumption of. an
energy independent BY/BE with a, wide choice of
values of 8Y//BE of which the value zero, especially
emphasized here is a special case.

The last of the three negative points is connected
with the fact that BY/BE is also nearly energy
independent at the boundary of a compact potential
well. Some of the consequences of the linear de-
pendence of Y on E are looked into in Section V.
The behavior of the energy dependent function f
of BCP is considered and its deviation from line-
arity is worked out. There is a connection between
the formulas worked out here and the claims of
Landau and Smorodinsky. ' These writers take a
critical and condemning attitude towards the work
on proton-proton scattering by one of the authors
of the present paper and his former collaborators.
In the interests of clarity of the relationship be-
tween supposedly difI'erent treatments of the same
subject as well as a matter of justice to the people
involved it becomes necessary to point out that:

(I) Landau and Smorodinsky set up the problem
of calculating the dependence of the phase shift on
energy on the assumption that the range of force
is very small and discuss the limiting case when the
range is zero. They find that agreement with experi-
ment is not obtained but they also find that agree-
ment can be secured if the "constant" which they
call 0.» is made to vary linearly with E. They make
a qualitative statement indicating that they believe
it reasonable for 0.» to vary linearly. They fail to
state, however, that the dependence of the phase
shift Eo on E for the case of zero range has been
printed as Eq. (7.9) of BCP and that curves cor-
responding to this relation have been sketched in
Figs. 8, 9, 10, ii of BCP. They also do not state
that the quantity with which they deal is within a
constant the energy dependent but distance inde-

'This general point of view has been considered inde-
pendently for some years by E. Fermi and E. P. Wigner
(private considerations).

~ R. E. Peierls and M. A. Preston, Phys. Rev. 2'2, 250 {1947).
8 L. Landau and J. Smorodinsky, J. Phys. Acad. Sci,

U.S.S.R. 8, 155 (1944).
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pendent quantity f of BCP by means of which
phase shifts have been calculated by BCP for the
smaller ranges of force.

(2) The requirement of linearity of a» of Landau
and Smorodinsky is identical in consequences with
approximating the logarithmic derivative occurring
on the left side of Eq. (7.5) of BCP by a linear func-
tion of the energy and retaining in the four power
series which occur on the right side of this equation
only terms of zero and 6rst power in the energy.
As has been stated by BCP this Eq. (7.5) is espe-
cially suitable for the discussion of conditions for
short ranges of force. It is obvious from it that with
the approximations just mentioned the quantity f
should vary linearly with 8, as was realized in the
course of the calculations of BCP. The numerical
conversion factors have been stated explicitly by
BCP, and it was presumed that any interested
reader would estimate the relative importance of
the terms.

In view of the above it appears fair to say that
the relation which Landau and Smorodinsky state
to be an improvement on all previous work is in
reality an old, relation and that its limitations have
been stated in the form of equations and numbers
in the work to which Landau and Smorodinsky
take exception.

(3) It is not true as Landau and Smorodinsky
state that the series of papers which they criticize
fails to bring out the fact that potential energy
curves of different shapes can give the same phase
shift in the energy region 0.6 to 2.4 Mev within or
close to the accuracy of available data. This was
veri6ed by numerical calculation for the square
well, Gauss Error, Exponential, and Meson Poten-
tials. In the 6rst column of p. 844 of BCP it was
brought out how one can compare potential curves
of diferent shapes making use of the connection
between the logarithmic derivative Fand the phase
shift and of the general connection between 8 F/BZ
and the "form factor" of the wave function which
is shown by the last of the three formulas in Eq.
(10.3) of BCP. The features which matter for the
equivalence of potentials of different shapes have
been studied in HSB where curves showing ap-
proximate sensitivity of phase shift to potential
changes at different distances have been given. By
means of these one can estimate to what degree
potential energy curves of diferent shapes are
equivalent. This work is also stated by I and S as
being inadequate. In point of fact it goes farther
than the conclusions of I and S because by means
of it one can discuss the limitations of equivalence
of potential wells.

(4) It is stated by L and S on p. 154 that in the
series of papers to which they take exception: "The
fundamental conclusion about the approximate
identity of the specific forces acting between a

proton and a neutron, on the one hand, and a
proton and a proton, on the other, is based on the
application of the rectangular wells. " It is relevant
to remark that: (a) On p. 845 of the paper by BCP
the comparison is made for the Gauss Error poten-
tial and in a related paper Breit and Stehn have
also used the Gauss Error potential. Similarly BTE
made comparisons for the Gauss Error potential.
(b) Comparisons of proton-proton and proton-
neutron interactions have been made for the meson
well by HSB.

(5) It is also not true as is implied on p. 224 in
a sequel paper by Smorodinsky' that the importance
of the assumption of equality of range of force for
drawing conclusions about equality of depth of
potentials has been overlooked in the work pre-
ceding the paper of Landau and Smorodinsky. Thus
on p. 14 of reference 1 in the section on the "Com-
parison with the Proton-Neutron Potential" it is
stated that the range of force for the proton-neutron
interaction is not known directly and that "As-
suming that in the 'So states the proton-proton and
proton-neutron interactions have the same range
their magnitudes can be compared. " The sentence
starting on the second line of the next page brings
out the dependence of the estimate on "the assumed
range of the triplet interaction. " I t is hard to see
how there could be doubt about the conditional and
speculative attitude towards the hypothesis of
approximate charge independence of non-Coulom-
bian nuclear forces. In Table XIV, p. 842 of BCP
the large sensitivity of the depth of the potential
to assumed range is clearly seen and the purpose
of this section of BCP's paper has been stated in
the first column of p. 842: "It appears of interest
to see whether it is possible to consider the proton-
proton and proton-neutron interactions to be the
same in the 'S states. " The strong sensitivity of
depth to range was so well known to the majority
of nuclear physicists that it appeared absurd to
elaborate the point in the Physical Review. It was
brought out more explicitly, however, in the Uni-
versity of Pennsylvania paper' which is quoted by
L and S. It is also necessary to state that the im-
portant part of approximate resonance of the
potentials to zero energy for the comparison of the
two potentials which Landau and Smorodinsky
bring out and apparently consider as meeting the
situation is precisely the starting point of Section 5,
p. 842 of BCP. In later papers of the i11 spoken of
series the closely related viewpoint of the virtual
level has been used.

(6) It is not the desire to produce the impression
that the series of papers under discussion is con-
sidered to be correct in all respects or to contain
the best point of view. The papers were reports on

s J.Sinorodinsky, J. Phys. AcSQ. Sci. U, S,S,R. S, 219 (1944).
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work done with the usual purpose of making it
easier for others to further progress with the aid of
information supplied. They were not written in the
spirit of patent applications and well known or
obvious facts were, therefore, left unemphasized.
It is in this perhaps that the misunderstanding lies.

The discussion of the linearity of f is carried out
in Section U of the present paper and the accuracy
of linear and parabolic approximations is examined.
It is found that the linear approximation is good to
within 0.13 percent of the scattering cross section
at a scattering angle of 45' at 600 kev but that the
accuracy decreases as the bombarding energy is
increased. Equivalence of range of potential wells
having different shapes is discussed more systemati-
cally than previously in connection with Eqs. (7.46),
(7.47). The determination of range and depth of a
square well by means of values of f and df/dE at
E=O is discussed in connection with Eqs. (8.6),
(8.61), (8.63) by means of which the potential well
parameters can be determined by a rapidly con-
verging method of successive approximations. The
equivalent parameters for scattering at low energies
by other than square well potentials can then be
found by means of Eqs. (7.46), (7.47). The expan-
sions of Coulomb functions in powers of the energy
involving Bessel functions which have 4een worked
out by Yost, Wheeler, and Breit" can be used to
work out terms of higher powers in E if desired.

In Section IV the adjustment of the range of
force is discussed by the simple method of plotting
the logarithmic derivative at the boundary of a
square well with approximately the correct range
and comparing the graph with the computed value
for the square well. Formulas are given for making
the final adjustment by means of the graph. This
method is more directly related to the properties of
the potential well than that of the f function. For
potential curves of different shapes the equivalent
parameters can be obtained by means of Eqs. (7.44),
(7.47).

The possibility of describing the interaction by a
boundary condition at r =0 is considered in Section
II. Characteristic diA'erences between the proton-
proton, and proton-neutron problem are taken up
and reasons for the failure of appearance of simple
boundary conditions at r=0 are brought out in
connection with difTerences in asymptotic form of
the irregular solution in the two cases. The con-
siderations of this section do not exclude the possi-
bility of describing the measured phase shifts by a
statement concerning the asymptotic form of the
solution of the Schroedinger equation in a Coulomb
field extrapolated to r=0. This can obviously be
done by simple continuation of the function. The
discussion indicates, however, that a logarithmic

"F.L. Yost, J. A. %heeler, and G. Breit, Phys. Rev. 49,
174 (1936).

infinity masks the features of the wave function
which matter for scattering. The logarithmic term
in Eq. (2.5) is the trouble maker and as one sees by
means of Eq. (2.4) the logarithmic derivate dQ//dr
is directly related to the quantity fi rather than to f
The conclusions of Section II would have to be
reversed if one could find a reason for requiring a
simple behavior of the limit of d$//dr (—2/a)
Xln(2r/a) rather than of d5/'ttdr. Equation (7.5)
of BCP and the more detailed considerations of
Section U of the present paper show to be sure that
on the assumption of the potential well explanation
the above quantity should vary approximately
linearly with E. This restatement of conditions is,
however, only another way of describing scattering
by means of a potential energy curve and does not
bring in a new physical picture. The evidence seems
to point to the logarithmic derivative at distances
of the order of 1.4/10 " cm rather than zero as
being the more relevant.

Notation

&=mass of proton.
p= M/2=reduced mass in the collision of two

protons.
v = relative velocity of the two protons before the

collision.
F= —'Mt'.

F.' =energy in frame of center of gravity=2/2.
A=h/ps=de Broglie wave-length.
k=2s/A.
a =A'/pe'=length analogous to Bohr radius.
g = 1/ka = (e'/fic) c/v.
r =distance between protons.
p=kr.

Lh = angular momentum.
FJ., Gi, =regular and irregular solutions of differen-

tial equation for rXradial function; the
signs and normalization are as in YWB,
BCP.

EL, ——phase shift for angular momentum Lk for
proton-proton scattering.

F= Fp when the specification of L is not needed.
G=Gp when the specification of L is not needed.
X=Xp when the specification of L is not needed.
y =0.5772 = Euler's constant.

I'(x) =gamma-function of x.
5 =solution of wave equation for r X radial func-

tion normalized in the same convention as
F and G with a phase equal to phase of
F plus X.

F,= internal value of 5'.
b=value of r for boundary of proton-proton

nuclear well; in some cases r is used for b.
s = P(M/h') (D+8/2) ]&r=0.4371(roc'/e')

XLDM«+(E/2)M. ]&.
bp=phase shift in '5 state for proton-neutron

scattering.
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TAar. E I. Contributions to logarithmic derivative at very small distances.

ln(2r/e)

roc'/e'

Linear term of Eq. (2.4)

rd Q//dr

Correction for kinetic energy

Coulomb correction

pfdF'/F dr jE 0, p

0.12

0.09

0.012

—0.041

0.06

0.187

0.025

0.021

0.0017

—0.015

0.007

0.069

0.0024

0.002

0.00023

—0.0055

—0.003

0.0254

—0.0016
—0.0017

0.00003

—0.0020

—0.004

0.0093

—0.0015
—0.0015

0.00000

—0.0007

—0.002

0.00343

—0.0009

—0.0009

0.00000

—0.0003

—0,001

ro=radius of square well for proton-neutron in-
teraction.

Co ——[2s g/( —1+exp2n. g) j&.
@o= &o/Cop.

C'o*= =d&o/CAp.
Oo= CoGo, 8o*=CopdGo/dp
eo= Oo p(2v ln—2p+q)C'o.

e,*= 0,*—p(2~ l n2p+q)C, * 2p~e,—

Where no confusion can arise the six functions just
defined will be written as C, C~, 0, 0*, 4, 4*,
respectively.

Y= rdQ//dr.
X=dS/5«.
r, = roc'/e'

0
a

4
E. (Mev)

II. BOUNDARY CONDITIONS AT VERY
SMALL DISTANCES

For the analogous neutron-proton scattering
problem it has proved useful to deal not only with
the phase shift but also with the real and virtual
levels in the singlet and triplet states as well as
with Fermi's characteristic scattering length. The
latter has the significance of an intercept on the
axis of r formed by the tangent to the plot of Q
against r. For thermal energy neutrons the charac-
teristic lengths are constant and in this case the
scattering can be described by a boundary condi-
tion at r=0. This boundary condition is simply a
statement t~ the effect that the length /dr/dP has
a certain constant value. There is some evidence
that for an energy range of several Mev the inter-
cepts cannot perhaps be assumed to be constant
because experimental data can be fitted by potential
energy assumptions which imply a variation of the
intercepts with energy. The variation in the values
of the intercepts with energy is sufficiently mild to
make it questionable whether the picture of an
interaction potential has more significance than the
description of scattering by means of the intercepts.
Such a description amounts to the specification of
a boundary condition having a mild energy de-
pendence. ln the present section the corresponding
question is looked into for proton-proton scattering.
Specifically the conditions on

L Y/rl. -o = [dB/B«h. -o

are dealt with.
The value of the logarithmic derivative of the

function g continued in towards small r from ao is
conveniently obtainable from Eq. (7.5) of BCP'
which is in the notation of the present paper.

Frc. 1. Homogeneous logarithmic derivative Y at r =e2/mc'
plotted against energy. Circles, crosses, triangles, and squares
correspond, respectively, to the experiments (see reference 4) of
HKPP, HHT with values from BTE, HHT with values accord-
ing to Creutzand BFLSW. The valuesatenergies above 4 Mev
and those of RKT are indicated by dots. The same notation
is used in Figs. 2, 3, 4. The comparison curves correspond to
assumed square well potentials of radius e'/mc2 and depths
10.5 and 10.6 Mev. These depths are in the convention of no
Coulomb energy for r &radius of square well. Treatment of
data is discussed in Appendix I.

where

X+[2 ln (2r/a) +f]C *
Y= (r/a) 4'+ (r/a) [2 In(2r/a) +fj4

(2)

f= (Co'/g) cotKo+q/ri —2 lnri;
Co' ——2o v)/(e" & —1), (2.1)

X= [4'*+2(r/a)C j/(r/a), (2.2)

q/2~ = 1+2~+R—P [r'(o~)/r. (i~. )] (2.3).
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fi f+——2 In(2r/a). (2.5)

If r is made to approach zero for a fixed energy,
the quantity in the I I in Eq. (2.4) approaches
aymptotically the term 2+fi One .may also look
at Eq. (2.4) without any reference to an interaction
potential. It determines the value of the logarithmic
derivative of the continuation of 5 =F cosZ
+6 sinE into the region of small r. The continua-
tion is made by means of the radial equation for 5'
employing in that equation only the Coulomb
energy and no specifically nuclear interaction
energy. From this point of view Eq. (2.4) tells one
how one should start the radial function Q/r at
smali. values of r so as to reproduce a preassigned
value of the phase shift Eo.

If r goes to zero, F goes to zero also. On the
other hand

(2.6)

and this quantity approaches —~ for small r. If
one wishes to account for I'/r by means of an
interaction potential between zero and b then one
has to use an interaction potential which makes

lim(dF, /F, dr), b, p ii= —~=, (2.7)

where I'; is the wave function in the region between
zero and b. This condition as well as Eq. (2.6) imply
that the intercept ai. is such that

lim1/(5+a i) = —~ (2.8)

and this means that b+c~ approaches zero from the
direction of negative values. A straight line drawn
tangentia11y to the curve representing F; as a
function of r must cut the axis of r at a point for
which

In this formula the quantities X, 4*, O', 4 are power
series in r and in 1/ii i.e., in the energy Z the first
few terms of which are found in Eq. (7.7) of BCP.
Expanding the right side of Eq. (2) in powers of
(r/a) one obtains

I'= (r/~) I 2+fi+( 4—1/—n' fi—') (r/~)
+[2+1/iP+(6+1/vP)f, f,'—+fi ]

X(r/a)'+ }, (2.4)
where G ~ [1+(2r/c) In(2r/a) ]/C„,

and this means that

(3 2)

dG/Gdr (2/a) In(2r/a), (3.3)

which is just the behavior of d$//dr which follows
from Eqs. (2.5), (2.6). The nearly horizontal direc-
tion of Q and the slightness of its inclination towards
the r axis are obvious from Eq. (3.2). The properties
of the boundary condition are thus direct conse-
quences of properties of the irregular solution G.

The logarithmic derivative is seen in Eq. (3.3)
to be dominated by a logarithmically infinite nega-
tive term. The interaction potential needed to
reproduce this value by means of dF~/F;dr is such,
therefore, that it would correspond in the absence
of the Coulombian potential to a real level at an
energy E~ given by

Zi——(Ii'/M) (4/a') [ln(2b/a) ]'
= —Mc'(e'/fic)']In(2b/a) ]'. (3.4)

The coeScient multiplying the square of the
logarithm is of the order mc'/10. 2=50 kev. The
quantity a is approximately 20.5 e'/mc2, the value
of In(2b/a) is roughly —5 when 2b is e-'=1/7. 4 of
e'/mc' and the level is then at ——1.2 Mev. It
would be preposterous to attach a literal significance
to these numbers but it is true that the level under
discussion is reasonably close to zero except for
small distances b. For small b a non-relativistic
approach is doubtful and the "level" has only a
formal significance. This is so also for another
reason. The logarithmic derivative has the value
—[M(—Zi)/i'']& only if one neglects Coulomb re-
pulsion in the stable state. The quantity referred
to in Eq. (3.4) is the value which the energy of the

of 5 against r/b when drawn on a scale of b as unit
length is thus practically horizontal at the point
r =b and is only slightly inclined toward the axis
of r/b. This behavior of g is readily understood if
it is remembered that

5 =F cosZ+ G sinE,

and that G&)F for small r. The dominant term in
G is

r = —og b+-
2iln(2b/a)i

(3)

As b approaches zero this point approaches the
point r=b This does not. mean, however, that Q
has a node at a point approximately located at
r=b. In fact

—a /b i1+[(2b/a) In(2b/a)] —'. (3.1)

b= ePzmc'
Hpv

fb= e/mc'
'Io= &o &Mev

Vl a I

I
b=e'/nx. "

IJ
D-iO5Mev j

4 5
E, (Hev}

The right side of the last equation approaches
infinity as b/a approaches zero. With b at a unit af
length the intercept assumes a position infinitely
far to the right of the joining point b. The curve

FrG. 2. Values of Y at r =e'/2mc' obtained by continuation
of Coulomb function with phase shift i.e., by means of
Q=IicosE;+GsinE. The two nearly horizontal lines cor-
respond to phase shifts computed for the square wells used in
Fig. 1. The oblique line corresponds to square well with
b=el/2tec~, D=47.14 Mev. The notation of Fig. 1 is used.
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lo lZf (Mev)

FIG. 3. Values of Y at r=e'/mc' plotted against energy.
The notation of Fig, 1 is used. This figure is an extension of
Fig. 1 to higher energies.

stable level would have if the Coulomb interaction
were removed in the region r &b. On account of the
Coulomb interaction

~ y ~
has to be larger than

LM( —E~)/Il']& and the above estimates have no
direct relation tq the existence of a stable level of
two protons in each other's field. It is nevertheless
convenient to deal with the concept of a level as
employed here because by means of it one can
describe by a single quantity some of the properties
of the potential well, and because by defining the
level in terms of y one can compare the proton-
proton interaction directly with corresponding
proton-neutron and neu4;ron-neutron interactions.
It may be pertinent to recall that in discussions of
nuclear binding energies it is customary to charac-
terize the interactions by means of an equivalent
potential energy with the convention of considering
it as acting in addition to the Coulomb effect and
it is convenient for this reason to make the com-
parison in terms of a characteristic property of the
potential well which is not affected by interactions
outside the well radius b.

The considerations presented so far as too crude
in the following respects:

(a} On1y the terms which are dominant in Eq. (2.4) at
small distances have been considered.

(b) Corrections for the efFect of the kinetic energy of
relative motion on y have not been made.

(c} Corrections for the effect of the Coulomb interaction
inside the potentia1 we11 a1so have to be taken into account.

The corrections mentioned as (b) and (c) will be
made here only to the first order. The technique for
making them can be found in BCP and in more
detail and refinement in BTE.

The efkct of these corrections can be put the form

[rdF;/F drfz-o. .-o.,-o
= f F+0.0489(E'/mc') (roc'/e') '$

0 0804(rm—r. './e') $' I, o. (4)

F; ')l F,'dr (4 &)

and is insensitive to the shape of the well because
the function Ji; is approximated rather closely by
an arc of a sine curve. For small b the value of Ii,
at r = b is close to the maximum and the effect of
deviation from the horizontal direction is slight.

The second correction term in Eq. (4) consists of
three factors. The first two factors correspond to
the correction under the same conditions as the
first three factors of the kinetic energy correction.
The last factor $' brings in the effects of dilferences
in shape of the potential well and of the deviation
of the direction of the plot of I", against r/'b from
a horizontal direction. In this case the correction
depends on

F,-' l (FP/r)dr
0

(4 2)

and is again not sensitive to the e6ects incorporated
in p'. Both p and $' are nearly unity.

A numerical example will be helpful in showing

Here Y is obtainable accurately as the right side of
Eq. (2) or as a series expansion in the form of Eq.
(2.4). The logarithmic derivative on the left side is
the value which follows from the radial wave equa-
tion if one starts its solution at r=0 subject to
usual requirements of regularity and continues the
solution to r =b. It is supposed that in this process
the shape of the potential well has been fixed and
that the depth has been adjusted to reproduce the
value of F required by experiment. In this adjust-
ment the kinetic energy of relative motion inside
the well and the term e'/r are not neglected. After
the depth of the well has been determined the radial
equation is supposed to be solved once more and
this time 8 and e are set equal to zero while the
potential well is left unchanged. The function F; so
obtained is used in Eq. (4). If the same potential
well acounts for experimental results at all energies
then the left side of Eq. (4) is independent of
energy. But for an arbitrary shape of the well and
an arbitrary range the potential well depth depends
on the energy and the left side of Eq. (4) is also in
general dependent on the energy.

The first of the two correction terms in Eq. (4)
corresponds to the removal of the kinetic energy
term in the radial equation. The first three factors
in it correspond to a "square well" and to a
vanishing slope of F, at r = b. The factor $ takes
into account geometrical differences produced by
varying the well shape and also the effect of the
slight angle between the direction of the curve
representing F as a function of r/b and the hori-
zontal. This correction depends only on
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the relative importance of terms contributing to
the right side of Eq. (4). For E= 1 Mev the experi-
mental interpolated value of Ep is close to 32.4'
and tanZp =0.6346. The other pertinent quantities
are g=0.1581, C02=0.5842 q/s= —0.7868,f=8.725.
Neglecting terms beyond the one in (r/a)' of Eq.
(2.4) one has values as in Table I. It is seen that
the linear term (r/a)(2+fi) of Eq. (2.4) accounts
for the trend of the logarithmic derivative in a
qualitatively correct manner. For the smaller r
in the table only the linear term and the Coulomb
correction matter. At still smaller r the Coulomb
correction becomes much smaller than (r/a)(2+fi)
on account of the dominance of the logarithmic
term in fi Ta. king into account the diBerence
between the 2+f& and the logarithmic term, one
obtains as an improved approximation to the
energy value of the quasi-stable level defined in the
same way as for Eq. (3.4),

E, —1lfc'—(e'/kc)'
X L1+(f/2) + In(2r/a) —0.82 $]'. (4.3)

For the numbers considered in Table I the quantity
1+(f/2) —5.4 and contributes more to the position
of the level than the Coulomb correction. The level
lies higher than according to Eq. (3.4) by an amount
which increases with

~
ln(2r/a)

~
. Experimental

values enter only through f and are masked for
small r by the logarithmic term. The level moves to

as r approaches zero and the phase shift
enters by raising the level by an amount which is
infinite but negligible in comparison with the
value of ~Ei~. This differs from the simple condi-
tions for the proton-neutron case. If one is to
characterize the function in terms of its behavior
at very small distances, then the logarithmic deriva-
tive itself would oBer a simpler criterion. But either
dF;/F;dr or rdF, /F;dr still contains as a dominant
part the term in 1nr which swamps all other effects.
The considerations made above appear to indicate
that it is improbable that the value of dF~/F, dr at
r =0 can be useful because the reason for its being
infinite follows from properties of the irregular
Coulomb function at short distances.

III. THE LOGAMTHMIC DEMVATIVE AT
MODERATE DISTANCE

It is expected from Eqs. (10.3) of BCP that the
logarithmic derivative F of the internal wave
function varies linearly with the energy. This fact
does not depend on the shape of the potential mell

as long as the well is "compact" i.e., as long as it
does not have a shallow and wide part extending to
a large distance. Equations (10.3) of BCP give the
rate of change of Y/r with energy in terms of the
form factor listed in Eq. (4.1) of the present paper.
This quantity is nearly independent of the incident
kinetic energy at the boundary of a deep and

narrow potential well because of the shape of the
function Ii; is nearly independent of the incident
energy. The slope of the plot of dF~/F, dr plotted
against E is, therefore, nearly constant and this plot
can be represented by a straight line to a good ap-
proximation. Two simple circumstances contribute
to its goodness. In the first place the incident energy
matters in determining the local wave-length by
combining itself with the depth of the well under
a square root. Secondly, only half of the incident
energy counts because half goes into the kinetic
energy of the center of mass.

Since the experimentally determined phase shift
can be represented approximately by means of a
potential well model, one expects that a plot of Y/r
against E to be approximately a straight line
provided r is made equal to the radius of a "well"
that fits experiment. It turns out to be also true
that Y/r varies linearly with the energy for other
values of r and that the slope of the line can be
made nearly zero through a wide range of energies
by taking r—e'/2m 'c.

The logarithmic derivative cannot be an exactly
linear function of the energy through a range of
distances r. In fact in terms of

then

and if

then

y= Y/r,

dy/dr+y'+ (3l/b2) [(E/2) —e'/r j=0,

y g+bg+g+2+ e ~ ~

da/dr+a' (M/b'—)e'/r =0,
db/dr+ 2ab+ M/2h' = 0

dc/dr+b'+2ac =0.

(5.1)

(5.2)

(be e/ nlc'

/[D. iosHev

b = e'/rnc'
0~to&~'lev I

0
6 la 12

F (Hev|

FrG. 4. Values of Y at r=e'/2mc' plotted against energy.
The notation of Fig. 1 is used. This figure is an extension of
Fig. 2 to higher energies.

The first two of these equations give functions of r
for g and b which do not vanish identically. The
third equation cannot be satisfied unless c also does
not vanish identically. It is thus impossible to have
a strictly linear dependence of y on 8 at different
distances. This does not mean however that this
condition cannot be a good approximation. In
particular, if by a suitable choice of r one makes
b =0, then for this r a necessary condition for both
c =0 and dc/dr =0 is satisfied.

In Fig. 1 is shown a plot of Y against 8 in the
energy range 0 to 8 Mev for r=e'/mc' The two.
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TABLE II. Values of denominator of Eq. (6.1) for use in
finding width of well.

Z (Mev) 0.2 0.8 1.4 2.4 3.4 6.0 8.0
z 1.424 1.445 1.464 1.496 1.S28 1.606 1.665
(—denominator) 0.41 0.42 0.43 0.45 0.47 0.S2 0.56

)ines which are nearly straight correspond to the
calculated values for square wells with an assumed
radius eo/mc' and depths 10.5, 10.6 Mev, respec-
tively, for the upper and lower lines. The experi-
mental values of the phase shifts were used to
compute the values of Y indicated by circles,
squares, triangles, etc. as explained in the legend.
No Coulomb energy was assumed to be acting
inside the wells.

In Fig. 2 the vs.lues of Ycomputed for r=e' /2mc'

are plotted against E. There are in the figure two
nearly straight lines between which most of the
experimental points lie. These have been obtained
by taking 5 = F cosE'o+G sinXo where Ko cor-
responds to square wells with radius e'/mc' and
depths 10.5, 10.6 Mev, respectively, for the upper
and lower lines. The value of Y corresponding to the
g obtained in the manner described was taken at
r=e'/2mc'. There is besides in Fig. 2 a nearly
straight line which cuts obliquely across the other
lines. This corresponds to the value of Y at
r=e'/2mc' which is obtained for a "square well"
with radius e'/2mc' and depth 47.143 Mev. It is
shown for comparison with the approximate fit of
the 10.5, 10.6 Mev wells to experiment. The com-
parison shows the superiority of the larger radius
in fitting experiment. The experimental points fall
on a practically horizontal straight line. From an
empirical point of view one can describe the ob-
servations about as well by requiring the logarith-
mic derivative to be constant at this distance as by
dealing with a potential energy curve.

The experimental values of the phase shift which
have been derived from the wisconsin and M in-
nesota experiments fall approximately on a straight
line which in Fig. 2 d rops by approximately
0.004 in the value of Y as the energy changes
from 0.2 to 3 Mev. The change in r which must be
made in order to make the line horizontal will now
be estimated. The equation satisfied by Q is

d'5/dr'+ (hr/h') (E/2 e'/'r) j$ =—0.

It follows from this equation that

rd Y/dr = Y—Y' —(llIr'/h') (E/2 e' /r) (5 3)—-
where the notation

Y= rdQ//dr (5.4)

is used also with the modified meaning of g. Ex-
pressing E in Mev and r in e'/mc' this relation

which gives

or

(0.110—0.250) 8r =0.004,

hr = —0.02 (9)

r = 0.47.

The change in Y produced by this change in r is of
the order —0.003 at 8=3 Mev and —0.007 at
8=0.2 Mev. This ip an effect of roughly 10 percent
in Y at 0.2 Mev. The slightly oblique line of experi-
mental points can be made horizontal by decreasing
the radius 6 percent and lowering the line by

10 percent at the left.
Figures 3 and 4 correspond to Figs 1 and 2 for

the region 6 to 16 Mev, respectively. The experi-
mental material is less certain in this region. It
appears not to contradict either the potential well
or the "boundary condition" at r = 0.47 e'/mc' = 1.32
X10 " cm type of fit. The limits of experimental
error indicated in the figures are approximate only. "

For proton-neutron scattering a similar boundary
condition for the 'S interaction can be used. This
case differs from proton-proton scattering through
the absence of the Coulomb field, but it may be
expected that there will be no great change because
the effect of the Coulomb field is relatively small.
If, for example, one assumes that the scattering is
represented by a square well of depth D of radius ro,

"The abbreviations HHT, HKPP, etc. of footnote 2 are used
in the legends to and in Figs. 1, 2, 3, 4. These refer to the
origin of experimental data. The points of BFLS%' have been
obtained by a somewhat crude analysis by the present authors.
Since making the analysis and while the present paper was
typed the authors received the results of a more careful study
of the Minnesota material by Professor C. L. Critchheld
which agrees closely with that used here. The authors should
1ike to acknowledge their indebtedness to Professor Critchfield
and to Messrs. Blair, Freier, Lamp, Sleator, and Williams for
the communication of their results before publication. An
account of the treatment of other experimental data is given
in Appendix I.

becomes

rd Y/dr = Y—Y' —0.0955(r'E —1.023r). (5.5)

It can be verified that the values of d Y/dr for the
lines marked (10.5, 1) in Figs. 1 and 2 at 0.2 and
3 Mev give to a good approximation the mean rate
of change of Y between r=e'/2mc' and r=e'/mc'
This fact indicates that Y varies approximately
linearly between these values of r and gives one
confidence in Eq. (5.5) as a way of estimating
changes in Y caused by changes in r. Interpreting
Fig. 2 in the sense that experiment indicates
Y=0.089 at K=0.2 Mev and Y=0.085 at 8=3
Mev for r = —,

' one finds by means of Eq. (5.5) that

(d Y/«)s=o. o=0.250, (d Y/dr)s o ——0.110. (5.6)

The line of Y will be made horizontal if the drop of
0.089—0.085=0.004 is removed by a change from
r=0.5 to r=0.5+br. The value of br is then such
that
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then an extrapolation of the field free wave function
to smaller distances gives the following expansion
in 8 for the homogeneous logarithmic derivate I ~

YN(r) = YP(r)+ YP(r)E+ YP(r)E'+ (5 7)

Here the coefficients of 8 are determined by their
values at ro by the following relations:

Yp(r) = r/(r+rop),
p=[1 Y-0"(ro)7/Yo"(«), (5»)

YP(r) = —(A«2/3)(1+P)+C/[r, (1+P)'7, (5.72)

Yp(r) = —(A'/45) r(r+rop)'
+ACr/3+C'r/(r+rpP)'+Cir(r+roP)2, (5.73)

where the constant A has the value

A = (M/2m)(e'/kc)'(1 Mev/mc') =0.0955(3) (5.74)

for r and r, in s'/mc' and E in Mev. The constants C,
Ci are determined by the known values of YP(ro)
and YP(ro) for which explicit formulas are listed
as Eqs. (8.2), (8.3) later in this paper. It is also
possible to compute YN(r) directly since

Y~(r) = p cot(p+bp), (5.75)

where bo is the phase shift for proton-neutron 'S
scattering. This can be determined by means of

Y (ro) =sp cotso, (5.76)

where go is as defined in the list of notation. If one
assumes that scattering is approximately repre-
sented by the square well parameters D=11.75
Mev, ro ——e'/mc', then one obtains

Y"(e'/2mc') = 0.05754 —0.00027E
—0.00004E'+, (5.8)

where E is in Mev. The linear term in 8 can be
made to disappear by changing r to 0.490 e'/mc'
which gives F~=0.0566 at E=O. The value of r
which makes the average slope zero between 1 and
10 Mev is 0.488 e'/mc' which is practically the
same as 0.490 e'/mc' which makes the slope zero at
E=0. If one wishes to reproduce the scattering ex-
pected for the square v ell parameter D = 11.33 Mev,
ro ——e"-/mc', then one obtains

Y~(e'/2mc') = 0.07927 —0.00038E
—0.00004E' (5.81)

and the linear term in 8 vanishes in this case for
r = 0.492 e2/mc2. The reason for choosing the values
11.75 Mev, 11.33 Mev in the above examples is
that the smaller value corresponds to the depth of
the proton-proton well when corrected for Coulomb
repulsion inside the well while the larger corre-
sponds to the rather large value of 80 X 10 2 cm'
for the scattering of thermal neutrons by bound
protons. The two values are intended to cover
approximately the range of possibilities.

The calculations of coeKcients of powers of 8
for Eqs. (5.8), (5.81) have been checked by com-
parison with values of Y~(r) obtained by means of
Eq. (5.75). The expansions in powers of E were
found to reproduce the directly calculated values
with errors not exceeding —0.00002 up to 8=3
Mev, —0.00006 up to 10 Mev, —0.0015 up to 14
Mev. Powers of 8 higher than the second are seen
not to be important in the energy range considered
here. No direct significance is attached to the
precise values of the coefFicients in Eqs. (5.8),
(5.81) or to the values of r for which YP = 0. They
are reproduced here as an illustration of the relative
stability of conclusions to adjustments in the inter-
pretation of experimental material. No attempt is
being made here to cover the question of variation
of the observed proton-neutron scattering cross
section with energy since this is concerned also
with the triplet state of the two particles. It is only
intended to bring out that the contributions to the
total cross section which arise from the singlet
state can be considered as having closely equal
values on the boundary condition and the potential
energy points of view. The scattering of neutrons by
ortho- and parahydrogen or the coherent scattering
by crystals is not considered here because the spin-
orbit-spin tensor interaction and the unknown
range of the triplet force complicate the situation
by introducing additional parameters. As in the
case of proton-proton scattering the most that can
be claimed for the boundary condition point of
view is that it might deserve consideration alongside
with the potential energy curve explanation.

It may also be of interest to mention that the
constant value of F 0.08 for proton-proton scat-
tering is approximately the same as the absolute
value of the correction to F for internal Coulomb
effect for r =e'/mc'. If one were to make this cor-
rection simply as in Eq. (4) one would obtain a
much smaller F which would correspond to
dQ/dr 0at r = 0.47 e'/—mc'. One could hardly
justify the inclusion of the whole last term of Eq.
(4) for r=e'/mc' and the above coincidence of
numbers appears to have no direct significance. The
fact that the value of Y can be expected to become
somewhat smaller when corrected for the internal
Coulomb effect appears to be less open to criticism
and seems to be connected with the fact that
Yg 0 0.06 of the proton-neutron interaction is a
smaller number than P~ 0 0.09 for protons inter-
acting with protons. On this view there is a pos-
sibility of regarding the proton-proton and proton-
neutron interactions as basically the same.

In concluding this section it is desired to em-
phasize the speculative character of the boundary
condition, the fact that it is closely related to the
velocity dependent potentials of BTE and also
that no special signi6cance is attached to exact
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constancy rather than slow variability with energy
of the logarithmic derivative.

IV. ADJUSTMENTS OF RANGE OF FORCE
FOR SQUARE WELLS

The figures described in the preceding section
have been prepared without making a correction
for the effect of Coulomb energy acting between 0
and e'/mc' on y. The lines marked as 10.5 Mev and
10.6 Mev correspond to interaction potentials
which are constant between r=0 and r=e'/mc'.
The practical considerations for preferring these
lines to other possible lines is the simplicity of cal-
culation for square wells without internal Coulomb
energy and the fact that most of the more accurate
experimental points fall between them. The esti-
mate of the distance r at which y is energy inde-
pendent is not affected by whether one takes the
internal Coulomb energy into account or not. This
estimate makes use of the 10.5 Mev, 10.6 Mev lines
only as convenient computational devices. The
estimates of range of equivalent potentials depend
slightly on whether one assumes an internal
Coulomb potential or not. This fact has been recog-
nized in the work of BCP and BTE. Table XVI
and Eqs. (11.2), (11.3) of the latter reference make
it easy to compute the effect. The internal phase z
used in Table XVI of BTE has the values 1.416,
1.482, 1.545, 1.635 at E=O, 2, 4, 7 Mev, respec-
tively. It varies nearly linearly with energy. Table
XVI of BTE and the numerical example preceding
it show that only the first-order correction is
important. The second line of the table shows that
as z changes from 1,4 to 1.6 the internal Coulomb
effect correction to the equivalent depth of the
square well increases fractionally in the ratio
1.655/1.613=1.026. The whole correction is of the
order of 0.83 Mev, and the effect of taking into
account the internal Coulomb energy is, therefore,
to increase the effective depth by 0.83 X0.026
= 0.021 Mev for a change of internal phase z of 0.2.
The change in z from E=0 to E=4 Mev is 1.545
—1.416=0.129. The equivalent square well depth
with internal Coulomb potential required to repro-
duce the phase shifts for a square well without
Coulomb potential increases, therefore, approxi-
mately linearly by (0.129/0. 2)0.021=0.013 Mev
from E=0 to E=4 Mev. This change is about 1/8
of the difference in equivalent square well depth
between the two lines marked (10.5, 1), (10.6, 1)
in the figures. The experimental points form a line
which appears to cut across the (10.5, 1), (10.6, 1)
reference lines between E=0 and E=4 Mev. If
the change in the range of force from e'/mc' is as
large as this cross over would call for, then it is
about 8 times larger than the change fmm a
nominal range of e'/mc' which results from bringing
in the internal Coulomb energy. The same experi-

mental material calls for a slightly shorter range of
force with internal Coulomb potential than without.
The numerical value of this correction can be given
more conveniently after the discussion of changes
produced by newer trends in experimental values.

The approximate equivalence between a pro-
gressive depth change between two energies and a
change in the range of force can be represented by
a simple formula which can be derived by means of
Eq. (10.3) of BCP. The derivation is straightfor-
ward and is omitted. The formula is:
&b/b = (hD/2D) / }[zs'/(z —sc)],—[zs'/(z —sc)]~}, (6)
where

s = sins, c= cosz.

Here it is supposed that for an assumed value of the
range b experiment requires a potential depth D
at E=E~ and a depth D+DD at E=El. The range
is supposed to be changed to bibb and the depth
to D+bD in such a way that the same range and
depth account for experiment at both Ei and E~.
All changes are supposed small enough to justify
first-order calculations. The change in depth bD is
eliminated and Eq. (6) results. The subscripts 1, 2
in this equation indicate that quantities are evalu-
ated for E=Ej, E&, respectively. The denominator
consists of a difference of two such quantities and
can be approximated by the result of differentiating
the quantity in brackets with respect to E. It is
found in this way that

hb (AD/D) [D+(E/2) ]/(E2 —Eg)
(6 1)

b [zs'/(z —sc)][-,'+zc/s —zs'/(z —sc)]
where z, s, c are to be evaluated at a suitably chosen
mean energy. The denominator in the above Eq.
(6.1) has the values listed in Table II as a function
of energy. The table gives also the corresponding
values of z. If the experimental curve is intrepreted
as crossing over from the (10.5, 1) line at E= 1.4
Mev to the (10.6, 1) line at E=3.4 Mev then Eq.
(6.1) and Table II give

bb/b = (1/10.5)[(10.5+1.2)/2]/( —0.45) = —0.12

indicating b~0.88e'/mc'=2. 47X10 " cm. If the
cross over takes place from E=0.2 Mev to E=3.4
Mev a similar estimate gives 8b/b = —0.07(7)
indicating b=2.59X10 " cm. If the cross over
takes place from E=0.2 Mev to E=8 Mev then
bb/b= —0.032 and b=2 72X10 "cm. . It is dificult
to decide which of these values is the better.

The discussion of the effect of the thermal
Coulomb potential indicated that it is approxi-
mately equivalent to an increase in well depth by
0.013 Mev from E=0 to E=4 Mev. Equation (6.1)
and Table I I indicate a corresponding bb/b = —0.008
which corresponds to an additiona1 0.8 percent



S STATE OF TWO P ROTON S 104i

shortening of the range. This eGect is smaller than
the apparent uncertainties of available experi-
mental material.

Changes in equivalent square well range obtained
above can be translated into changes of the range
parameter of other potential energy wells by means
of Eq. (7.47) in a later section of this paper. It
should be pointed out, however, that according to
the work of HSB and of BBH the equivalence
between potential wells is only approximate and
that the equivalence in the sense of Eq. (7.47) has
the meaning of giving the same results for scattering
under a somewhat idealized condition of zero scat-
tering energy, The adjustment of range outlined
above is independent of questions of degree of
linearity of the logarithmic derivative with energy
and can be made as an over-all adjustment
between any two energies.

V. EXPANSIONS IN TERMS OF ENERGY;
NATURE OF APPROXIMATIONS

Solving Eq. (2) for f one has

X—(a/r) F%'
f+2 ln(2r/a) =

FC —C*

where the quantities X, C, 4*, 4', f are as defined
in Eqs. (2.1), (2.2), (2.3) and corresponding for-
mulas of BCP. The quantity F is the homogeneous
logarithmic derivative of Eq. (5.4). Whether the
potential energy is assumed to be a square well or
some other potential curve which does not extend
to large distances, Y varies nearly linearly with
energy as discussed in Section III with reference to
Eq. (10.3) of BCP. The quantities" X, O', C, C~

also vary approximately linearly with B. One
expects, " therefore, that the left side of Eq. (7)
will be an approximately linear function of E.

If the potential acting inside the well is assumed
to have the form

v= —Au(r/P), (7.1)

where l) is an otherwise unspecified but regular
function one has the depth parameter A and the
range parameter P available for adjustment to
observation. For an assumed P one can fit experi-
ment at one energy say 8 =2& by adjusting the
depth parameter A. The pair of values A, P will not
Fit in general the experimental values at another
energy 8=82. Whether it does or not depends only
on how F varies with 8 because U matters only

"BCP, footnote 2. Additional terms of the series are given
in Eqs. (7.5) to (7.94) of the present paper.

"This is an obvious consequence of Eqs. (7.5), {7.6), (7.7)
of BCP and has been known since that paper. The reason for
introducing the quantity X and f was that of isolating the
exponential dependence of q contained in Co' from the quan-
tities varying slowly with energy such as X, 4', 4, 4*. The
same step has been made by Landau and Smorodinsky (see
reference 8) afterwards in a less complete form.

through F; If all quantities are approximated by
linear functions of Z then BF'/BZ depends only on
the expression in Eq. (4.1). This expression will be
called the range-energy form factor. The range
parameter P enters the form factor implicitly
through the internal function F;. For diferent
forms of the shape function 5 the form factors can
be made to have the same value by suitably ad-
justing P. Values of P obtained in this manner can
be said to be equivalent for range adjustment. In
making the comparison of form factors for potential
energy curves having diAerent shapes the larger of
the two nuclear well radii b has to be used so as to
be able to have X, 4, 4, 4* the same. Jt is clear
that it is possible to introduce an equivalent square
well range for a potential of any shape and that the
equality of the range energy form factor for equi-
valent ranges is a convenient criterion. Potentials
with diferent shapes can have the same equivalent
range at one energy but different equivalent ranges
at other energies on account of the presence of
terms in 2' and 8' in Y. This situation will now be
described quantitatively.

Expansions convenient for 4, 4* can be obtained
through the work of YWB."A power series for the
irregular function has been set up in that paper also.
This has been more firmly established in con-
nection with the present work and its accuracy
has been tested by comparison with other methods
of calculation. The series does not show rapid con-
vergence for the irregular Coulomb function for
energies of 10 Mev or higher. Nevertheless it gives
a convenient representation of X and 4' with satis-
factory accuracy for r =e'/mc' without terms in E
of higher degree than the second. In the notation
of YWB the expansions and other relevant relations
are:

x= (Su~)' = (8&!a)';
p = kr = 3&/2k; q = e'/Av', (7.2)

v = relative velocity,

~0= Co&0,

Go = 00/Co,

C'0 O'Q+ '0&/'9 +&P2/'0 +
C'o' = v 0*+v i'/n'+ v ~*/rl'+

—200/x' = Ho+ Oi/it'+ 82/q'+
—800/xax = ~o*+ei*/g'+ 8,'/q'+ .

(7.21)

l'7. 22)

(7.23)

(7.24)

(7.23)

(7.26)

(7.27)

J.(ix) = Bessel function of order v of argument ix.

I.=I.(x) =i "J„(ix), (7.28)
K„=K„(x)= lim(x/2) [I „(x)—I„(x)]cot(x v)

= lim cos(ir v) [Basset's X,]. (7.29)

For integral v the quantity of which the limit is
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Tsar.E III. Values of 40*—Yco and its approximation by
quadratic in energy.

(Mev)

2.8
6
9

Kxact
value

0.8684
0.8683
0.8689
0.8710

Quadratic
approximation

0.8685
0.8683
0.8692
0.8719

ip, = Q, , , a;,"x'I„q,P = Q;, .b, ,"x'I., (7.34)

S, = P, „a;,"x K„, e,*=Q, , , b;;"x'K„, (7.35)

Replacement of letter I by K in formulas changes
y; into 0;, cp;* into 8;*. The remaining relations
needed here are:

+= -("/2) I ~p+~i/" +e./~'+

+Lin(x/2)+ipse(q) j
X (p p+ p iln'+ ep/n'+ ) }, (7.36)

5(g) = —1+2y+1/12''+1/120qP+. . .

= —I+2y —in «i+ R.P. I"(ig)/I'(p g),

where y = 0.5772 = Euler constant.

X= —4 [8p*+ei*/g'+ep*/g4+

+Dn(x/2)+ p~(n) j

(7.37)

X(v p*+vi*/n'+ p p*/n'+ ) } (7.38)

These expansions can be used, of course, not only
for the proton-proton scattering problem. For the
latter one has the special relation

1/ii'=40. 00(5)E/Mev. (7,39)

The expansions in terms of the I„, K, will be dis-
cussed in more detail in another publication. De-
tailed understanding of reasons for similarity of
form of different expressions is not essential for

taken becomes indeterminate. The notation is the
same as that of }A'hittaker and Watson, 3Eodern
Analysis. Watson's Bessel functions denotes by E,
a function which for integral v is ( —)" times the K„
used here and by YKB. This choice of K, makes
the recurrence relations for the K, have the same
form as for the I,.

ppp (2/x)Ii 'p& (x/2) (Ip Ii)/24 (7 3)

v» = L(x/2) '+ (x/2) P)Ip/240 —(x/2) 'Ii/1440. (7.31)

q p" =Ip, ppi*—(x/2) '(Ip —3Ii)/24.

ppp* = I (5/2) (x/2) '(I i —Ip)

+L9(x/2) '+6(x/2) ']Ip
—(x/2)'Ii }/1440. (7.33)

the present discussion. It suftices to know that X,
O', C, 4* are power series both in the energy and in
the radius. The expansions in Bessel functions
simply give a way of writing down the coefFicient of
any power of r which occurs with the first or the
second power of the energy. Otherwise Eqs. (7.2)

(7.38) do not contain more information than
Eqs. (7.7) of BCP. In the latter the expansion is
arranged in powers of r/a with coefficients which are
polynomials in the quantity 1/rl which is propor-
tional to the energy E. In the present paper the
same series are rearranged in powers of 1/q' with
coefficients which are functions of the quantity x
and are power series in r/a as a consequence of the
definition of x given in Eq. (7.2).

In order to use Eq. (7) one has to know the
value of Y for different energies. This quantity
depends on the shape of the potential well, i.e.,
on the nature of the function b of Eq. (7.1). For
small energy changes and for compact potential
wells, however, one can speak of the equivalence
of potential wells of different shapes. It follows,
for instance, from the work of BCP, BTE, and
HSB that the square well, the Gauss error well,
the exponential well, and the meson well give very
similar variations of the phase shift E0 with E.
The reason can be explained in terms of the three
relations listed under Eq. (10.3) in BCP where the
usefulness of the relations for the present purpose
has been indicated but not elaborated. By means
of these relations the quantity F can be expressed
by a first-order perturbation calculation making
use of the wave function for a condition in which
the depth A and range P have been adjusted to
give Y= 0, for E= 0 at the boundary and, therefore,
also outside the potential well. Let it be supposed
that there are two potentials to be compared with
each other and that they are represented by Eq.
(7.1) and by

I"= —A 'n'(r/p'). (7.4)

Here 1)' is not the derivative of o but a different
function. Thus, for example, l) can be the function
appropriate to the square well while 5' can apply
to the Gauss error potential. The values of A and
A' which correspond to the resonance depth for
zero external kinetic energy will be denoted by Ao
and A O'. They are connected with the range
parameters P, P' by the relations

A pPpP ——Apl'p'/M A p'Pp" ——Xp'Ip'/M (7.41)

where Xo is defined as the eigenvalue of the problem

d'8/dh'+7 p'0($) tI=o 8=«/0 (7 42)

subject to usual conditions of regularity at r =0
and of dF/d)=0 at g= ~. The definition of Xp' is
similar to that of ) 0 with a change from 00 to 130'.

In comparing two potentials in their effects on
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scattering, it will be convenient to choose a distance
r=R, such that both potentials are negligible for
r&R. One has then from the relations in BCP, on
expanding F in powers of 8 and A —A 0 and keeping
only the first-order terms, the following conditions
for the equivalence of the potentials:

(g /0)/5 1 5'b(r/P)dr

= t (A' —A,')/5"j 'tt"b'(r/P')dr, (7.43)

(Mev)

0.2
0.6
0.8
1.0
2.2
3
6
9

10

0.00023
0.0020
0.0035
0.0056
0.0265
0.049
0.19
0.42
0.49

-BKp
(degrees)

0.00024
0.0069
0.014
0.025
0.12
0.21
0.56
0.96
1.04

—change
in scat-
tering

(percent)

—0.003
+0.13

0.16
0.21
0.50
0.72
1.6
2.7
2.9

Power series
value for
preceding

column

0.21

0.79
1.8

3.1

Tsar. E IV. EHect on scattering at 45' and phase shift of
quadratic terms in E.

(1/5') " 6'«=(1/6") " 5"«(744)

1'he erst of these relations makes the two poten-
tials give the same value of Y for 2 =0. The second
makes the variation of F with 8 the same at the
two energies. In Eqs. (7.43), (7.44) the functions
5', 5' are, respectively, the solutions of Eq (7.4.2)
and the equation obtained from the latter by
changing b into b' and p into p'. In other words Q,
g' are solutions of the radial equation for the
reference states of zero energy having zero slope at
r = ~. The second of the two equivalence relations
just considered does not involve the depth of the
wells and gi's, therefore, a convenient criterion
for the equivalence of range. According to this Eq.
(7.44) if one were to normalize the functions in such
a way as to have the same amplitude in the region

(7.45)
then

~1( ~R
Q'dr =

) 5"dr
0 0

(7.46)

This condition means qualitatively that two poten-
tial wells have equivalent ranges for the resonant
states at 8= 0 if their respective wave functions
come up to their asymptotic values equally rapidly.
I t is perhaps useful to state the condition in

another form vis.

usually stated in terms of direct calculation. The
reasons were as follows:

(a) Range adjustment by means Eqs. (7.46),
(7.47), and (7.48) is subject to errors caused by
neglect of quadratic terms in E and in A —A().
These increase with energy and it is somewhat
better, therefore, to make the fit by direct calcu-
lation at energies equal or close to those for which
measurements are available. (b) in order to make
a comparison of ranges by any method one needs
reasonably exact wave function for energy. There is
little difference in the work required to obtain a
solution of Eq. (7.42) or at an energy which is not
zero. Also the amount of work per numerical
integration of a differential equation is smaller if
a number of them are performed for neighboring
values of parameters. (c) Potentials such as the
Exponential and the Meson are not definitely
compact. (d) At the time of the work of BCP the
effective range of nuclear force was not known. It
was necessary, therefore, to include calculations
for longer ranges of force such as 2e'/mc' for which
the linearity of F as a function of J'" is poorer than
for the shorter ranges.

The expansions of 40, 40*, 0, X in terms of
Bessel functions of imaginary argument which are
described by Eqs. (7.25)—(7.39) can be arranged as
power series in x or in r. They appear then as
fol1ows:

L-8'+6'( )j«=
~o

L
—8"+6"(")1«.

(7.47)

(z/2)'* - (2y/a)'
go=a

s!(s+1)! 0 s!(s+1)!
(7 5)

which expresses equivalence of range in terms of
equality of areas between the curves for P, Q" and
their constant asymptotes at r = ~.

While the existence of relations given here as
Eqs. (7.46), (7.47) was realized at the time of
writing the paper referred to here as BCP, it was
also realized that there are some limitations as well
as practical disadvantages to this method of com-
paring ranges. The comparison was, therefore,

(x/2)'

24

(z/2) 2 (a+1)

(s+1)!(s+3!)

1!yq ' ~ (2y/a)'+~

6 Ea& o (s+1)!(s+3)!

1(r)2 2r 1(r~ 12(rq'
= —

I

—
i

1+--+-i —i+—
(

—i+
6 Ea) 3 a 6 La) 45 &a)
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(x/2) ' (Ss+18)(x/2)"
su=

1440 & s!(s+4)!
1 ( rq 4 (5s+18) ]2rq '

=—I-I Z
90 Ea) 4 s!(s+4)!i a i

)r~4p 1 23 r
+ -+"

(a) (120 5400 a

pr~'( 1 +"
&a& & 5040 i
~ (2r/a)'

!40*=Z—
(s')'

pry '-1 1 ~ (s+4)(2r/a)'+'
sx'= —

I

—
I

-+-Z
(a) .2 3 o (s+1)!(s+3)!

(7.52')

(7.53)

1- p2~ ' 2 1x.
%4= ——2

Ix) x 22

(+-Z -I+I1+-+ . +-
I20 E, 2 s)

1 » (x/2)"'
+I 1+-+ +

2 s+3) s!(s+3)!
It will be noticed that these functions do not con-
tain the lnx term and that the dependence of +
and X on 1nx which might be surmised from Eqs.
(7.36), (7.38) is only apparent. It is useful to have
on hand the formula

1 ~xq' !'x)
12' L2] E2)

(x/2)' (x/2) '+ (x/2)'

pr~'-1 4!t rq 5 pry'—I-I -+-I-I+—I-I
(ai 2 9 ka) 36 Eaj

1 (ry'
+—I- I+" . (7.54)

45 Eei

1 (ry ' (s+5)(5s+18) (2rp '

90 4ai 0 s!(s+4)! E a )
!'ri4 1 23r

=I —
I

—+ -+
4ai 24 900 a

pry'p 1

~ *=I —
I I

— -+"
(ai & 720

(7.55)

(7.55')

x —1+II+-+ +-
I

2 s)
1 1

+I 1+-+ +
s+1j

It is useful to remember that in order to obtain the
coefticient of r' in a q,~ one has to mu1tiply the coef-
ficient of r' in y; by s+1. While the occurrence of
the K. in 8;, 8~~ is simply expressed by means of
Eqs. (7.34), (7.35) in terms of the corresponding
re1ations invo1ving I„y;, y;~, an arithmetical cal-
culation of 4 or X takes place through Eqs. (7.36),
(7.38). In these the functions K. occur in the
combinations

R = K,+Lin(x/2)+y —(1/2)]I.. (7.6)

These functions are the following power series in x:
1 1 ~ (x/2)'*+'

Rl +
x 2 o s!(s+1)!

3
g4 120

(x/2)' v 0 !!i
81+ + + ' ' (7.9)

720 120 12

X= 2 4(r/a) —4(r/a)—'
—(32/27) (r/a) ' —(19/108) (r/a) '
—(107/6750) (r/a) '—

(r/a) 37 t'r) ' 71 (r)+- —1+—
I

- I+27!a) 108!a)
353 )rp4

+
I

—I+..
2700 4aJ

(r/a)' 1 r/a 1261!rq '
+- I- I+g4, 6 36 13500 (a]

(r/a 4-

+ ) + +.. . (7.91)
120

which gives the coefficient of any power of x in the
linear and quadratic terms in the energy E. From
4' one readilv finds 0'* by means of Eqs. (19), (25)
of YKB. These equations are needed here on1y to
show that the series for +*when arranged in powers
of r has coeScients of r & which are equal to j times
the coefficient of r' in O'. By means of Eq. (2.2) of
the present paper and the series for 4 one has
available terms of any power in r in the coefhcients
of 1/g' and 1/g4 in the quantity X.The recurrence
formulae for the coefhcients of which are dealt with
by YWB are not needed if use is made of the
formulae just described. The accuracy required for
proton-proton scattering problems is suf6cientlv
moderate to make it possible to neglect terms in I'
in most of the applications in the present paper.
The following series often suSce:
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1 2r/a
Xg o= —4Ro(x) = —4 ——+ (1—g)

2 (1!)'

(2r/a)' (2r/a)'
+ (1+l —l)+

(2')' (3!)'

X (1+o+ o
—-', ) + . (7.92)

where

Yp=sp cotGp, 3 =8@ p,

Y, = (1/4D) L Y,—(z,/sinz )']
(8.1)

(8.2)

Yo ——(1/32D') I 2t (zo/sinzo)o —1]Yo
—(zo/sinzo)' I. (8.3)

Experiment is fitted reasonably well by D =10.5
Mev, r=b=e' m/c'. These values give

Y=0.2205 —0.04367K —0.0003881Zo+, (8.4)

where E is in Mev.
The conversion factors in this illustration are as

follows:

po!= r/a = 0 0488(6rm ee.o/) oq =0.1581/ZM. &.

The numbers in Eq. (8.4) and in the following Eqs.
(8.41), (8.42) are carried out to a larger number of
digits than is warranted by the accuracy with

+=1-3(r/a)'- (14/9) (r/a)'

—(35/108) (r/a) 4

—(101/2700) (r/a) ' —.

1 (r/a)' (r/a)'
+—— +

2 9

43 77
+ (r/a)'+ (r/a) '+

108 540

(r/a)' 2(r/a)' 172(r/a)'
+—-- + ~ ~ ~

g4 24 225 10125

(r/a)'
+——— + + (7 93)

720

(2r/a)'
+z=o = —xR'z(x) = 1+ L1 —1 —(1+ -,')]

1!2!
(2r/a)'

+ L1 —(&+o)
2!3! —(1+-'+-')]+ (7 94)

The relative importance of successive powers of 8
will now be illustrated. For a square well potential
the expansion of Y as a power series in the energy is

Y= Yp+ YgJ'+ YgB'+ (8)

which the conversion factors are known. The
object in listing the extra digits is that of showing
how the terms combine and how some of them
nearly cancel. This will enable the reader to form
his own judgment about the applicability of some
of the approximations.

The Coulomb function expansions yield

C p = 1.049662 —0.0164438
+0.00007793F-'+

4'p* = 1.100133—0.049860K
+0.00039160E'+, (8 41)

+ = 0.992655-0.047144K
+0.00037574K'+

X= 1.794872 —1.948208+0.0308102'+

C. alculation of f& by means of Eq. (7) gives

1+0.3160B+0.00191K'+
f, = 3.090

1 —0.000458+0.0000733E'+

= 3.090[1+0.31642+0.00198E'+ ]. (8.42)

Here 8 is again in Mev. It will be noted that:
(a) Most of the dependence on 2 is contained in

the numerator of Eq. (8.42). It arises as a result of
the dependence on 2 of the quantity X—(a/r) Y%'

of Eq. (7). The denominator of Eq. (7) is on the
other hand nearly constant being equal in the
present case to

—0.8687+0.00039E—0.0000637F'+

Comparing this expression with 4 p* in the form of
Eq. (8.41) it is clear that C o"—YCo depends on the
energy relatively much less than 4p~.

(b) The energy dependence of Co" is appreciably
reduced by the subtraction of YCp not only in the
linear but also in the quadratic terms in g.

(c) The cancellation of terms is more pronounced
for Co*—YCo than for Co*/Co —Y. The latter quan-
tity can be expected to be approximately energy
independent bees.use C'*/C is the homogeneous
logarithmic derivative of the regular Coulomb
function while Y is the homogeneous logarithmic
derivative of the internal function and because
neither of these varies with energy especially
rapidly and also because the two quantities vary
in the same direction. The cancellation under dis-
cussion is a more precise one, however.

In view of the fact that this cancellation makes
it possible to approximate the relation of the phase
shift to the energy in a simple way it appears
appropriate to explain why it occurs. In terms of
the regular Coulomb function Fp denoted here by
F and the energy-dependent but distance-inde-
pendent parameter Cp one has

C'o* —C'o Y= [dF/d p Fdg/$d p]/Co-
= (sinEo) /5'&o,
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T&BLE V. Values of quantities for range determination by
means of Eqs. {8.6), (8.61).

0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10

K,(~)/1, (~)

0.79 95
0.77 17
0.74 58
0.72 17
0.69 90
0.67 77
0.65 77
0.63 87

1.07 46
1.07 97
1.08 48
2.08 99
1.09 50
1 ~ 10 01
1.10 53
1.11 04

(2js)I1(X)

1.03 72
1.03 96
1.04 21
1.04 46
1.04 71
1.04 97
1.05 22
1.05 47

use having been made in the last step of the con-
stancy of the Kronskian and of the asymptotic
forms of g, F for the last step. It follows, on the
other hand from the differential equations satisfied
by F, Q that

sinE() ———(M/O'A') )t VF5d p (8.51)
0

as has been pointed out by Ramsey. '4 Combining
Eqs. (8.5), (8.51) one has

b

Co"—Co Y= —(M/h'Qb) Jr V(rC0)/dr. (8.52)
0

Here V is the potential energy in excess of the
Coulombian and gq is the value of g at the nuclear
boundary. The energy dependent quantities on the
right side are seen to be rC0 and g/g~. The energy
dependent part of r40 is to a first approximation
the same as though there were no Coulomb inter-
action as may be seen from the expansions given
above. For example, the approximation

4 0—sin p/p = 1 —0.01592(r/mc'/e')'+

agrees with the first two terms for 40 in the first
of the four Eqs. (8.41) at rmc'/e'=1 which give
1.04966[i —0.0157K+ .7 for the same quantity.
The good agreement of the variation of 4 0 with
energy and distance in the Coulombian and field
free cases suggests that the high degree of energy
independence of the quantity Co*—40K can be
explained making use of the field free approxima-
tion. This can be done by means of Eq. (8.52) the
right side of which contains the energy only in the
quantity 40 and the ratio 5/Qq. The former has
been discussed. The latter has the same energy
dependence for a compact shape of V as in the
absence of a Coulomb field even to a higher degree
than rCO because the elfective wave-length for 5' is
largely determined by V rather than e'/r. Equation
(8.52) shows, therefore, that the variability of
Co*—COY with energy can be discussed to a good
approximation by calculating this quantity in the
absence of the Coulomb field. One finds by a

' W. H. Ramsey, Proc. Camb. Phil. Soc. 44, 87 (1948); cf.
also L. Hulthdn, K. Fysiogr, Sallsk. Lund Forhandl. 14, Nrs.
8, 21 (2944).

straightforward calculation for this case that
4'0~ —4 0 V=1—so cot@0

E (so' sp ) ~0
+

~

———
~

coteo+ —cot'eo (8.53)
2D 46 2) 2

with
so = [MD/h'7& (8.54)

where a specialization to the case of a square well
has been made. The correction term of first order
in 8 vanishes for so=s/2 which is approximately
the case. Setting

ep= s/2 —e (8.55)
and keeping only terms of first order in e there
results

[4 p* —4 o Y7/[4 p
—4'0 Y7e=p=1 —0.07eE/D, (8.56)

where 0.07 arose as the digital equivalent of
vr/8 —s'/96. ln making a numerical estimate it is
proper to employ for D the value which corre-
sponds to an assumed action of the Coulomb field
inside the potential well because in Eq. (8.52) the
potential energy U is that acting in addition to the
Coulombian. A fair value of this D, which has been
designated as D' in BCP, for an assumed range
e'-'/mc' is 11.3 Mev and the value of e which cor-
responds to this well depth is 0.10. Substitution of
these numbers into Eq. (8.56) gives

1. —0.0006K (8.5'7)

for the right side of Eq. (8.56). This estimate agrees
approximately with the denominator of Eq. (8.42).
A precise agreement cannot be expected on account
of the relative crudeness of the approximations
made in arriving at Eq. (8.56). The existence of the
agreement shows that the compensation of effects
does not have anything special to do with the
Coulomb field and that the approximate resonance
at B=0 is a strong contributing factor. It is also
seen from the form of the right side of Eq. (8.52)
that this quantity will behave similarly for potential
wells of different shapes because g/5q behaves
similarly. This is also expected on the grounds of
equivalence of different shapes of potential wells
for effects on Y which are linear in the energy J..

The constancy of Co* —4'0 Y with 8 is not only a
property of the approximation which neglects
higher powers of 8 than 8' but is practically as
good including all powers of B. The condition is
shown in Table I I I. The error in f caused by
neglecting the quadratic terms in 6 in the nu-
merator and denominator of Eq. (8.42) is small at
small energies but not negligible at several Mev.
This situation and the effect on scattering at a
scattering angle of 45' in the laboratory system is
illustrated in Table IV. In this table an alternative
convention for recording the error of quadratic
terms based on the form of f& obtained by expanding
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it into a power series in F is given as well. The values
of the phase shift corresponding to a square well
with a. range e'/mc' and a depth D = 10.5 Mev were
used as an approximation to the experimental
values of the phase shifts in preparing the table.
In the first column of Table IV are listed the values
of the energy. In the second column the corre-
sponding values of the quantity bf are given. This
quantity is the value of the fraction representing f&
in Eq. (8.42) minus the value of the fraction ob-
tained on neglecting the terms in 8' in the nu-
merator and denominator. In the third column are
listed the negatives of corresponding differences of
the phase shift A. o expressed in degrees. In the
fourth column are the negatives of corresponding
differences in theoretically expected scattering for
a scattering angle of 45' in the laboratory system.
By "theoretically expected" scattering in the pre-
ceding sentence is meant the scattering which one
would compute if one were to use either the quad-
ratic or the linear approximation to the numerator
and denominator of the fraction representing f&
The fifth column of Table IV differs from the fourth
only in that the effect of the quadratic term in the
power series obtained by dividing the numerator by
the denominator is dealt with. It will be noted from
Table IV that: (a) there is no marked difference
between the values in the last two columns of the
table. (b) At energies below 0.6 Kiev the elfect of
quadratic terms is smaller than the accuracy of
most experiments. (c) At 2.2 Mev it is preferable
to include the effect of quadratic terms because the
experimental error is not many times greater than
0.5 percent. From 3 X'lev on the approximation of
neglecting quadratic terms in E appears to be
definitely undesirable because systematic errors
between 1 and 3 percent in scattering result. If one
adopted a policy, common in some fields, of having
the theoretical calculation ten times better than the
experimental error and if the experimental error
were one percent, one would hesitate to apply the
linear approximation at bombarding energies above
0.5 Mev. (d) The importance of quadratic terms
decreases as the range of force 0 is decreased. If one
were sure of the range being shorter than e'/mc', in
square well equivalents, then it would be possible
to apply the linear approximation at higher energies
with the same utilization of experimental accuracy.
The effect of a possible change in range while ap-
preciable is not a very pronounced one as may be
seen from the following estimate. An appreciable
part of the quadratic term in X is canceled by
terms in (u/r) Y4 when one substitutes into Eq. (7)
to obtain Eq. (8.42). The term in X which is
quadratic in 6 is approximately proportional to r'.
I t appears fair to estimate the dependence of
quadratic terms on b as being not more critical than
b4, therefore. A change in the radius 6 from

TABLE VI. Values of quantities determining linear and quad-
ratic dependence on K

rs Xo rs &Xy

0.75 1.8480
0.80 1.8375
0.85 1.8269
0.9Q 1.8163
0.95 1.8056
1.00 1.7949
1.05 1.7841
1.10 1.7733

—1.9511—1.9506—1.9500—1.9495—1.9488—1.9482—1.9475—1.9468

r, 3Xo

0.03090
0.03089
0.03087
0.03085
0.03084
0.03082
0.03080
0.03079

(+o)o

0.99589
0.99532
0.99472
0.99407
0.99338
0.99265
0.99189
0.99109

r, -2(~o)i

—0.047313—0.047281—0.047247—0.047213—0.047179—0.047144—0.047108—0.047071

rs 4(%o)o

O.OOQ377
0.000377
0.000376
0.000376
0.000376
0.000376
0.000376
0.000375

(Co)o r, -o(eo) t r.-4(e o}& (& o*)o re~(+0+)1 re (4'0+) 8

0.75 1.0371
0.80 1.0396
0.85 1.0421
0.90 1.0446
0.95 1.0471
1.00 1.0497
1.05 1.0522
1.10 1.0547

—0.01631—0.01634—0.01636—0.01639—0.01642—0.01644—0.01647—0.01650

0.00007 74
0.00007 75
0.00007 76
0.0000?77
0.00007 78
0.0000779
0.000078Q
0.0000781

1.0746
1.0797
1.0848
1.0899
1.0950
1.1001
1.1053
1.1104

—0.04933—0.04943—0.04954—0.04965—0.04975—0.04986—0.04997—0.05007

0.000389
0.000389
0.000390
0.000390
0.000391
0.000392
0.000392
0.000393

2.81&10 " cm to 2.47&(10 " cm which was dis-
cussed in connection with Table II corresponds to
a factor 0.88 in b and 0.6 in b4. Such a factor would
indeed extend appreciably the range of applica-
bility of the linear approximation. If one were to be
satisfied with 0.5 percent accuracy in theoretical
prediction the region below F= 3.5 Mev rather than
the 2.2 Mev of Table IV would be satisfactory.
But if b were 2.65X10 "cm which is the mean of
the other two values considered after Table II, the
error would decrease in comparison with that for
b=e'/ cm' by the factor 0.8 which makes little dif-
ference in comparison with Table IV.

It is useful to consider the relative magnitudes
of contributions to f by its component parts. At I
Mev the total of 8.7 is made up of 5.82 for
(Co'/q) cotKD, —0.79 for q/g and 3.69 for —2 Inrl.
At 6 Mev the total of 13.7 is made up of contribu-
tions 9.1, —0.84, 5.48 in the same order. At 9 Mev
the contributions are 11.9—0.84+5.9=16.9. The
numbers just given show that only part of f con-
tains the phase shift in the form of cot%0 and that
at 1 Mev a contribution of 2.9 out of a total of 8.7
comes from (g/g) —2 Inq which does not contain
the phase shift. The way in which f varies with 8
is conditioned by several factors and the increase of
(CP/q) cotZO with E is not directly rela. ted to the
increase of Ko with 8 but rather to the behavior of
Co', /'g which more than compensates the decrease
in cot%I). The term —2 lnq is zero at 0.1581'=0.025
M ev. For smaller 8 it becomes negative and
approaches —~ at Z=O. The combination q/q—2 lng is finite, however, at Z = 0 and so is
(Co'/o) cotKo, therefore. For small values of 2 one
can approximate

q/g —2 Ino —2(2y —I)+ I/6g'—0.309+202/3, (8.58)

where 8 is in Mev. This approximation is fair at
8 = 0.2 and lower energies but very crude at
higher energies. It is seen that from the point of
view of seeing simply how errors in the experi-
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mental values affect conclusions regarding the
interaction potential, the quantity f is not the
easiest to deal with. Also, while it owes its linearity
in E to the linearity of the logarithmic derivative
T, it is related to the latter through the quantities
X, 0, C, C~. It may also be mentioned that if the
quantity f is considered as a function of Ep and q,
then its values for the Gauss error and meson
potentials show deviations from linearity and from
each other which are of the same order as those for
a square well. This matter will be discussed in more
detail in another publication. For the limited
energy region considered by BTE the form of f
suggested plotting (g/Cp') tanZp which is approxi-
mately constant in that energy region.

The plot of f against E has advantages at low
energies because here the linearity is good. The
slope of f as a function of E is related to the range
of force of the equivalent square well. By means of
Eq. (7.47) this range determines also the range
parameter for other compact potentials. It is,
therefore, of interest to examine df/dE and f for
E= 0. The value of f at E=0 will be referred to as
the intercept of f It can b. e found by extrapolating
the experimentally determined line for f to the
axis E=O and taking the intercept on that axis.
The value of the intercept will be seen to be sensi-
tive to YD and hence to the depth of the potential
well for an assumed range.

The value of the intercept is obtained from Eqs.
(7), (7.3), (7.32), (7.92), (7.94) as

Ro —(2/x)R& Yo
fe o=4 —2 In(2r/a).

Ip (2/x) Ig Yp—
The relation

—IoKg+IgKp ——1/x

has as a consequence

—IoR &+

IVER'o

= 1/~,

and hence, making use of the dehnition of Q in Eq.
(7.6) ' Ko 2 Yo/(oo'Io)

fg o ——4 —+— +4y —2. (8.6)
Io Ip (2/x) Ig Yp-

In the determination of the slope df/dE the ap-
proximate constancy of the denominator in Eq. (7)
will be made use of. By neglecting the energy de-
pendence of the denominator the theoretically
expected slope will be only 0.15 percent too low
for a range of e'/ maseis apparent from Eq. (8.42).
For a square well one obtains by means of Eqs.
(7.91), (7.93), (8), (8.1), (8.2)

(df!dE)s o= }(r/a) (1 —Y-.)—(1+Yo/s')/2

+(r/a)'Yo/9+ . }

X (ds '/dE)/[Io (2/x)I) Yoj-, (8.61)—

where the result has been ordered in powers of r/a.
Here F~ has been expressed in terms of Yo and for
E in Mev

dg o/dE =40.0. (8.62)

The phase zo is the value of the phase z for E=O.
A convenient approximation is obtained by using
Eq. (S.SS) and neglecting powers of o higher than
the first.

In this approximation

[Ip —(2/x) I~ Yp j(df/dE) e=o

—40.0 f (-,' —0.467o)(r/a)+0. 174o(r/a)'}, (8.63)

where the numbers 0.467, 0.174 arose as (p /4) —1/p. ,
or/18, respectively. For r =e'/mc' the above formula
contains a quadratic term in r which is 0.3 percent
of the linear term. The slope of a plot of f against E
is, therefore, nearly proportional to the square well
range b which in the remainder of the paper will
be also called r For. b=e'/mc', D=10.5 Mev the
right side of Eq. (8.63) is 0.838 while the value
of the left side is 0.848. The error made in
introducing the approximations between Eq. (8.61)
and Eq. (8.63) amounts to 1.2 percent and is in
the direction of overestimating the range.

Equations (8.6), (8.61) are suitable for the deter-
mination of the range b and Fo by successive ap-
proximations. The essential reason for the rapid
convergence of the process is that Eq. (8.6) is
equivalent to Eq. (2) for the determination of Yp.
According to Eq. (2)

Yo=(2+fz') (r/a), (8.7)

where f&o is the value of f& of Eq. (2.5) for E=O.
Since f,' is approximately 3, the above equation
determines Yo as 5r/a which is 1/4 for the
value of r/a indicated by experiment. On the
other hand Yp—so/2 and hence o is so small that
its precise value matters little in the determination
of r/a by means of Eq. (8.63). The value of r/a so
determined is nearly independent of the initial
guess. For a small error 8I in I = r/a the solution of
Eq. (2) for Yp gives an error 8 Yp in Yp which to
within the first two powers of g is

b Yo= {(fi'+4)/[I (fi'+2)3
—4(fr' —2)/(f ~'+ 2) '

+ 2f&o/(fop+2) —(fzo+ 2) } Yobl . (8.8)

To a good approximation the employmen t of
I +8& in Ip —(2/x)I~ Yp=I3 together with the use of
F0+8 FO instead of Yo in that expression produces
an error

&8=[2(1+t') (1+2k/3) Yo)~I (1+&)bYo (8 81)
The quantity which multiplies r/a in Eq. (8.61) is

A = (1—Yp) (1+Yo/eo')/2. (8.82)
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9A

(88 hB q
B Yo+ Yol —2

I (8 84)
a i..

Jn addition to the approximation of neglecting
terms in (8r)' this formula takes into account the
term in Y (ro/a) /9oon the right side of Eq. (8.61)
to the first order also. The latter approximation
is a good one. The first two terms in Eq. (8.84) give
the error which would exist if the term in (r/o)'/9
were absent. Assuming, for purposes of illustration,
that f, df/dE have values corresponding to
b=eo/mc', D =10.5 Mev and that b, D are to be
determined by successive approximations Eq. (8.84)
indicates a, value of 8(r/a)/(r/a) about 1/40 of the
initial error 8f/l' The .first two terms account for

80 percent of the right side of Eq. (8.84). Cal-
culations carried out in detail for an assumed initial
error of 10 percent in l' indicate that the ratio of
improvement is more nearly 1/35 than 1/40 and
that Eq. (8.8) underestimates h Yo by about 2 per-
cent. The method of successive approximations is
seen to converge very rapidly and to be very prac-
tical for range determination. Values of quantities
involving Bessel functions occurring in Eqs. (8.6),
(8.61) are listed in Table V so as to facilitate range
determination by means of these formulas.

In Table V the quantities are listed so as to agree
with conversion factors in the following relations:

l =r/a= ps=0.04886r x'=81 =0.39088rmco/so
r.= rmco/eo.

The number of significant figures in the table and
in the conversion factors is greater than that cor-
responding to the accuracy with which funda-
mental constants are known. The object in includ-
ing the extra digits is to make it possible to carry
out self-consistent calculations for assumed values
of fundamental constants which matter here only
in the conversion factor 0.04886. To change to
another choice of the constants it sufFices to change
the numbers in the first column of the table.

In Table VI are listed values of quantities which
are needed in order to express X, +0, Co, Co as
power series in E. The unit of energy is i Mev.
The columns are labeled in terms of Xo, X~, ~ ~ ~,

The error in it caused by the error 8 I & is

b~ = —(1/2) I1—so +2Yoso [1—(1—Yoo)so oj

X[1—Yo(1 —Yo)so o] '}8Yo. (883)
The coefFicient of 40.0Z/8 in the right side of Eq.
(8.61) is a quadratic expression in (r/a). The error
in its value caused by bB, and the errors in its
coefficients caused by b Y0 result in an error

~(r/o) SB SA

(r/a) 8 A

(Co*)o defined by:

+o= (+o)+(+o)iZ+(+o) oZ' (8.86)

and similarly for the other quantities. In order to
facilitate interpolation the quantities tabulated are
the coefFicients of 8 divided by a suitable power of
r, . The object of including the extra digits is the
same as for Table V. The relation g o=40.00(7)E
was used. If it is desired to change the choice of
fundamental constants so that g o/8 is changed
then one has to multiply the columns for linear
effects in 8 by (ii o/8)/40. 007 and the columns for
quadratic effects by the square of that quantity.
Changes in fundamental constants resulting in a
change of f'/r, result in a change in the first column
as for Table V.

The entrance of the range of force for the im-
portant quantities X, + for coefficients of different
powers of Z can be seen in Eqs. (7.91), (7.93). The
principal dependence of Fo on the assumed range
of force is given by Eq. (8.7) and Yi is approxi-
mately proportional to the square of the range. The
inain contributions to the coefficient of 8 in f come
from X and Ãi. While the above discussion refers
mainly to properties of square wells, Eq. (7.47)
makes it possible to transfer conclusions to wells
of other shapes for terms in f varying linearly with
E. Calculations made in collaboration with Messrs.
Hatcher and Arfken indicate that quadratic terms
in E depend on the shape of the potential well.

The writers wish to express their indebtedness
to Professors Critchfield and Williams and other
workers at the University of Minnesota, " to Pro-
fessor Feshbach of M. I.T. for criticaI remaiks con-
cerning the boundary condition view, and to
Messrs. Arfken and Hatcher for permission to
quote their work before publication.

APPENDIX I
Experimental errors are not indicated for the points of

HHT, HKPP, BFLSK, and RKT because the statistical
counting errors are not significant in these cases and the
internal consistency at one energy is not a completely satis-
factory criterion. In most measurements of this group the
estimated errors lead to uncertainties small compared with
the distance between the a=10.5, 10.6 Mev lines. Com-
parison of points obtained by diferent experimental groups
with each other is probably the best criterion of accuracy and
allows some judgment of the certainty of conclusions from
this group of observations. The phase shifts corresponding to
the work of RKT were obtained by observing that their
higher scattering angle data form a self consistent picture at
2SO and 300 kev according to their Figs. 10, 11 and that the
possibility of multiple scattering might be responsible for the
apparent inconsistencies at the smaller angles. The relative
position of the experimental values with respect to the
theoretical curves in their Figs. 10, 11 indicated DO=9.0 for
8~250 kev and Xo= 10.9' at E=300 kev. The points on the
graphs were also located by comparison of the theoretical
values of the logarithmic derivative y expected for b =8/pic',
D = 10.5, 10.6 Mev and b =0.75 e /me~, D ~ 19.6905 Mev. The
data of Heydenburg, Hafstad and Tuve in the region 220-640
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kev were not used in the present analysis partly because, as
remarked by J. K. Lubansky and C. De Jager, '~ these observa-
tions do not agree very well with other measurements and
primarily because these data were taken mainly in order to
confirm the smallness of scattering at 90' in the center of mass
system rather than for quantitative purposes.

The values and experimental uncertainties for 8=4.2, 7.03
Mev have been used in accordance with published statements
of May and Powell and of Dearnley, Oxley, and Perry. The data
of R. R. Wilson and E. C. Creutz4at 8 Mev, R. R. Wilson4 at
10 Mev and of Wilson, Lofgren, Richardson, Wright, and
Shankland were treated in the following manner. The values
of the phase shift and of y, Y at 8 Mev were determined from
the value a 2.7~0.2&(20 '~ cm' for the scattering cross
section in the laboratory system of Wilson and Creutz. This
was compared with a theoretical value of 2.75&20 '~ cm'
which corresponds to Eo=53.6', which is the value of
Hoisington and Thaxton4 at E=8 Mev for b =e'/mc',
D =10.5 Mev. By means of the relation

a F = —ps-2sE„ {I,1)
which applies to small changes in the logarithmic derivative
and phase shift and the approximate first-order relation:

~Ho=tank 0(~0./2cr) (I, 2)

gave B V=0.027. This is the estimated difference between Y
for the experimental cross section and the Y corresponding
to b =e'/mc', D = 10.5 Mev. The limits of experimental uncer-
tainty were drawn in so as to correspond to the uncertainty
~0.2&20~' cm2 in cr.

At 8=14.5 Mev it was assumed that the value of y for a
scattering angle of 45' in the laboratory system is about

'~ J. K. Lubansky and C. De Jager, Physica XIV, 8 (1948).

0.0225X 20 "cm~ higher than that expected for a square well
with b =e'/mc', D = 10.5 Mev. The reason for this assumption
is that the experimental point for the above mentioned scat-
tering angle is about 0.025X10 " cm' higher than the S
wave curve in Fig. 3 of Wilson et al. It appears that a shift
of the S wave curve up by about the assumed amount would
fit experiment reasonably well. On this admittedly rough and
somewhat arbitrary interpretation it was calculated that,
BED=2.2(8)' and by means of (I, 1) it followed that BV=
—0.031. The approximation (I, 2) agrees with this estimate
within about 10 percent. Since 8Y is used as an addition to
the Y of the square well the accuracy required is moderate.
The experimental uncertainty was made to correspond to an
uncertainty of ~0.2)& 20 "cm' in O.,m the cross section in
center of mass system. Rough checks were made on the curve
marked 5 in Wilson et al.

Since for 10 Mev absolute values of the cross section are
not available the experimental error was taken to be about
the same as for 8 Mev and 14.5 Mev. The relative values of
the cross section at different angles do not determine Xo with
good accuracy even on the assumption that other phase shifts
are absent. It is difFicult to do much with the value at 10 Mev.
The value of Y for this energy was somewhat arbitrarily taken
to be on the D = 10.5 Mev line. This position fits in which the
points at 8=8, 14.5 Mev but the point at 8=10 Mev has
very little weight in comparison with the others.

The experimental uncertainties in the 8 Mev —14.5 Mev
region are so large that accurate calculations appeared out of
place. It was assumed throughout that only S wave scattering
enters close to 0=45'. This assumption can be doubted. It
was made only because it is impossible to evaluate the com-
plicated effect of higher phase shifts and because there is no
decisive experimental evidence indicating their presence.
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Seyaration of a Gas Mixture Flowing through a Long Tube at Low Pressure*
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The separation of a binary gas mixture by diffusion through a capillary of radius r depends on
the fact that the molecules have different masses m; and mean speeds 8;. When the inlet pressure
is so low that the mean free path X is much greater than r, the flow is diffusive and the separation
factor (at zero outlet pressure) has its maximum value (m~/mi)&. At high pressures () &&r) no separa-
tion occurs. This paper treats the intermediate case () =r) where the transfer of forward momentum
from light to heavy molecules in unlike collisions equalizes the transport velocities and decreases
the separation factor. As the inlet pressure rises, this effect makes the How non-separative before it
becomes viscous. Flow equations are derived by equating the momentum acquired by the light
component from the pressure gradient to the momentum lost to the wall plus that transferred to the
other component. The viscous effects are treated as a small additive perturbation on the Row. The
integrated Row equations express the separation factor as a function of the inlet and outlet pressures.

INTRODUCTION

OR purposes of orientation, we consider Erst
the effusion of a gas mixture through a circular

* This article is based on work performed by the authors
while members of the sta8' of the Columbia University Divi-
sion of War Research, SAM Laboratories. The main reference
is to Manhattan Project Reports A-1289, Part I, June 8, 1944,
and Part II', September 5, 1944. A preliminary abstract was
published in Phys. Rev. 59, 259 (1946).

ori6ce. The nature of the fiow depends on the
comparative magnitude of the mean free path X and
the radius r of the opening. When the opening is
large (r»X), many collisions occur in the vicinity
of the orihce and, if two kinds of molecules are
present, there is a continual transfer of momentum
from the lighter, faster molecules to the heavier,
slower molecules with the result that both kinds of


