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The diffraction of a scalar plane wave by an aperture
in an infinite plane screen is examined theoretically. The
wave function at an arbitrary point in space is expressed
in terms of its values in the aperture, and constructed so
as to vanish on the screen, in accordance with the assumed
boundary condition. An integral equation to determine the
aperture field is obtained from the continuity requirement
for the normal derivative of the wave function on trav-
ersing the plane of the aperture. Utilizing the integral
equation (whose solution is generally unobtainable), the
amplitude of the diffracted spherical wave at large dis-
tances from the aperture is exhibited in a form which is
stationary with respect to small variations (relative to the

correct values) of the aperture fields arising from a pair of
incident waves. This expression is independent of the scale
of the aperture fields. The transmission cross section of the
aperture for a plane wave is found to be simply related to
the di8racted amplitude observed in the direction of
incidence. The variational formulation is applied in detail
for a wave incident normally on a circular aperture. By
comparison with the exact results available for this problem,
it appears that the use of suitable trial aperture fields in the
variational formulation yields approximate, yet accurate,
expressions for the diffracted amplitude and transmission
cross section over a wide range of frequencies.

j.. INTRODUCTION

'HE steady-state problem of diR'raction by
an aperture in an infinite plane screen has

attracted attention for many years. Exact
solutions are restricted to a few cases where the
aperture is of simple geometric shape and may be
conveniently described in a coordinate system
in which the wave equation is separable; the
available theoretical methods for approximating
these solutions, and those of other cases, are
valid for only a limited range of frequencies or
wave-lengths.

The diffraction of waves in a scalar field is
considered in treatises on physical optics, after
requiring that the wave function vanish on the
(perfectly conducting) screen, as be6ts a rec-
tangular, tangential component of the electric
field intensity. ' A brief description of the ap-
proximate and exact theoretical methods follows;
these have all been applied in detailed calcula-
tions for a circular aperture.

A well-known approximate solution is due to
KirchofII', in which the aperture field is identified
with the incident field, and the normal derivative
of the wave function is assumed to vanish on the
back side of the screen. This procedure is not
self-consistent, for the transmitted field so deter-

~According to a form of the Babinet principle (see
reference 5), this wave function, appearing in the role of a
velocity potential, also describes the di8raction of sound
by a rigid disk in the form of the aperture, as well as the
radiation of sound by the freely vibrating disk.

mined from the incident field in the aperture does
not vanish on the screen. The results possess a
measure of validity only when the aperture
dimension is large compared to the wave-length
of the vibrations, since then the back side of the
screen lies in the shadow and the diffracted field
is relatively small; such a condition is amply
realized for light difII'raction by apertures of
macroscopic dimensions.

Another approximate solution is due to Lord
Rayleigh, ' whose results in the case of plane
waves incident normally on the screen are ap-
plicable when the aperture dimension is small
in comparison with the wave-length. The pro-
cedure stems from the observation that in the
neighborhood of the aperture (a,t distances from
it large in comparison with its dimension, yet
small in comparison with the wave-length), the
conditions are essentially static, or the same as if
the wave-length were infinite. These conditions
are described by reference to known solutions for
the steady flow of incompressible fluids. The
nature of the field at large distances from the
aperture is readily determined from the aperture
field.

An integral equation formulation of the related
mathematical problem of normal acoustic dif-
fraction is described by King. ' An indication is

~ Lord Rayleigh, Phil. Mag. 43, 259 (1897); Sci. Pap.
IV, p. 283.

~ L. V. King, Proc. Roy. Soc. A153, 1 (1935).
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given of its solution by a method of successive
approximations, based on the known solution of
the corresponding equations in potential theory.
Due to the increasing difhculty of computation
in higher approximations, King furnishes only
the numerical coefficients of the first few terms
in a development of the diR'racted amplitude in

ascending powers of the characteristic parameter,
radius of disk/wave length. Sommerfeld' gives
a more elegant and detailed mathematical dis-
cussion of the integral equation, involving an
expansion in characteristic functions and the
approximate determination of some of the coef-
ficients; the results also apply for small values of
the parameter.

8ouwkamp' presents an exact theoretical
analysis of the problem of di6'raction of a scalar
plane wave by a circular aperture, based on the
construction of normal solutions of the wave
equation, which is separable in oblate spheroidal
coordinates. The wave function on the far side
of the screen, with the character of a diverging
spherical wave at large distances from the aper-
ture, is expanded in an infinite series of these
normal solutions. (which have the proper sym-
metry with respect to the plane of the screen, so
that the individual terms fulfill the boundary
condition on it). The expansion coeScients are
determined in the course of satisfying a boundary
condition in the aperture. From the amplitude
of the asymptotic spherical wave, the energy
passing through the aperture is obtained, and
then the transmission coefficient, t (transmission
cross section/area of aperture), on division by
the incident energy Aux through the same area.
To simplify the numerical calculations, Bouw-
kamp considers only the case of normal incidence,
in which the entire field possesses rotational sym-
metry. The transmission coefficient is evaluated
for a number of wave-lengths in the range
~))./a)0. 6, where a is the radius of the
aperture; at shorter wave-lengths the computa-
tions are progressively more difhcult, owing to the
slow convergence of the series involved.

It is clear from this survey that a general
formulation which permits accurate numerical

' A. Sommerfeld, Ann. d. Physik 42, 389 {1942).' C. J. Bouvrkamp, Theoretiscke En NNmerieke Be-
hcndeling mn de Buiging Door Zen Ronde Opening (Dis-
sertation, University of Groningen, 1941); R. D. Spence,
J. Acous. Soc. Am. 20, 380 (194S).

evaluation of the diEracted amplitude and trans-
mission cross section for a wide range of fre-
quencies, is of considerable interest. The purpose
of this and a companion paper is to illustrate the
utility of variational principles for such calcula-
tions. The present paper describes a reformula-
tion of the scalar diffraction problem for an
arbitrary aperture in terms of a first variational
principle. An important role is assumed by the
amplitude of the diR'racted spherical wave at
large distances from the aperture, expressed in
terms of the aperture field. For plane-wave ex-
citation, this quantity is a function of the direc-
tions of propagation of the incident wave and of
observation for the diAracted wave.

When a plane wave is incident on the aperture
from direction (1) and the diffracted wave ob-
served from direction (2), the amplitude obtained
is equal to that of a reverse situation, in which
the wave is incident in direction (2) and observa-
tion made from direction (1). Using this reci-
procity relation, the amplitudes are exhibited in
a form which is stationary with respect to small
variations (relative to the correct values) of the
aperture fields arising from the two incident
waves. In addition, this expression is independent
of the scale of the aperture fields, and is therefore
suitable for a first approximation with simple
forms of the aperture fields.

From a consideration based on the fact that
the energy transmitted through the aperture is
the same as that appearing at any remote surface
which intersects the plane of the screen, the
transmission cross section is recast in appropriate
limiting forms at low and high frequencies. From
the first of these, the (wave-length) ' propor-
tionality is obtained (as in Rayleigh's theory of
diffraction by obstacles small compared to the
wave-length), independently of the assumed
aperture field, provided the boundary condition
at the rim of the screen is satisfied. The second
form, on identification of aperture and incident
fields, leads to the geometrical optics result,
where the cross section is simply the area of the
aperture projected on a plane normal to the
direction of the incident wave.

Owing to the restricted class of trial aperture
fields, in virtue of the imposed boundary con-
dition, the first variational principle is most
useful in the low frequency range. Here the
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FiG. 1. Diffracting aperture in a plane screen.

qualitative information concerning static aper-
ture fields allows accurate calculations of ampli-
tude and cross section at higher frequencies than
are feasible with the existing approximation
procedures. Corrections to the geometrical optics
result are more dificult to achieve with this
formulation. To improve the accuracy of high
frequency calculations, a second variational
principle for the di8racted amplitude is devised,
with details relegated to a separate paper. In
this, the discontinuity in normal derivative
of the field at the screen (akin to the surface
current in the optical problem) replaces the
aperture field, although there are additional
modifications arising from the infinite extent of
the screen. The trial functions adopted for the
discontinuity in normal derivative are unre-
stricted with regard to a boundary condition at
the rim of the screen. In particular, the approach
to the geometrical optics result with increasing
frequency can be well approximated, if this
function is calculated from the incident field on
the illuminated face of the screen.

The distinction between these variational
principles in the choice of trial functions is not
uniquely related to the boundary condition
assumed for the wave function. For a boundary
condition which requires that the wave function
have vanishing normal derivative at the screen,
a pair of analogous variational principles exist,

based on (i) the normal derivative of the field in

the aperture and (ii) the discontinuity of the
field at the screen. Only in the second of these is
it necessary to impose a boundary condition on
the trial field. Thus it appears that derivatives of
the field variable are not restricted by conditions
at the boundary of their domain, whereas this is
so for the field variables themselves. The reason
is that Green's functions and their derivatives,
respectively, are factors which naturally ac-
company these quantities in the formulation,
and non-integrable singularities arise in the
latter case unless the boundary conditions are
satisfied.

To obtain a practical test of the degree of
approximation afforded by the variational priii-

ciples, detailed application is made in this and a
companion paper to the evaluation of the trans-
mission coefficient for normal incidence on a
circular aperture. Numerical results of the varia-
tional and other calculations are compared with
the exact values obtained for this problem by
Bouwkamp. In addition, the extent to which the
two variational principles complement (and
agree with) each other for the entire range of fre-
quencies provides a general estimate of their
accuracy.

2. INTEGRAL EQUATION FORMULATION FOR AN
APERTURE OF ARBITRARY OPENING

We consider an infinitesimally thin plane
screen S2, of infinite extent, which is perforated
by an aperture Sj. A rectangular coordinate
system is chosen with origin at some point of the
aperture, and oriented so that the screen lies in
the x,y plane (Fig. 1).

A plane wave is incident upon the aperture in
the half-space s &0, and it is desired to investigate
the diR'racted field. The incident wave, propa-
gating in the direction 6', y' (0' measured from
the positive direction of the s axis, and q' from
the positive direction of the x axis in the x,y
plane) is described by the scalar wave function

g'"'(r) =exp(ikn' r) =exp$ik(x sincY cosy'
+y sin8' sing'+z cos8') j, (2.1)

where n is a unit vector in the direction of prop-
agation, k=2s jX is the free space propagation
constant, and X the corresponding wave-length.
The harmonic time dependence, exp( —ikct), with
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p(r) =0, r on 52., (2.3)

in addition, the wave function and its normal
(i.e. , s) derivative vary continuously on passing
through the aperture.

In one method of formulating this boundary
value problem, it is convenient to classify the

c the velocity of wave propagation, is omitted
throughout.

The wave function describing the complete
(incident+diffracted) field satisfies the wave
equation

(P+k')y(r) =0 (2.2)

at all points of space, and is subject to the pre-
scribed boundary condition

wave functions (2), (3) according to their sym-
metry in the s coordinate. A symmetric function
has vanishing normal derivative in the aperture,
whereas an antisymmetric function has the same
form as though the aperture were absent. The
wave functions of opposite symmetry, appropri-
ate to the incident wave (1), are obtained from
the solution of individual boundary value
problems in the half-space a~&0; with these we
construct, by suitable combination, the wave
function in the problem of physical interest.

A solution of the wave equation (2) at any
point in the half-space z&0, which assumes (as
yet) arbitrary values in the aperture and satisfies
the boundary condition (3) on the remainder of
the plane, is given in terms of a Fourier integral,

@(r) =2i sin(kz cos8') exp(ikn' p)

expf~{k.(x —x')+k„(y —y')+(k' —k ' —k ')&(z' —z) }]} dkgkgS', (2.4)
4w'i (k' k.' k„—')&—

where y denotes a position vector in the x,y plane, and dS' an element of area in the x',y' plane. It
is readily verified that (4) is a solution of the wave equation; furthermore, on performing the
indicated diR'erentiation, we find

@(r)=2i sin(ks cos8') exp(ikn' y)

+ ~~, Q(r'), , exp[i{k.{x—x')+k„(y —y') —(k' —k.' —k„~)4}]dkgk„dp',
"St«X &y

and thus, using the integral property of the Dirac delta function,

Ifl(r) Q p(r'). 0 exp{ i {k, (x—x') +k„(y—y') }]dkPk+5'
s,

4(r'). ,S(x—x') S(y —y')d S'
~Sr

=y(r), ,=y(y), y on ~,
=0, yon 52,

in accord with the boundary values.
Introducing the free-space scalar Green's function,

exp(ik{r —r'I) 1 p" expfi{k, (x—x')+k„(y —y')+k, (s —s') }]
G(r, r') = =

~~ dkgkgk,
4xI r —r'I Ss' ~ k,'+k, '+k, ' —k'

e" exp/i{k, (x x')+k (—y —y')+(k' —k ' —k ')&Iz —z'I }]
dkgk„8. 3„ (k' —k '—k„')&

I
r —*'I = ((*—x') *+(y—y') *+(z—z') ')',

(2.5)
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which satisfies the inhomogeneous wave equa- excitation; these are
tion,

and the radiation condition, ' the wave function
(4) becomes

@(r)= 2i sin(ks cos8') exp(ikn' I&) and

@(p') (a/as') G(r; x', y', 0)dS',

s) 0 (2.11)

y
—(r) —

t y &&(r)+y (r)$—2 y(y') G(r; x', y', 0)dS', s & 0. (2.7)
Bs = 2i sin(kz cos8') exp(ikn'. y)

On requiring that the s derivative of the wave
function (7) vanish in the aperture, we obtain
the integral equation

k cos8' exp(ikn' 1&)
=

4sy
4(e')1~(e, e')dS',

The first term of (7) describes the field in the
absence of an aperture, being a superposition of
incident and specularly rejected waves, whose
phases are adjusted so that the combined wave
function vanishes at all points of the screen. We
denote this antisymmetric function of s by

@,qq(r) = 2i sin(ks cos&7') exp(ikn' y). (2.8)

f 8
p(y') G(r; x', y', 0)dS',

as'

s & 0. (2.12)

The wave functions (11), (12) ~anish on the
respective faces of the screen, and are equal at
any point of the aperture

4' '(I) =-'4(t&) =4'+'(9) p» S ' (2 18)

furthermore, their s derivatives are continuous
across the aperture, in consequence of the
integral equation (9). In particular, it may be
noted that

8 1 t9

p on Si, (2.9) —Q~+&(x, y, 0) =——P,zz(x, y, 0)
Bs 2 Bs

It (p, I&') = (8/Bs) (8/Bs') G(x, y, 0; x', y', 0)

=E(y', y),

for the determination of the aperture field, and
the resultant symmetrical function of s,

@,„,„(r)= —2i sin(k~s~ cos&7') exp(ikn' y)

W2 P(t&')(8/Bs')G(r; x', y', 0)dS'. (2.10)
Sy

The upper or lower sign in (10) is to be used for
s &0, s&0, respectively, since G is an even
function of s —z'.

To describe the physical situation arising from
the incidence of the plane wave (1) upon the
aperture, we combine the antisymmetric and
symmetric functions (8), (10). The resulting
wave function has di8'erent forms on opposite
sides of the screen, owing to the asymmetry of

8
=—@'"'(x y 0). (2.14)

Bs

Thus (9), (11),(12) constitute the formal solution
of the di6raction problem.

The preceding formulation involves the iden-

tity of the two regions s(0, s&0. An alternative
treatment, which is also applicable when such
symmetry does not exist, is based on the repre-
sentation of the field in each region by an appro-
priate Green's function. The Green's function
for our problem, that for a half-space, can be
obtained by the method of images, and is

I'(r, r') =G(r, r') —G(r, r' —2n,n, r')
= I'(r', r), (2.15)

I'(x, y, s; x', y', 0) =0,

where n, is a unit vector in the s direction.
We write

6 The radiation condition requires that the Green's
function describe outgoing spherical waves; this imposes
the restriction arg(k' —k ~ —k ')&~& 0.

@(r)=0&+&(r), s&0,
=@~-&(r), s & 0, (2.16)
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and consider the application of Green's second
scalar identity in the form

I:I'(r', r) (V"+k') 0(r')

—p( ')( "+k')I'(r', r)jdr'

r(r', r) e(r')
Bn

8—p(r') I'(r', r) dS', (2.17)
an'

solution of the integral equation (9) is not in

general feasible. For effective use of approximate
solutions to the integral equation, we cast the
far field amplitude in a form which is stationary
with respect to small variations of the aperture
fields about their correct values.

On introducing the asymptotic form of the free
space Green's function

G(r, r') —expLik(r —n r') ]/4z.r,
n = r/r, r-+ ~ (2.20)

in (11), we obtain the transmitted field in the
form of a diverging spherical wave,

where the derivative in the surface integral is
taken in the direction of the outward normal at
each point.

In the half-space s'~& 0, we find with the use of
(2), (3), (6), and (15) in (17), that the wave
function at any point assumes the form

Q&+& (r) —(ik/4m. ) cos8(e'""/r)

X &f (p') exp( —ikn y')dS', (2.21)
~Sy

with explicit indication that the aperture field
is generated by a wave incident in a definite
direction n'. It is clear from (11), (12) that a
similar spherical wave appears on the other side
of the screen. In terms of the amplitude

8
@&+&(q') r(r; x', y', 0)dS'

88
@&+'(r) =

8
(g') G(r; x', y', 0)dS', . (2.18) A(n, n') = —(ik/4z) cos0

88

where &&&+&(p) =zip(p). On the remote surface
which intersects the plane of the screen, Q&+~(r)

and I'(r, r') have the character of diverging
spherical waves, and the two terms of the
integrand cancel. In the half-space a~&0 of the
incident wave, the contribution from the corre-
sponding surface integral supplies just the field
in the absence of an aperture; thus

p& &(r) =2i sin(kz cos8') exp(ikn' y)

8
&I(~') G(r;x', y', O)ds'. (2.19)

Bs'

The reversal in sign of the integral in (19) as
compared to (18) is a consequence of the op-
positely directed normal derivatives at the plane
of the aperture. Equality of the s derivatives of
the functions (18), (19) in the aperture provides
an integral equation identical with (9), and com-
pletes the formal solution.

We shall confine our attention to the properties
of the diffracted field at distances from the
aperture large compared to its dimensions and
the wave-length, since a rigorous and explicit

X P (y) exp( —ikn. y)dS, (2.22)
Sy

We assume as the expression for the time
average energy Aux per unit area,

S=Re(1/ik) $*(r)Vg(r), (2.24)

and verify that this corresponds to dissipation-
less transport of energy by the waves, for

V S =ReV ((1/ik)P*(r) Vg(r))
=Re(1/ik)(I Vg(r) I' —O'I y(r) I') =0. (2.25)

Since (8/Br)p&+'(r) ikp& (r)+, r~ ~, we find
with the use of (23), (24) that the average power
transmitted into the solid angle dQ, about the
direction n is

P(n, n')d&= IA(n, n') I'dQ: (2.26)

thus, the ratio of the total transmitted power to
that falling on the aperture per unit area normal
to the direction of the incident wave (transmis-

of the spherical wave (21), we have

Lim r'Ip&+&(r) I'= IA(n, n') I'. (2.23)
f'~ 00
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sion cross section) becomes

0(n') =
~2n. ~ ~/2

~A(n, n') ~' sin8d8dy. (2.27)

simpler expression for the transmission
cross section can be derived as follows. We note
that the power transmitted normally through
the aperture is the same as that appearing at
any remote surface which intersects the plane
of the screen; thus, from (24),

The transmission cross section is thus propor-
tional to the imaginary part of the amplitude of
the transmitted spherical wave observed in the
direction of the incident plane wave. A relation
of the form (29) holds generally in scattering
problems, its physical interpretation being that
a decrease in amplitude of the incident wave is
consequent to the generation of scattered waves.

3. VARIATIONAL PRINCIPLE FOR DIFFRACTED
WAVE AMPLITUDE

If we multiply through in the integral equation
~(n') =«(1/ik)

J
@'+'*(e)(~/~-') (2.9) by Pn (y) and integrate over the area of theSi

&&y«&(&, & O)dS. (2,28) aperture, there results

= (1/ik) t @ (ti)X(ti, p')it' (y')dSdS'. (3.1)

(The same result is obtained on integrating (25)
in the volume bounded by this surface and the ~Sy
plane s =0, and observing that the wave function
and its complex conjugate vanish on the screen. )
Using (13), (14) the expression (28) becomes

rr(n') =-', Re cos8' ~t p *(y) exp(ikn' g)dS
~Sq

= —(2'/k)« iA (n', n')*

= —(2ir/k)Im A(n', n'). (2.29)

Since the qight-hand member of this equation
is symmetrical in n', n" (or the angular coor-
dinates 8'., p', and 8", p"), division by the left-
hand member and a similar term in which n' and
n" are interchanged, and use of (2.22), yields

A(n", n') A( —n', —n")
ros8' cos8"

(4~/k') q (&)Z(&, &')q "(&')dsds'

4 St
@, (p) exp( —ikn" y)dSJ p "(ti) exp(ikn' p)dS

(3.2)

Here @,(y) denotes the aperture field generated
by a plane wave incident in the direction opposite
to n. Equality of the wave amplitudes A (n", n')
and A( —n', —n") describes a reciprocity con-
dition for incidence and observation along a pair
of directions in space.

The expression (2) is homogeneous in the
fields @ .(y), p & .(p) and stationary with respect
to independent first-order variations about their
correct values (determined by integral equations
of the form (2.9)). Thus, on performing such a
variation, we obtain

"s,
8$~ (p)dS (k'/4') cos8' cos8"

—A(n", n')Jt X(g, y')y "(p')dS'
1

+J lip, "(y)dS (k'/4m. ) cos8' cosd"
S1

)&exp(ikn'. p) p (y) exp( ikn" p)—dS
Js,

Xexp( —ikn" g) t @ "(p) exp(ikn' y)dS

bA(n", n') p, (y)X(y, p')@,"(p')d515' —A(n", n')
J X(y, y')@ (y')dS' . (3.3)

8) !
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If 2 is stationary for arbitrary variations, the quantities within brackets on the right side of
(3) must vanish. From the latter of these we find

ikcos8'exp(ikn' y) —(i k/4n)(cos8"/A(n", n'))~ p, (y) exp( i—kn" y)dS =~ X(g, y')@, (g')dS'
Sg Sa

which, with the exception of the (constant) factor in brackets, is just the integral equation (2.9) for
pn (y). Similarly, p n. (y) obeys a corresponding integral equation.

We next examine the forms assumed by the transmission cross section (Cf. (2.29), (2)),

@n(y) exp( —ikn y)dS ~l f—n(p) exp(ikn y)dS
~SI ~sj

o (n) = ——,'k cos'8Im

" 4 (e)&(e, n')4- (e')dSdS'

(3.4)

in the Iimits of low and high frequencies, respec-
tively. The frequency expansion of the Green's
function,

G(r, r') =exp(ik
I
r —r'

I
)/4%-

I
r —r'

I

=G,(r, r')+(ik/4n) —(k'/8n) Ir —r'I
—(ik'/24 )nI r —r'I'+0(k4)

where

section,

n (n) = cos'0
24m.

e(e)dS I

t'

&Js,

y(g)& (0 p )y(y )dSdS
( t'

)

k~0. (3.7)

G, (r, r') = I/4n
I
r —r'

I

is the static value, yields

&(e e') ='&.(e e')+(ik'/I2~),
&.(e, e') =(I/4~)(~/»)(~/»')(I/Ir —r'I)*, *-o

(3.5)

ikcos8= " y (y')X, (y, y')dS',
~sg

(3 6)

which shows that the corresponding aperture
field Pn(p) is wholly imaginary and independent
of the incident direction, save for the constant
factor cos8. Introducing (5) in (4) and omitting
indices as well as scale factors for the aperture
6elds, we And as the leading term in the fre-
quency expansion of the transmission cross

7The bracketed term is actually equal to unity, by
(2.22}, so that the integral equations are identical; how-
ever, this is not essential to the argument.

in the lowest order of real and imaginary terms.
Thus, in the static limit the integral equation
(2.9) becomes

The frequency (or wave-length) dependence
contained in (7) agrees with the, t of Rayleigh's
general theory of diffraction by obstacles small
compared to the wave-length. In addition, the
correct angular variation of the cross section is
secured independently of the form of the aperture
field. As remarked in the introduction, the class
of admissible trial aperture fields in (7) is re-
stricted to those satisfying the boundary condi-
tion (2.3) on the rim of the screen. Additional
terms in the frequency expansion of the cross
section can be obtained; these, in common with
(7), are independent of the sca, le of the aperture

fields.

At high frequencies, we assume as the aperture
field

@.(y) =C.(p)@.'" (p) =C'.(g) exp(ikn p),

@- (e)=4 *(e). (38)

where 4 (p) is a real function which is slowly
varying over distances comparable to the wave-
length. Inserting this 6eld and its complex con-
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jugate in (4), we obtain

o(n) = ——,'k cosVIm

C'n(p)exp(ikn y)E(y y')Cn(y')exp( —~kn y')dsds'
Js,

(3.9)

Employing the Fourier integral representation
(2.5), the integral in the denominator of (9)
becomes

I= (k' k.' k—„')&0—(y)C (y')
8m'~ Sl

Xexp[i I o.(x—x')+P(y —y') I]dkgk„dsds',

where

a = k sin8 cosy+k„P = k sin8 sinqr+k„.

As k—+~, the phase variations of the ex-
ponential factors in the integrand occur with
increasing rapidity, so that the range of the
variables x,y may be extended over the entire
plane s =0. Introducing

x —x'=$,

and ignoring the variations of P, ri in the argu-
ment of C (y), we find that integration with

respect to the new variables leads to

I= ' (k' —k ' —k„')&C '(y')
2 ~si

Xh(k sin8 cosq+k. )

X b(k sin8 sin p+k„)dkgk„ds'

=—k cosset t C '(y)ds,
2

and finally,

C (y)ds )

sg i
a(n) =cos8 k~ ~ . (3.10)

jected area of the aperture on a plane normal to
the direction of the incident wave. This cor-
responds to the limit of geometrical optics, in
which the aperture field is identified with the
incident field, and the energy falling on the
aperture is transmitted without diffraction
e8ects. By appealing to the Schwarz inequality,
it follows that the cross section obtained from
(10) with any other form of the function C (y)
is necessarily smaller than the geometrical optics
result. The representation of the cross section by
an asymptotic series in reciprocal powers of k

requires a more elaborate analysis.

(k'/«)
~

' 0(P)PdPd ~ I

&~Sl )

&(P)&(e i.')4 (P')PdPd v P'dP'd P'
~Sl

(4.1)

4. DIFFRACTION BY A CIRCULAR APERTURE

In this section we illustrate the utility of the
variational formulation by applying it to the
case of normal incidence of a plane wave on a
circular aperture. We calculate, in particular, the
transmission coefficient t of the aperture as a
function of the characteristic parameter,

ka =2s (radius of aperture)/(wave-length).

The expression (3.2) for the diffracted amplitude
A observed in the direction of incidence (8=0)
involves a single aperture field; on introducing,
polar coordinates p, y in the plane of the aperture
(with origin at its center), and noting that the
common aperture field is independent of q, we
obtain

(4.2)

To evaluate A we expand the aperture 6eld in
the complete set of functions (see Appendix 1 and

The expression (10) is stationary for first-order reference 4,
variations of the function C ~(y) about a constant 4(P) =2 ~-(1—( '/&'))" '
value, the cross section being equal to the pro- n=1
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A&"&=(k'/4s) Q B„D„, (4.10)
n=1

where the A„are arbitrary coeScients; the equations by placing 8, D =0, e&E. The cor-
individual terms of this expansion satisfy the responding approximation to A is given by
boundary condition (2.3) on the rim of the

iV

screen. We define

(1 (p'I—&'))" 'Xpd v

81

= 2ira'/(2»+1), (4.3)

where

N

Q C „D =B„, m=1, , N. (4.11)

=
J

(1 (p Io )) &(Q 0)(1 (ri Io ))"
81

thus (1) becomes

A Q A~„C „=(k'/4')(P A„B„)'. (4 5)
exp(ik

~
r —r'

~ ) 1
=—l~ Jo(N)

4irir —r'( 4' Jo

m, n 1 n=l

On differentiating (5) with respect to A, it
follows, in view of the stationary character of A,
that8

f -pl -(I'-k')'( -")1
X dl, z —z'~) 0, (4.12)

(f 2 k2)$

It will now be demonstrated that a few terms
of (10) suffice to give a very accurate approxima-
tion to A. For this purpose we require explicit

XQ+yp dp dy = C„; (4.4) knowledge of the quantities B„, C„„. B„ is
obtained directly from (3); to determine C „we
make use of the integral representation for the
free-space Green's function, '

A Q A„C„=(k'/4')B Q A j3„,
n~l n=l

m = 1, . (4.6)

We next define a set of coefficients D„by the
relation

R = (p'+ p"—2pp' cos(qr —q')) &,

where Jo denotes the Bessel function of order
zero, and the path of integration avoids the
singularity I =k by an indentation below the
singular point, and

A =(k'/4iiA)D. Q A B
n 1

(4 &) arg(I' k')&=0,—f)k; = —s./2, I'(k.

and find, on multiplying through by 8„, and
sumITllng over s,

Inserting (12) in (4), a.nd employing the addi-
tion theorem for Bessel functions,

A =(k'/4ir) P B„D„.
n=l

Jo(N) = Z (2 —~0 )~-(b)A(fi ') co»(v —~'),
(4.8) ~=o

Finally, by inserting (7) in (6), we obtain the
infinite set of inhomogeneous linear equations to
determine the coeScients D„,

0, PWg
(4.13)

1, P=q

we find, on performing the angular integrations,

QC 4 =B , m=1, ~ ~ ~.
n 1

(4 9)

0 ~0 & a'&
with which to calculate A from (8).

A rigorous solution of (9) is not attempted;
rather, we reduce these to a finite set of linear

~a ( p~2) n

XJo(fp)d~ ' ~'I 1——
I

~0(&~')d&'a')
'We use a symmetrical formulation, although it is only ~ G. N. Watson, A Treatise on the Theory of Bessel

the relative amplitudes A»/A & that are important for the Functions (Cambridge University Press, Teddington,
variational calculation. )945), p. 4i6.
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With the change of variables

p=Q sin8, P =6 siI18,

and use of Sonine's 6rst finite integral, "
~

2r/2

0

~ ~J„(ssinv2) sin"+'21 cos2"+'2Mv)

=2"r (2+1)S-~"+')J 2(S), I2.'e)4, v) —1, (4.14)

we obtain

C„„=—22ra(2/ka) "+"—21'(I+-', )I'(n+ -', )

0.' 1 3 3
I)2(n) =———— + S2(2n)+ S)(2n)

9~ 4~ 8m+' 16m' 80.'
2a

S,(t)dt
8n' & 4n2) &t)

p2Q'

t-'S, (t)dt,
4o, ' &0

I22(n) = — +
36~ 12m 32m' 64mo. '

v
—'"+"'(v' —1)&J +y(kav)

XJ„+)(kav)dv. (4.15)

P (n) V
—(m+a) (V2 l ) 3

0

XJ +., (nv) J„+,.(nv)dv (4.16)

IS,(2 )
32n' ( 4n2)

1 t 9 q+
I

1+ IS)(2n)
16n E 2n2)

1 t 21 45 q

I
1 — + I s, (t)dt

16n 0 4n' 16n4& ~2

2 cx

t-'S, (t) dt,
64m' ~o

can be reduced to a suitable form for numerical
evaluation. An indication of this procedure,
which is the more laborious for large values of
ts,s, ls given ln AppeIKlix 2. ( 1 q ~2a

Resolving F „(n) into real and imaginary &22(n) =—
I

1+ I
~ Jo(t)dt

40. 4 4 ')~o
)

F„„(n)= I2.'„„(n)—2I„„(n), (4.17) 1 1
Jo(2n) ——J)(2n),

80.' 4e

1

(n) t v
—(m+a) (1 v2) -',

0

X J„+2(nv)J.+2(nv) dv (4.18)

1 ( 3 $
&»(n) =

I
1+

I ~
Jo(t)«

8n2 E 4n2I J

3 3
Jp(2n) — J2(2n),

16o.' 80.'

(n) = l v
—&"+")(v' —1)&

1

XJ 4.*, (nV) J„+y(nV)dV, (4.19)

we hand, for the first few values of m, n,

tx 1 1
I))(n) =—— + So(2n)

2m 4m' 8a'

l22) 2A ~2a
S,(t)dt ——,I t; S,(t))dt,

16~3 J 40. ~0

'o See reference 9, p. 373.

1 p 3 45'
&22(n) =

I
1+ + I J' J4(t)«

16n ( 2n' 16n4j J 2

9 ( 1 t' 45 l
+ I

1 —
I
Jo(2n) —

I
1+ l

J (2n).
32n' ( 4n2) 16m E 4ot')

In these expressions So, S~ and J0, J~ denote the
zero- and first-order Struve and Bessel functions,
respectively.

With this information relating to 8„, C „, we
return to (10), (11) and prepare for the detailed
evaluation of the hrst two approximations to the
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transmission coeScient. With %=2, we find

Il 1 (+2C11 Il1C12)
A (&) — +

44r. Cll Cll(C11C22 —C12')

k (Il2C11 81C1 )2=A(')+——
42r Cll(C11C22 C12 )

thus, using (2.29),

2
— ImA(»

ku'

8l~ (82Cll 81C12)+-
-Cll Cll(C11C22 C12 )-

(Il2C11 IllC12)
Im-

-Cll(C11C22 C12 )-

(4.20)

(4.21)

Numerical values of the transmission coef-
ficients t&'), t('~ are given in Fig. 2, for the interval
0 &ka & 10, together with exact values calculated

by Bouwkamp. The approximation t(", based on
the aperture field P"'(p) =L1—(p2/a2)]& (a con-
stant factor is of no importance here), exhibits
considerable accuracy if 0&kc&2.5. Using the
expansions

20.' 40.' 16u'
Ill(a) = — + ~ ~ ~

2)g 675m 55125m

1 u'
Rll(n) =———+

3 i5 i40

(see Appendix 2) in (22), we obtain the trans-
mission coeScient in a form appropriate to
small values of ke:

«» = (8/27~2)(ku) 4L1+0 32(ka) 2

+0.049061(ka)'+ ]. (4.24)

Inserting the expressions for Bi, 82, C&~, C» and

C22 in (21), it follows that

4 j.
t&') =—kaIm

92r Fll(ka)

Ill(ka)=—ke (4.22)
92r (Ill(ka)) '+ (Rl1(ka)) 2

F22(ka) —
x2ka F12(ka)

4 + (1/25) (ka) 'Fll(ka)
t(') =—kaIm (4.23)

92r Fll(ka) F22(ka) —F122(ka)

The Rayleigh approximation, comprising the
first term of (24), is obtained by determining the
magnitude of p&'&(p) in the low freq'uency limit
(see Appendix 1); its restricted range of validity
is evident from Fig. 2.

On comparing (24) with Bouwkamp's result,

1= (8/27~ ) (ka) t 1+0.32(ka)
+0.027427(ka) 4

—0.004393(ka)'+ ] (4.25)

we note that the numerical coefficients of the
erst two terms in the expansion of t"' coincide
~ith the exact values. '

The approximation t('), derived from an aper-
ture field of the form

4"'( ) =~i(1—p'/u')'+~2(1 —p'/a')'

holds exactly for values of ka ranging up to 4.5.
The expansion of t(') in powers of ka,

1"'= (8/272r') (ka) 'L1+0.32 (ka) '
+0.047823(ka) 4+ .], (4.26)

difFers almost negligibly from t"' in the numerical
coefficient of the (ka)' term (within brackets),
as can be anticipated from Fig. 2. This behavior
indicates that successive variational approxima-
tions yield improved values for the entire set of
coefFicients in similar expansions.

It is of interest to examine the behavior of the
approximations t('), t&') at high frequencies,
where the correct transmission coefFicient tends
to the value unity. Using the asymptotic forms

Ill(42) ~42/22r, I 12(42) ~a'/92r, I22(n) 42'/~362r,

Rll(42), 812(42), R22(42) 0, n +m—
(see Appendix 2), in (22), (23) it follows that

(4/94r) (ka/Ill(ka)) (8/9), ka —+ ~ (4.27)

"Equation (36) of King's paper (reference 3) is given
incorrectly, and should be replaced by

2 . 1 sin~8 eikr
'ka4 1+ —— {ku}2——{ka}4 coss—;

5 10 971. r
the corresponding asymptotic form of the d iffracted
wave on the far side of the screen is, to terms of relative
order (ka)~, (in our notation)

1 sin28 e'k"
p(+) (r) —(2/3~) k2a' 1+ ——— — (ka)' cos8—.

5 10
From this we 6nd

«/2
r (y(+)(r) j sinydy = (8j277r~)(pa)a~ 0

X (1+(8/25)(ua)2j,
in agreement with (24), (25).
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and

Iii(ka) I,s(ka) —Its'(ka)

4 I»(ka) —(2/5)kaIts(ka)+(1/25)(ka)'I»(ka) 24—ka
9~ 25

(4.28)

In general, the asymptotic values of the high
frequency approximations to the transmission
coefhcient are more conveniently obtained by
use of (3.10). Recalling the expansion (2), and
defining

8„= (1 p'/a')—" &pdpd p—=2~a'/(2n+1),
Sz

C-„= ~r (1 p'/a—)~+" 'pd pdlp=1ra'/(m+n)
y

"Sy

we hand, as in the derivation of (10),

f&"&=2 PD„/(2n+1), ka —+" (4.29)
n=1

variational formulation by using a constan t
aperture field. The reason is that this field violates
the boundary condition (2.3) on the rim of the
screen, and the multiple integral in (1) involving
a product of such functions together with
X(p, p') diverges. The correct field at high fre-
quencies is constant over most of the area of the
aperture, with variations confined to a distance
of the order of a wave-length from the rim; it is
only in the limit of vanishing wave-length that
the boundary condition for the aperture field is
relaxed.

The assistance of Miss J. Klimas and Mrs. D.
Abkowitz with numerical calculations is grate-
fully acknowledged. This work was supported in
part by the Office of Naval Research Contract
NSori-76, T.O.I.

P D„/(m+n) =2/(2m+1),
n,=l

m=1, , N. (4.30)

%ith the latter relations we readily obtain
the values of t"', t"' given in (27), (28); more-
over, it appears that for the Nth approximation,

t&"'=1—[1/(2N+1)'~, ka~~. (4.31)

APPENDIX 1.

Solution of the Integral Equation (2.9) for
Normal Incidence on a Circular Aperture

On employing the di8erential equation {2.6) satisfied by
the space Green's function, the integral equation for
normal incidence,

f 0'(P)(S'I's')G(P P OiP P O)PdPdÃ (Al)

For purposes of comparison, the transmission
coefficient on the basis of the Kirchoff approxi-
mation is also included in Fig. 2. The wave
function here is obtained by identifying the
aperture 6eld with the (constant) incident field,

may be written

(
1 d d——~+k' g

2x

~(p, p')=, G(., ~, 0; p', ~', 0)d~,

(A.2)

8
Ijkx'+'(r) =2 G(r; x', y', 0)dS', (4.32)

~» as'

G 0' ' ' 0)
=exptik(p+p' —2pp cos{q —q'))&j

Pi% P 9s 4 (2+ Ig 2 I
( I)))

Integrating (2) as an inhomogeneous Bessel differential
equation, we find

and the transmission coeS.cient turns out to be f 4(p) (p p)pdp=(si&)+"'s(kp) {A.3)
2ka

f = 1+J,(zka)/ka (1/ka) ~l J,(f)df— with the linearly independent function ¹(kp) absent, by
virtue of its singularity for p=0. The integration constant

(4.33) A is conveniently obtained from (3) on taking p=0; thus
1, ka ypi,

(ka)'/6, ka(&1.

a
A = —(i/k)+$ y(p) exp(ikp)dp. (A.4)

In order to solve the integral equation (3), we construct
An improvement of the KirchoE result (33) at anexpansion of &3(p, p') in terms of a productof orthogonal

low frequencies cannot be obtained from the functions which form a complete set in the region of the





H. LEVINE AND J. SCHWINGER

where the relation ()=s/2)

(A.12)

eliminates a singularity of the field on the rim of the
screen. Placing q'=0 in (7), and integrating with respect
to q,

2x
explix sing cosy jdq =2x J0(x sing)

0

=4 Z (-)'jul(x)P2i(0}Ppi(cos&),

which provides the desired expansion,

J0(~ sin() = Z C,P2l(0)p~l(cos&), Cl =2(—)j'az(x') (A 13)
l-0

Inserting (9), (11), (13) in (5), and using (10), we obtain

(—}' '~ B P (0)P (co 6)
l l'-0

= (1/ka) —(&a/a) J (a'a sing)

= Z L(2/ka) bio —{sA/a) C~5Ps~(0)P2~(cosp),
l 0

and by identifying the coefficients of Pml(cosg),

(—)' 'Ail Bl = (2/ka}bi0 —(iA/a) Cl. (A.14)
l' 0

From (4),
,11./2

A = —(i/k)+(a/2) J p{a sing) cosP exp{deka sing)d$,
0

whence, using (11),

(18) represent expansions of the aperture field in ascending
powers of the frequency; clearly, these contain the most
suitable trial functions for use in the variational principle.

If we solve (17) for the coeScient B1 (taking B.=Be
=0), it turns out that

B,=i(4&a/3 ),

and thus, since B0= —Bi, we obtain from (11),

y &'){p) = —(4~ka/~} (1—p'/a') &.

Inserting this aperture field in (2.21} and neglecting the
phase variations of the exponential factor, we obtain the
asymptotic form of the diffracted field,

p&+&(r) —(2/3m}k'a' cos8{e'~'jr), r~ ~, ka~0 (A.19)

in agreement with Rayleigh's solution. ' The transmission
coefficient computed from (19) is equal to the leading term
of (4.24) (see reference 11).

APPENDIX 2.

Evaluation of the Integra1s I„„,8 „,
EtIs. (4.18), (4.19)

We consider first the integral

on introducing the product representation

11'/2

J„(s)J,(z) = (2/~) J„+„{2srose) cos(p —~}Id',
0

A= —-+a & BlDl,
l 0 we find

Re(p+ v) )—1, (A.20}

x/2
Dl = (1/2P2l {0}} P2l(cosg} exp(~ku sing}dg.

0

{A.15) 11./2

I„„(a}= (2/~} v-& +")(1—v') &dv J„+„+1
0 0

Substituting (15) in (14), we arrive at the set of in-
homogeneous linear equations to determine the expansion
coefficients Bl in (11}:

& Bl p( —)'-'Ail +iCial j=(2/ka}bl0 —(1/ka)Cl,l'~0

l=o, 1, " . (A.16)

Finally, the relation (12) can be used to eliminate B0 from
(16), with the result

& R D )'(( )'A—n A—~ol+sG—(&i 'Do lels

= (2/ka) Bl0—{1/ka) Cl, l =0, 1, ~ . {A.17)

The preceding analysis thus furnishes a complete set of
functions for the expansion of the aperture field, as in
(11), or equivalently, in the original coordinate

4(p) = & &l(1—p'/a')' &

A study of the coeScients reveals that the leading term
in the expansion of Bl is of order (kc)2' ', lp i. Thus (11),

X(2+v cos6) cos(m —e)Ddt.

Writing v=sinq and interchanging the orders of integra-
tion,

x/2 ~/2

I~~(n) = (2j~) cos(m —+)ddt J~+n, 1
0 0

X (2a cosd sin@ }sin & +")y cos2qdq.

The integral with respect to y can be performed by means
of the general resulti'

f

ear/2
J {ssing) sini cpcos /+ ydq =2 s +~

X (1/F{OI})s +p, p +i(s), Rep & —1, (A.21)

where s„,„(s) is a Lommel function. Taking @=m+I+1,
s = $, it follows that

I „(a)= (2/m)2 & +")(1/V(m+m+1)}
v/2

X cos(m —n)8 (2 cos8) &

0

Xssn+z+(3/9), —(m+n —$) (2~ cosd}d8.

"See reference 9, p. 374.
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From the recurrence formula

zs+z, k(z) =z"+'—Hl +1)'—~34,.(z)

we obtain the more useful expression

J „(a}=2l--- (1/wr(m+n+1}}
x/2

(2a cos8)~+" ' cos(m —n)add
0

2r/2—2(m+n) cos(m —n}8 (2a cos8}

X&~+ «, &~+ «~ {2acosO}dd . (A.22}

The Lommel functions with half integral indices, oc-
curring in (22), are defined by

&„, „(s)= (~/2 sing~} J„(s) z"J „(s)ds
0

J„—(s)f z"J„(z)dz

and are related to the Struve functions, in accordance with
the equation

s„, „(s)=2~r(1/2)r{p, +$)S„{z).
Explicit forms for a few of the Lommel functions are as
follows

I/2{s) =s «$1 —cossj,
~3/2, -3/2(s) =s «

f s—2 sinz+ (2/z) (1—coss) j,
$5/2, —5/2{s) =s «C z'+4+ 8 coss —(24/z) sins

+ (24/s) {1—coss) g.
s7/Q, -7/2{z}=s «I s3+6s+48 sins+ (72/s) + (288/z} cosz

—{720/z~) sins+ (72//s ) (1—cosz) j
Thus, returning to (22), we find, with m=n=1,

tr/2
I»(a) = {a/2~) —{1/27ra') f a cos8 —sin(2a co&}

+ (1/a cosb} sin2(a cosb) j cos~8d0.

we readily find

P(a) =(a/2) —( k/k4)S (k&2 a)+( k/k8 a)f Sk&(t)dt

+( kk/a2) f t &Sk(t)dt

and

Il l {a)= (a/2x') —{1/42ra) + (1/8a~}S0(2a)
~2b, 2CL—(1/16ak) J S,(t)dt (1/—4a)f t 'Sk(t)dt

0 0

The integrals which occur in this expression for Ill can be
evaluated numerically with the existing tables of Struve
functions. Other values of I~ are obtained in similar
fashion.

A series expansion for I~ is easily derived from the
product representation

(—) (s/2)"+"+ "r(p+ v+2p+1)
r~+ +p+1}r~+p+1}r(+p+1)

I (a) ={~«/4) Z

X ( )p(a/2}sa+%+ip+l(m+n+2p+ 1) I

{m+n+p+1)!r(m+p+ $}r{n+p+$}r(p+,') (A.23)

This expansion has been used to verify the forms of Ill,
Ilg, and I22 given in Section 4.

The asymptotic behavior of I for large values of the

argument is obtained by noting that

I ( ) = +" ' (1—s2/ ')«z & +"&J «(z)J «(z}d.
0

aztec+ z ( + )J «(z)J «(z)dz
0

and using the result

f"t "S„(t)~-.(t)dt

Writing

x/2
P{a)= La eos8 —sin(2a cos8}

+{1/a cosb) sin2{a cos8)jcos~8d8, whence

r(x)r "+ +

k k(X+
—v+1)k(k+w+ +k)k(l+ —+1)'

we obtain on integration by parts,

2t /2
P(a}= a sin8 —2a sin8 cos(2a cos8)

+ (sin8/cosb) sin(2a cos8)
sin0 sin'(a cosO) sin8d

a cosV cos8

whence

21"/2 Sin2(a COSO}2P(a) = a cos8 —sin(2a cos8)+ dg
0 a cos0

tt /2
+2a Pi —cos(2a cost) j sin'9 cos 'Od8.

In terms of the Struve function S,(s), which has the
integral representation

2 {s/2}t'
21 /2

S„{z)=
( )) {)} sin(z' COSP} sifl 8'd8,

atlL+tL 1

2 ~(m+n)r(m+g)r(n+$}'
For the integral

(a) = I '" '(I' —1)'J +«(~)J~+«(~)d»
I

the representation (20) leads to
x'/2 kX&

R„„(a)= (2/z) f ck&s(k&t kt)k'tdk9f —s & ~&

X {I/'—1)«J + +l{2av cosO)dI).
Using the integrall'

Jy(cx') { ) d
2 r(g+ 1}J ( ) y p

x ~ e~+'s ~-~""'
Re{v/2 —$).&Reps &—1, {A.25)

"See reference 9, p. 417.
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we find

~/2
R {a)= {2/x}& cos(m —e)8 (2a cos8) &

0

g J „y{2acosO)d6. (A.26)

The Bessel function occurring in (26), whose order is
half of an odd integer, is expressible in finite terms by
means of algebraic and trigonometric functions of the
argument. For example,

sin {2acos8)
0 2a cos8

—cos(2a cos8) cos Vd6.

%riting
w/2

P(p) = I-{1/I cosP) sin(j cos8) —cos(pcos8}jcos~bd8,
0

we And, on integration by parts,
~/2-

p(p) =f sin(p cos0)p sin0+

sin(t cosa') sin8
sin8 cos 'Id'',

P cos8
whence

m/2

2p(p) =(p+1jp)f sin(p cos0) cos '&MD

x/2 x/2f —cos(p cos6)d8 pf —sin(p cos8) cospdp

=~/2 (p+&Ip)f ~o(~)di ~o(p) p~(p)—

and

a
R&i{a}=P(2a)/2~a'= —1+— J0(t)dt4a 4a' 0

1 1——J0(2a) ——Ji{2a).Sa~ 4a

Integrals of the zero-order Bessel function are available
in the literature. '4 Additional values of R „are derived by
similar procedures.

An expansion for R „is obtained by inserting the Bessel
function series

(-)'( /2)"+"
J"(') z p'r( +p+')

in (26), and employing the integral

~/2 ~r™~nl
{m+e—1)2-+--ir (m) r {n)'

m+n &1;
the result is

R „(a)=(x&/4) Z

X (—}&(a/2)~+"~&~{m+n+ 2p —2) !
p!(m+ p —1)!(n+ p —1}!r(m+n+p+,')' (A.27}

It follows from the asymptotic behavior of the Bessel
function in (26) that R „vanishes for infinitely large
argument.

'4 A. N. Lowan and M. Abramowitz, J. Math. and Phys.
22, 1 (1943),


