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The quantization of the pure radiation field in a uniformly moving refractive medium is
carried through both in the Hamiltonian and in the symmetrical four-dimensional form. The
total energy and momentum are diagonalized. For a medium velocity larger than c/e there
occur photons with negative energy.

PART I. THE PURE RADIATION FIELD
AND ITS QUANTIZATION

1. Introduction

'N the classical description of electromagnetic
~ ~ phenomena in matter two points of view have
been found useful. The first, which also is the
historically older one, is the so-called phenomeno-
logical approach. In this the actual properties of
matter are considered only in so far as they can
be directly expressed in terms of the electro-
magnetic field quantities. For isotropic insulators
these properties are embodied in the two charac-
teristic constants: the dielectric constant e and
the magnetic permeability p. This theory gives
no inf'ormation about the actual values of e and
p, nor of their dependence on the frequency of
the radiation or dispersion.

In the second approach matter is described in
terms of the fundamental properties of the con-
stituent elementary particles. The field equa-
tions of the phenomenological theory appear as
equations between certain average values of the
field quantities in this theory taken over volumes
containing a large number of particles. The ac-
tual values of the phenomenological constants e

and p, as well as their frequency dependence can
be expressed in terms of the fundamental proper-
ties of the elementary particles. It is at once
evident that the latter approach is more funda-
mental and far-reaching.

The quantum mechanical formulation of the
e1ectromagnetic field equations has so far been
applied principally to the second case. That is,
the quantization is applied to the field equations
for a vacuum only and the interaction of the
6eld with matter is usually introduced as a direct
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interaction of the field with elementary particles.
As far as we are aware, no systematic develop-
ment of the quantum theory of phenomenological
electrodynamics exists. It is clear from the fore-
going remark that from such a theory there can-
not be expected any new results. That is, if the
quantum electrodynamics for a vacuum were
completely satisfactory it would contain all the
results that could be derived from a phenomeno-
logical theory and in addition it would reduce
the phenomenological constants to the funda-
mental parameters in the theory such as the mass
m and charge e of the interacting particles,
Planck's constatit h and the velocity of light c.
However there are primarily three reasons why
it seemed to us desirable to have this theory
developed. First, the theory presents certain
interesting aspects from a purely formal point
of view. Formally it appears as an extension or
generalization of the quantum electrodynamics
of a vacuum in which it goes over in the limiting
case ~~i, y—+1. Second, it seems that certain
types of problems can be handled much more
easily in the phenomenological than in the
atomistic theory. This is the case, for instance,
for the discussion of the Cerenkov radiation and
the radiation of charged particles passing a dis-

coptinuity in & or p, . In the third place, we were
interested in such a theory with a view to a
possible application of the theory for a vacuum.
It is well known that the hole theory predicts
a polarizability of the vacuum. So far, this pre-
diction could not be taken seriously because the
field-proportional part of the polarization is di-
vergent. A phenomenological approach might
give new information as to the possible form
which such a vacuum polarization can have.

The relativistic invariance of this theory is
guaranteed if we use the four-dimensional tensor
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2. The Classical Radiation Field

The fundamental equations for an electro-
magnetic held in a medium were given in the
relativistically invariant form by Minkowski. ' In
the absence of charges and currents they are, for
the medium at rest,

~XE= —B, V B=o,
VXH=D, (1)

V D=O, (2)

B=pH.
(3)

For the relativistically invariant formulation we
use the notation x' = xo ct, x"—=xi——, (k = 1, 2, 3).
Furthermore. we shall put n'=op, for the index
of refraction. Equations (1) and (2) may then be
written in tensor form by introducing the follow-

ing two antisymmetrical tensors

0
—83

RLJl

&3 —&2 +~1
+~2

—81 0 +E3
jV2 jV3 0

(4)

notation. However, it must be kept in mind that
such a theory always introduces a preferred co-
ordinate system, usually the system for which
the medium is at rest. When applied to a polar-
izable vacuum the relativity principle in such a
theory is thus violated in the sense that it is
possible in principle to detect an absolute motion

by referring it to the motion of the medium. '

F~, =Gi,+ (Gi.v's, —G,.i'»)
1+](

(9')

Equation (9') can also be verified directly by
substituting it back into the right-hand side
of (9).

The 6eld equations for the four-vector poten-
tial are obtained by introducing (9), together
with (8), into (7). Here one can make use of the
freedom of choice of the @z by imposing on the

p), the subsidiary condition

With this choice of Fi„, Eq. (6) is identically
satisfied. The connections (3) between E and D
on the one hand and H and B on the other zan
be written in relativistically covariant form by
introducing the four-vector v& of the medium
velocity. Here vl'=dx&/d~, where r is the proper
time of the medium (v&v„= —1). Introducing
further the abbreviation x=n2 —1 we have,

G),~ = F),~+K(Fp~v vg Fi~v f/~).

Since in the system for which the medium is at
rest, v'=0, v'=1, it is easy to verify that (9)
reduces in this case to (3).

Equation (9) can be solved for Fi„. We need

simply remark that the transformation from G
to Ii is the same as that from F to G with e and p

replaced by 1/e and 1/p respectively or ~ replaced

by —~/(1+a). We obtain in this way without
further calculation:

and
0

G

n @1

83
0
~1

—n'E2

—82
+~1

0
—n'E,

+n E]
+IF2
+n'E3

0

X —=8~@~—av'B, vl'qh~ =0.

We find then from (7)

(Bl'B„~B„sl'B.s') 0"=0,
where

(10)

It is easily seen that the field equations (1) and
(2) are then identical with the tensor equations:

(6)BiF„,+B„F,i.+B„F),„=0,
and

Here Bi—=B/Bx".
It follows from Eq. (6), that Pq„can be derived

from a four-vector potential

yX —yX ~pep gX (12)

&'=4'"+ 4 v,v",
1+@

(13)

we see that the vector potential @" a1so satisfies

Since (12) can be solved for g" by the linear
transformation

(B&B„—~B„s&B,s )&i =0. (14)
' An interesting special case where the results are inde-

pendent of the medium velocity is to be discussed in
Part III.

H. Minkowski, Gottinger Nachrichten, p. 58 (&908),
Math. Ann. 68, 472 (j.910).

Fquations (8) and (14), together with the sub-

sidiary condition (10), may be considered as the
fundamental equations of the theory.
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3. The Lagrangian for the Radiation Field

In order to prepare the theory for the quantum
formalism we shall 6rst show that the 6eld equa-
tions can be derived from a variational principle.
For that purpose we consider the Lagrange
function

with the Lagrange density function defined by

& = —-'(~A. —~.4.) (~'4' —~'4 ') —2x'
k&(~ 4 ~ 4'") (~ply ~~4«)~'~' (16)

The variational principle,

From (19) it follows that

(RI «s "~)X (22)

n. p
= —(1+sup') x,

and for y=k, (k=1, 2, 3),

s«=Gp +«8 U«x

The Hamiltonian may then be written as

(23)

with

where g„~ is the metric tensor and y is given by
(10). In particular for p=0, we have

3C =m„Q"—Z. (25)
I.dx' =0, (17)

leads then at once to the differential equations

In this expression we must consider the @& as
functions of x&, p), and their space derivatives.
The canonical equations

Since
~"(~/~(~'0")) =o

and
bll/by~, —

= —(8«@„—B„y«) —«[(B„y. B.y„—)s'v«

(~«4. ~—.4«)s's, j
—(a» —~».)x, (19)

the Eqs. (18) are equivalent with

8"G»+8"(g» —«s»„)x =0, (20)

with G» given by (9).
From this follows, since Gq„= —G„)„

(8"8« «8"v«8e„)x =0—. (21)

Equation (20) is only equivalent to (7) or (14)
if we impose the subsidiary condition x =0. This
can be done by requiring that x =0 and x =0 for
all positions at a given time. It follows from (21),
which is a partial differential equation of second
order in the space and time variables, that x =0
holds then for all times. From this it is evident
that (17) or (18) together with the condition (10)
is equivalent to (14).

4. Hamiltonian Formalism

The canonioally conjugate variables m„are
de6ned by

&(~o4")

For P we have in this notation

j=V+Vy, . (27)

By separating space and time parts in (9) we
obtain

V(1+«so') —«v(v V) =a+as'(vXW). (28)

This equation can be solved for V in the follow-

ing form

1 K

s+«s'(vXW)+ (s"v)v . (29)
1.+mo' l+K

By substituting V into the right-hand side of

$~ =bH/b~„, (26)

are then equivalent to Eqs. (8), (9), and (20).
The explicit expression of II is very complicated.
In the following, however, it will not be used
since we restrict ourselves to the special case in
which the subsidiary condition (10) holds, which
corresponds to the Maxwell 6eld. In this case the
Hamiltonian can be calculated explicitly. In
order to do this we use a three-dimensional vector
notation: v, P, m, V and W are the vectors with
components vI„@~, xI„V~= I'OJ, and 8'g, = F;;
(f, j, k cyclic). On account of (10) we have then
~0 ——0 and
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(27) we obtain P as a function of the space
derivatives of P and of m alone. On account of
Ãp =0 we shall not need the expression for &0. The
expressions for @& may be substituted into (25)
and we obtain in this way for the Hamiltonian
the following result:

K= m m+2iiv'(vXW). ~
2 (1+iiiip')

pendent and satisfies the Schrodinger equation

HQ(g, t) =iQ(iE, t). (32)

In the Heisenberg representation the Schrodinger
functional describing the state of a system is
constant and the operators depend explicitly on
time. The connection between the time-depend-
ent and the time-independent operators is
given by'

+ (~ v)'+ii(vX(vXW)) W
i+~ and

(~) —sis ty„(x)s iiit—
~ (~) —sist~ (x)s iHt— (33)

+-,'W W+m Vyo. (30)

The last term can be removed because it is
equal to

In the canonical formalism we postulate be-
tween the time-independent field variables the
commutation rules

~ Vy, =V (~ y,) —(V ~)g. [4.(x), ~.(x') j='gi.~(x-x'), (34)

The first term is a space divergence and will not
contribute anything to the total Hamiltonian.
The last term is zero, because from (20) and (22)
it follows

a~s.„=—2(1+iivo')a'x+2iiv'(V v)x,

or with the help of (23)

V s = —(1+iiso')8'x+2iiv'(V v)x=0,

on account of (10). We denote this new Hamil-
tonian density with K().

where b(x —x') represents the three-dimensional
8-function. All other variables commute.

Since there is complete analogy between com-
mutators and Poisson brackets in classical me-
chanics and since the canonical equations (26)
can always be written in terms of Poisson
brackets, it follows that the canonical commuta-
tion rules lead back to the Eqs. (8), (9), and (20),
which now hold as operator equations. Here the
time derivative of any operator 0 not depending
explicitly on the time (such as @z(x) or m„(x))
is defined by

0=iLII, Oj. (35)
2 (1+avo')

+2iiii'(vXW) m+ (~ v)'
I+K

+ii(vX(vXW)) W +-,'W W. (31)

S. Quantization of the Radiation Field

The quantum theory of the radiation field is
obtained by interpreting the field variables as
operators which satisf'y certain commutation
rules. In doing this we can choose either the
Schrodinger or the Heisenberg representation.
In the former the canonical variables are con-
stant operators depending only on the space vari-
ables x but not explicitly on the time t =x'. The
Schrodinger functional Q(g, t) is then time de-

In particular, it follows again from (20) that
the operator x defined by (10) satisfies the equa-
tion (21).This enables us to specialize our field to
the Maxwell field by imposing on the Schrodinger
functional the subsidiary condition

xQ(g, t) =0. (36)

Since Eq. (21) is of second order in t it is obvi-
ously sufficient to require only the initial con-
ditions'

x(x)Q(q, 0) =0, and jj(x)Q(i7, 0) =0. (37)

'Here and in the following we shall always use the
notation x=(x0 x' x' x') and x=(x' x' x') to describe
four vectors and space vectors.

4 For a more detailed discussion of the analogous situa-
tion in the vacuum case, cf. G. Wentzel, EinfNkrlng in die
Quantentheorie der Wellenfelder (Wien, F. Deuticke 1943),
p. 111ff'. The notation here used is the obvious generaliza-
tion of Wentzel's notation.
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The relativistic invariance of the canonical
quantization procedure is most easily shown by
transforming the commutation rules to the sym-
metrical four-dimensional form. This can be done

by introducing the field variables (33) which de-

pend explicitly on the time. We shall show that
the commutation rules (34) are a consequence of
the commutation rules

If we carry out the integration over k' accord-
ing to this prescription we find for y'&0

D(y) = —
~l

d'ke'" &

(2~)'(1+«vo') ~

X dk' — . (43)
"c+ (k —k') (k —k")

with
i{y„(x), @„(x')]=r„„D(x—x'),

(39)

The integral over k can be evaluated with the
residue theorem.

2%i

The D-function which occurs here may be defined

by the integral

~ c+ (k' —k') (k' —k") k" —k'

X {e-*""'—e-'"'"]. (44)

d'k
X l e*~ {e *""' —e—'"'"'I

~ k-k

D( ) d, k
~y

(40)
This gives for (43)

(2s)' 4 e~ k,k' —«v&u k,k.

he symlll C b~l~~ the integral sign mdi-

cates the path of integration for the k' variable,
which is defined in the following way. Let k', k"
denote the two roots for k' of the quadratic
equat, ion

k.k —n v&k.k, =0.

The explicit expressions for these roots are

«(v k)v'+((1+«eo')k' —«(v it)' )&
k'=

(41) Since from (42) we have k'( —lt) = —k"(lt) we
can transform this last integral into

D(y) =
(2m)'(1+ «sp')

(42)
«(v k)v' —((1+«eo')k' —«(v lt)')&

k//

1+KVO

The sign of the radicand is always greater than
zero, and the roots k', k" therefore always real,
since by Schwartz' inequality

(1+«eo"-)k'- «(v. k)'
=k'(1+«)+«(v'k' —(v k)') )0

The integrand in (40), therefore, has two poles
on the real axis. The paths indicated by C~ are
such that they go along the real axis in the
k'-plane from — to + ~ deformed into the
negative (C ) or positive (C+) imaginary half
plane so as to avoid the poles at the points
k =k' and k =k". Which of the two paths is to
be chosen is determined by the sign of y' as
follows: C+ for y'&0, C for y'&0. The sign in
front of' the integral must be chosen so that
either the upper or lower sign applies throughout.

d'k

X) {sin(lt y —k"y')
k' —k"

—sin(k y —k'y') }. (45)

Exactly the same result is obtained for y'&0.
From (40) it is obvious that D is an invariant
function of its arguments. The form (45) however
is more convenient to verify the following
relations:

D(y)W~—=D(y) =o, (46)

(47)D(y)W~ =~(y)/(1+ «eo'),

8&(y)„o~——0, (i =1, 2, 3) (48)

(8,8& —«8&v,8'v, )D =0. (49)

iL% «(x), y„(x')]=g«+(x —x'). (50)

It remains to be shown that the commutation
rules (34) follow from (38). We notice first that
on account of (12) and (13), (38) may also be
written
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Since g=8"+q it follows immediately that The reality conditions for p„and x, require that

and
i[x(x), &t&„(x')]=B„D(x x')—, (51) Q.+(k) = Q.(-k)

P,+(k) =P„(—k). (58)

i[x(x), F«.(x')3=i[x(x), G«.(x')1=0. (52)

Moreover,

i[x(x), x(x') j
= (8"8„«&)«—v&'&),v )D(x x') —=0,

on account of (49).
From (38) we obtain:

The operators Q„and P„satisfy the canonical
commutation rules

i[P.(k), Q.(k') j=g"~(k —k') (59)

while all the other variables commute. Substitut-
ing (57) into the Hamiltonian (31) and using the
vector notation for the spatial components of Q
and I' we have

'[P..( ), ~.(")]=(~.1'.,-~.1.,)D( -"), (54)

and with the help of (9)
.1+xvo'

1
II,=-,' d3k

ei

P+ P+2«iv'(v Q)(k P)

i[G«.(x), 4.(x')j= I ~«g" ~.g«

+ &&(&,v (1' „v„—I'„,v ) ID(x —x'). (55)

With the help of (22) and (51) we obtain finally

i[s«(x), y„(x')j= I 8&&g„'—8'g«„

+&«).v (I'«,v' —I',Ov«)

B„g«'+—«v«v'v„I D(x x') (—56).

By specializing this expression for xo =xo' and by
using the relations (46), (47), (48), this reduces to

'[ «(x), @ (x') j=g«.~(x —x'),

which is Eq. (34). In order to complete the proof
that (38) reduces to the canonical commutation
rules it remains to be shown that all the other
variables commute. For the components p~ this
is an immediate consequence of (38) and (46).
Furthermore from (23), (52) and (53) it follows

also that [iro, v;1=0. A rather lengthy, although

straightforward, calculation shows then that the
space components x; commute also among them-
selves. This completes the proof that (38) are
the four-dimensional invariant commutation
rules of the radiation field.

6. Transition to Momentum Space

2&&i—v'(v k) (Q P) +— (P+.v) (P v)
1+~

—&&(vx(kXQ+)) (vx(kXQ))

+-,'(kXQ+) (kXQ) . (60)

kXv kX(kXv) k
ey= —

,'e2= e« ———, (61)
IkXv

f
IkX(kXv) [

alld
P =P~')e +E(')e +8&')e,

Q = Q( )e„+Q( )e +Q( )e
(62)

This coordinate system is orthogonal and nor-
malized

(e; e;) =h,;,. (63)

We obtain thus for

This expression can be simplified by using the
subsidiary condition (36) and its consequences.
It follows then that the second term in (60)
vanishes. A further simplification is introduced
if we choose for each k a special coordinate
system by putting

Ke carry out the transition to momentum
space by introducing the new variables Q„(k) and

P,(k), and

Pi(~) = (P.e.)
Q"'=(Q e), (64)

and

P„=(2v) i)td'kQ„(k)es'*,

v„=(2v) i~ d'kP. (k)e-'

(57)

P v= —vP&'& ~sina~+vP&'& cosa (65)

(kXQ) =k( —Q&'&ei+Q&'&e, )

(vX(kXQ)) =v k( —Q&'& cosa ei
—Q"' cosa e2 —Q&'&

~
sinu

~
e,), (67)
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where n is the angle between v and k. Since e&

and e3 change sign with k, the reality conditions
(58) are now

Q+'" (k) = —Q"'( —k),
Q+"'(k) = Q"'( —k),
Q+"'(k) = —Q"'( —k),
P+&"(k) = —P"'(—k),
P+"'(k) =P&'&( —k),
P+(3) (k) — P (3)( k)

The inverse formulas are

and

1 1
a&(k) =——Q('&(k)+~((P+('&(k)

V2 n

1 1
a~(k) =—-Q"'(k)+~PP+"'(k)

v2 p

(71)

From these follow the commutation rules for the
u's in the form:

In these variables we obtain for (60): [a,(k), a;+(k')] = i&;;i&(k —k'). (72)

1 I 1
IIo d

2~ 1+xylo

p(&)+p(&)

( ~v' sin'n)
+P(»+P(n~ 1+

1+&( )

Introducing the a;(k) of (71) into (68) we can
make the cross products of the form a&(k)a&( —k)
and am(k)a2( —k) vanish by choosing n, p accord-
ing to the following expressions:

n = [k'(1+&(v
' —~v' cos'(() ] ' '

xv cos n)
+)Pi 1 — iQ(»+Q(»

1+&(v ' )

1+M 2 —Kv2 cos~n

k'(I +&()
2

The Hamiltonian (68) reduces then to

(73)

+k'I 1 IQ(»+Q(2)
1+&(v022

IIO —,
' P d'k——e&, (a„(k)a„+(k)+a„+(k)a,(k) I, (74)

2&(iv'v—k cos(&.(Q(»P")+Q'»P'") . (68) with

The operators Q&", P&'& satisfy the commuta-
tion rules

~'(v k)+ &k'(1+ ~o') —~(v. k)'
6g=k (75)

1+xvo2

i[Q"&(k) P"'(k)]= &1,;(&(k —k'), (69) The operator I&r,(k) def&ned by

since the transformation (62) is orthogonal.
It is possible to diagonalize this Hamiltonian

by introducing the absorption and emission

operators a(k), a+(k) by setting

1
Q"'(k) =—~(a&(k) —a&+( —k))

W2

i 1
P"'(k) =—-(a+(k)+a (-k))

%2n

&.( )+2 =
2 {a.(k)a.+(k)+.a.+(k)a (k) i, (76)

is the operator for the photon number associated
with the state (k, r) It has th.e eigenvalues

0, 1, 2, . - .. The total energy operator is. thus
diagonal in a representation which makes the
X„(k) diagonal since we have

(77)

(70) This last result shows that the quantum theory

Q"'(k) =—p(a2(k)+a2'( —k))
of this field behaves in every respect like the

K2 quantum theory of the radiation 6eld in vacuum.
There is one important difference, however. In
the expression (75) for e&„. there occurs only the

v2P positive square root. For the vacuum case this
corresponds to the fact that only the quanta with

The factors a and p will be determine(l later. positive energy k'=k' contribute to the total



QUANTUM —ELECTRO D YNAM I CS

energy. Indeed the expression (75) reduces for
a—+0 to k. However, unlike the vacuum case the
expression for el, is no longer positive under all
circumstances, on account of the first term. If the
velocity of the medium is sufficiently high it may
become negative. The critical velocity for which
this may occur is obtained from the equation

n'vk = (k'(1+ cvo') —m'k') ~,

v'(1+ v') = (1+~)/a'. (78)

I n terms of the ordinary velocity u = c
(v/(1+v') &) this means

u =c(1/(1+ z) *') =c/n. (79)

This singularity of the radiation field for a
medium velocity larger than the critical one is
intimately connected with the occurrence of the

V

Cerenkov radiation. The appearance of negative
quanta is necessary in this case because when a
particle with velocity greater than c/n is trans-
formed to rest by introducing the coordinate
system which moves with the particle, such a
particle may spontaneously radiate under emis-
sion of quanta corresponding to the Cerenkov
radiation. It is well known, however, that for
such a process energy and momentum cannot be
conserved with positive energy for the quanta.
The detailed theory of the Cerenkov radiation
will be dealt with in the second part of this paper.

We complete the discussion of the radiation
field by calculating also the total momentum of
the quanta. An expression for the total momen-
tum may be obtained from a discussion of the
canonical energy-momentum tensor

T„„=[M/B(B"y') ]B.&~ g„„Z —(80).
This expression is not symmetrical in the indices
p, and v. Furthermore, it involves the potentials
explicitly. We shall not enter here into the well-
known dif6culties which arise from the am-
biguity of the energy-momentum densities. ' Here
we shall need only the expression for the total

'For a discussion of these questions see W. Pauli,
Relativitatstheorie, Encyklopadie der Math. Vhss. U, 665ff.

energy and the total momentum. We shall as-
sume, moreover, that we are dealing with a
Maxwell field where the subsidiary condition
x=o holds. For the total momentum we obtain
then

ros~~X =
B(B'@')

(81)

We may transform this integral into one which
involves only the field quantities I';&, Go, by
adding the term

( M ) ( B2
@; I=B') ——@; I

—(I+"')x.
EB(B~@o) ) &B(B~yo)

Thus apart from terms proportional to x and g
the total momentum is given by

Ii;I'd'x
B(B'y&)

= —~GO, F,&d'x = — v; F,&d'x. (83)'

We note here in passing that the tensor

~pv ~pcpFv gpv~q

is essentially the energy-momentum tensor used

by Minkowski' in his phenomenological theory
of classical electrodynamics.

In momentum space the expression (83) for
the total momentum is

P; = )~d'kk;(N(k) +-')

We note in particular that in the rest system
the energy of a photon with momentum k is
given by a~ =0/n

M ( B2
B'@,=+B

(

B(Boy ) ~B(B~@0) )
+2BPP;(g,p

—Kv vp)x. (82)

The first term on the right may also be written as


