
FACTORI ZAT ION METHOD

ties with the fresh methane filling than it did
with the methane plus decomposition fragments
present.

It was found that after a methane counter
had deteriorated it could always be recovered
by a thorough cleaning of the electrodes. Usually
washing the counter very thoroughly with dis-
tilled water, alcohol, benzene, and ether was
sufficient. Occasionally a counter did not respond
to this treatment, and in these cases, removal of
the anode wire showed it was covered with a
heavy brown coating which on heating left a
carbon black on the wire.

CONCLUSION

The results of these experiments show that
methane Geiger-Muller counters deteriorate be-
cause of the decomposition of the gas and that
the change in the gas composition does not lead
to the counter failure. The counter deterioration
can be explained by the heavy hydrocarbon de-
composition fragments of the methane deposited
on both the cathode cylinder and on the anode
wire.

It is a pleasure to acknowledge the interest
and help of Dr. Richard E. Honig of the Socony-
Vacuum Laboratories.
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The factorization method enables us to calculate in an elementary way the discrete-discrete
and discrete-continuous transition probabilities of hydrogen atoms by means of recurrence
formulae. From a key intensity all others are found by a repeated application of an l-changing
recurrence formula or an n'-changing operator. The results are given:

for /-changing in the formulae: {4.2), (4.3),
for n'-changing in the formulae: (5.1), (5.2) with (3.2).

Some of the formulae apply to more general matrix components.

I. INTRODUCTION

HE value of the Schrodinger hydrogen in-

tensity integral

~Qo

0

(where 8 '=r times the Schrodinger normalized

hydrogen radial function) has been calculated

many times. Originally Schrodinger' calculated
it for special cases using the generating function
for Laguerre polynomials. Wheeler' has recently
applied this method to the general case of
discrete-discrete transitions. Epstein used the
theory of hypergeometric functions to solve the

Schrodinger, 8'ave Mechcnk's (Blackie A Son, London,
1928), p. 99.' Wheeler, Proc. Roy. Irish Acad. 50, Sec. A, 3 (1944).' Epstein, Proc. Nat. Acad. Sci. 12, 629 (1926).

same problem, while Eckart4 evaluated the in-

tegral directly. Gordon' has treated the discrete-
continuous and continuous-continuous as well as
the discrete-discrete transitions. We want to
show that the factorization method leads to a
simple treatment of this problem.

The factorization method gives the solutions
of a second-order difFerential equation by rpeans
of recurrence formulae6; the idea here is to de-
velop recurrence formulae for the integrals in-

volving these solutions —the intensity integral
in particular. Besides the recurrence formulae a
starting point is needed; in what follows this is
found by the method of the Laplace transform.
Some of the formulae apply to the calculation of
other integrals involved in the Kepler problem.

4 Eckart, Phys. Rev. 28, 927 (1926).
~ Gordon, Ann. d. Physik 2, 1031 (1929).' L. Infeld, Phys. Rev. 59. 737 (1941).
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FrG. i.

the horizontal lines 3=constant. ' To do this we
introduce a new functipn

R„'(s)..

This function is defined by the same recurrence
formula (2.3a) as the corresponding function R„'.
The only difference is that the key functions are
now taken to be

2 5 4 5 6 tl

II. SOLUTION OF THE RADIAL EQUATION

The factorization method enables us to solve

quickly the Schrodinger equation for a Coulomb

field. %e quote the result for the radial part of
that equation. '

The equation for the discrete spectrum is:

R"+ (2/r)R —[l(l+1)/r']R —(1/n')R =0, (2 1)

and the normalized solutions are

LR-'(s)].=v- =R-'. (3.2)

Ke can now find an operator which enables us
to change R„'(s) into R„+~'(s) from which our
solutions can be reached by (3.2). In fact

R„" '(s) = (2/n)" (1/n) [(2n —1)!7-&r"
X [exp( —sr)]. (3.1)

Of course the R„'(s) are neither orthogonal nor do
they satisfy our differential equation, but they
have the following important property:

R„" '=(2/n)"(1/n)[(2n —1)!]&r"

Xexp( —r/n), (2.2) where

R„+i'(s) = 0„+i'R„'(s),

—II lg l—1

(2.3a)

(2.3b)

nl+2 n+l+1 &

0~+i'=
(n+1) '+'(2n+1) n l— (3.3)

d
+H '=nl[(n —l)(n+l)] & ———&-

r l dr

d
= (1/A„') ———&—. (2.4)

r l dr

There is thus one solution for each pair of
integers (n, l) provided l&n —1 and n is a posi-

tive integer. The solutions are represented by
dots in Fig. 1. The key functions (2.2) are those
on the line /=n —1. Using the recurrence for-

mulae (2.3) one can, so to speak, move up or
down the ladders if n equals a constant. Replacing
n by in in (2.3) and (2.4) gives recurrence for-

mulae for eigenfunctions of the continuous spec-
trum but, of course, there is no starting point
corresponding to (2.2).

and

+H„+g' ——

O l—j.

n+1 (n l) (n+l)—
+~ l

n (n+1 l) (n+—1+l)

+1 (n l) (n+—l)
0

n -(n+1 —l) (n+1+l)

Using (2.3a), (3.3) and the above equations:

R„+~'—'(s) =+H +g'R„+~'(s)

n+1 (n —l) (n+l)

n (n+1 —l)(n+1+l)

(1
X 2n+1+( -+s

[
—.

En &ds '.

%'e shall prove this theorem by induction:
from (2.4) and (3.3) it is easily seen that

IQ. A NEW RECURRENCE FORMULA

We shall now develop a new recurrence for-

mula which enables us to move to the right along

~ L. Infeld, Phys. Rev. 59, 'N3 (j.94i); the unit of length
is h'/me'Z and 1/n =k{—2Z)&/m&e'Z.

=0 ' 'R '—'(s)

since the H and 0 operators commute. Therefore,
' Schrodinger has developed an n-changing operator of a

difFerent kind; see Proc. Roy. Irish Acad. 40, Sec. A, (1940).
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if (3.3) is true for the quantum number /, it is
true for / —1. It is a straightforward matter to
cheek that (3.3) is true for /=n —1; the theorem
is then established.

Thus with the help of (3.3) we can move to the
right along the ladders l =constant.

IV. ALGEBRAIC RECURRENCE FORMULAE
FOR THE INTENSITIES

Each of the H and 0 operators leads to a re-
currence formula for the intensity integral, the
former to an algebraic one as follows: it is not
dificult to verify from (2.4) that

2/A. '+H. ' = (2/+1)A„'+'+H. '+'

+A '+' H '+'+(constant)/r. (4.1)

Multiplying (4.1) on the left by rR„', on the
right by E.„'and integrating gives

the pair at the top of the e' ladder: I„„"'"'-'
and I„"'—' "' where

n' ~'—1 0 (4.3a)

or, for the discrete-continuous transition,

n' 1 n' 22n'+2(n—n )n'+2

n' ll (P2+n2)

(We will adopt the convention that n' always
refers to the discrete spectrum. ) The method of
calculation of the other expression is indicated
in the appendix. The result is:

a' —1 n' —22n'+2(nni)n'+2

(n+n')! & (n —n')" "' 'X,(4.3b)
(n —n' —1)!(2n'—1)! (n+n') "+"'+'

2/A„') rR„'+H„'R„'dr

= (2/+1)A„'+' t rR„'+H„'+'R„'dr

I exp(2nll) —1I (2n' —1)!

expt 2n tan-'(n/n') 7
X (4.3e)

(n2+ ni2) a'+2

=(2/+1)A„'+' ~ r( H '+'R ')R 'dr

From (4.3) we can now calculate pairs of in-

tensities by successive application of (4.2)—the
important intensities requiring at most but a
few steps.

V. OPERATOR RECURRENCE RELATION
FOR INTENSITIES

+A '+' rR '—H '+'R„'dr,
~0

2/A „'I„.„' ' ' = (2/+1)A„'+'I„.„' '+'

, [+11, k+1 /

By interchanging e, n' we obtain
lr l l—1 A l+1I, l &+1

+ (2/+ 1)A,1+iI, l+1 l

A ' = L(n —/) (n+/) 7&/n/.

Our derivation (and hence this result) is
valid for the discrete-continuous transi-
tions once one replaces n by ie.

l—1 l(s) Q, 1 lI, 1—1 —l(s)

or

In.~l;n' —' '(s) =0 +1' 'I„;„' ' '(s),
(4.2)

l—1

(n'+ 1)'+'(2n'+ 1)

t'1 q 1/

2n+1+i —+s (
—,

I
X e' —k+1These are algebraic formulae giving a pair of Ee ) ds

intensities in terms of the next highest pair in where the intensity function is defined by
the scheme of Fig. 1.

All intensities can now be calculated once a
starting point is found. —An obvious choice is

I„,„1-1l(s) =)" rR, 1-1(s)R ldr.
0

The results of $3 will now be used to And an
n'-changing recurrence relation for the intensi-

because R„', R ' are orthogonal and vanish at ties. indeed, it follows immediately from (3.3)
r=0, ~. We have then: that
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The starting point needed here is

1 p 4 q
'+' (n+l) l

I 1 11—(s)—
n E nil (n —l —1)!(2l—1)!

1

E. n)
X L(l+1)s—1], (5.2a)

1 q
0+1+2

( s+—
fn)

n g (p'+n')
p 4 ~

1+1

I 1 11(s)—
E nl) I exp(2n77) —1 I (2l —1)!.

exp(2n tan 'ns)
X L(l+ 1)s —1]. (5.2b)

1 )1+2

I
"+—

I

n2)

The derivation of (5.2) is indicated in the
appendix.

Using (5.1) and (5.2a) we can 6nd I/+1 ' ' '(s),
I/+2 „'—' '(s) .I„„'' '(s) which, with (3.2), give
the intensities. Similarly from (5.2b) we can
find. . . I~2 s~

VI. REMARKS

(1) The set of values of the quantum numbers
for which the intensities are required will deter-
mine which of the above two methods should be
used. Being algebraic (4.2) is simpier whereas
(5.1) has the special characteristic that it is
applicable to the problem of calculating more
general matrix components

t y(r)R„"R„'dr.

(2) Example of a calculation:
To 6nd

I, "=)~ rR20R„'dr,
0

we can use (4.3) to get immediately

21 0
I 12 —3—1/2219/2n9/2(n2 1)1/2(n 2)n,—7/2(n+2) a 7/2——

From (4.2)

I2~"——(2A2') '3A„'I2 "+0
—217/2n7/2(n2 ])1/2(n 2)n—3(n+2) —m—3

Alternatively, we can use (5.2a) to get

Il„"(s)= 2'n "'(n' —1)'"(s—1/n)" '
&((s+1/n) " '(2s —1).

Operating on this expression with

020 2—t3—' 3+(1+s)—,
ds

and then putting s =-,' we get the value above for
I2„"which is the same as that given by Condon
and Short!ey" for the transition 2s np—

(3) Explicit forms: The above methods can
lead to explicit forms of the intensity integral
except in the case of continuous-continuous
transitions (though the algebraic formulae are
valid for these transitions if n', n are replaced by
in', in). For example, by means of (4.2), (4.3)
and known relations between contiguous hyper-
geometric functions the results given by Gordon"
can be proven by induction.

APPENDIX

The Calculation of (4.3) and (5.2)

Define

I„= r' exp( —sr)R„'dr.

We must distinguish between two cases:

Case I: Discrete-discrete

From (2.1):

r '+' exp( —sr) f
R"+ (2/r) R

0

D(l+1)/r—'jR (1/n') R I d—r =0.

After two partial integrations of the first term
we obtain

(s' —1/n') I„'+L2 (l+ 1)s —2jI„=0.

(s 1/n) 0—l—1

I„=C
(s+ 1 /n) ++1+1

9 Another starting point which may be needed 'is "Condon and Shortley, Theory of Atomic Spectra (Cam-
Il+&; ' ' '(s); it is slightly more complicated but can be bridge University Press, Teddington, 1935), p. 133.
found easily from the formulas in the appendix. "See Reference 10, p. 1051.
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I„ is the Laplace transform of r'8„' and there-
fore"

8„'=r—'Lresidue of Lexp(sr)I„] at s = —1/n]
The coefficient of the lowest power (l+1) of r
turns out to be

By putting l =n' and s = 1/n', we obtain

e' —1 a' 22n'+2(nnl)n'+2

(n+n')!
X

(n —n' —1)!(2n' —1)!
CLexp( —r/n) ]/(2l+ 1)!.

But from (2.3a), we have:

R l +II t+s+II 1+2

(A.2)
(n n~) a n' —2—

X . (4.3b)
(n+n~) ++a'+2

Using (2.2) aiid (2.4) the coefficient of r'+' can
be picked out easily; it is

2"(n-1)! (n+l)!
n'+'(2n —1)!l! (n l 1)—!—

XL(21+3)(21+5). . . (2n —1)]
y, Lexp( —r/n) ]. (A.3)

Equating (A.2) aiid (A.3) we find C so that

2'+' (n+l)! & (s —1/n)" ' '
(A.4)

n'+' (n l 1—)!—(s+1/n) "+'+'

l'2~ ' 1
l i i (s) —i-

&i ) lL(21 —1)!]&

Case II: Discrete-continuous

In this case I,„ turns out to be

I;„=C(s l/n—) '" ' '(—s+—i/n)'" ' '

exp(2n tan 'ns —nir)
=C l

(s2+ 1/n2) i+i
0 &tan —'es &—,

2

Cr—l
' exp(sr)(s i/n)—R

2X'1

X (s+i/n) '"—'—'ds.

where the constant nx was determined by the
condition that I;„remain finite as n—+ ~.

The inverse transform here is"

"o

From an asymptotic expression for R;„' we
"p( s")+ d" find" the value of C for the usual normalization.

The final result in our notation is

t'2q ' 1 dI„
I l ) l[(21—1)!]& ds

1 ( 4 q
'+' (n+l)!

n inl& (n —l —1)!(2l—1)!

(s —1/n)
X [(l+1)s —1]. (5.2a)

(s+ 1/n) "+'+'

"See for example: R. V. Churchill, 3fodern Operational
3IIgthematk s in Engineering {McGraw-Hill Book Company,
New York, 1944), pp. 170—171.

2 g (p'+n')
(2'I "* exp(2n tan 'ns)

«) (s'+ 1/n') '+'exp (2nir) —1

'3Also given by Schrodinger, Ann. der Phys. 79, 361
(1926).

"See for example Bethe, IIcndbuch der Physik {Berlin,
Verlag Julius Springer, 1933), 2nd ed. , pp. 290—292.

and the corresponding starting points are found

to be as given iii (5.2b) and (4.3c).


