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repetitions of' this process destroyed the HNO3.
The residue, dissolved in 1 ml of HC1, 1 drop of
H2S04, and 15 ml of water, was treated with 5 ml

of a saturated oxalic acid solution, and boiled for
ten to fifteen minutes. After standing for four

hours, it was washed with dilute HCl (i:99),
filtered with paper pulp, and finally ignited to
gold. This procedure was intended to separate
the gold from most other metals including
platinum, silver, and mercury, calcium, and iron.
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Recent experiments seem to require a modification in the g-factor of the electron. It has been
suggested that the coupling between the electron and the radiation field is responsible, and
Schwinger has calculated the effect on the basis of a general subtraction formalism for the
infinities of quantum electrodynamics. It is here shown that the change in magnetic moment
may be derived very simply without any reference to an elaborate subtraction formalism.

'T has been suggested recently by Schwinger'
~ - that the coupling between an electron and
the radiation field leads to a change in the g-
factor of the electron, as seems to be required by
experiment. ' This result was derived on the basis
of his (as yet unpublished) general subtraction
formalism for the infinities of quantum electro-
dynamics. It is the purpose of this note to show
that the change in magnetic moment may be
derived very simply without any reference to an
elaborate subtraction formalism.

We may characterize the problem as follows:
Given an electron in a homogeneous magnetic
field, what is the energy of this electron as a
result of interactions with the zero-point vibra-
tions of the quantized radiation field& It is
well known that this energy is infinite, the in-
finities which arise usually being ascribed to
changes in the mass and charge of the electron.
%'hat we seek are those parts of the energy
which do not correspond to the ordinary mass
and charge changes, but those which arise be-
cause of the presence of the external magnetic
field. The problem of subtracting the original
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infinities is made very simple in this case by the
existence of a state for the electron (in a homo-
geneous magnetic field) which has as an energy
simply 8=m. ' This is a direct result of the fact
that the (unperturbed) Dirac electron has a
g-factor of exactly 2. For this state we have the
energy of the orbital magnetic moment exactly
canceling the energy of the spin magnetic mo-
ment. The change in energy of such a state due
to a change in mass (E„~q(0)) and charge of the
electron is simply

AE=E )((0), (i)
which is independent of the external field. This
means that when we calculate the energy and
find terms which depend on the external field
strength, these terms must represent the true
change in the energy, and they must converge.
This expectation is borne out by the calculation
of the energy to terms linear in Ho (the external
field strength). The coefficient of this latter term
gives immediately the alteration of the g-factor
of the electron.

We now proceed to an outline of the calcula-
tion. For the electron we must use the quantized
formalism of the theory of holes4 and for the

'We shall use throughout natural units, e.g. , A=c=1.
m is the mass of the electron.' Cf. G. Wentzel, Bin. in die Quant. Theoric der S'ellen-
felder (Franz Deuticke, Vp'ien, 1943), pp. 158-91.
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radiation field we must use the formalism of
quantum electrodynamics. '

The Hamiltonian is then given by

H —Ho+ H$+ Hsg~gjq y

A, = (4tr/k, G)&, G= normalization volume;

V„„t'&—= ~d'x(f„*a,f„)e '"'*, n, =e, a.

Hp i)f——( P—(ot V ieA—p)P im—/~PE)d'x

putting

We are now interested in calculating the
energy to 0(e'). This means that we have to take
the mean value of H„„,for one particle in the
state m, and no photons present. This yields:

+ (1/8w))l (E'+H')d'x, e'
(Ht t' (m))A =—2

l
E])0

O'= Z a-4"

Hp ——P a.*a„E„+P Ip,c.'c„

Ht ———e ~(P*aP) Ad'x

= —Q (eA, /v2) c.*a„'a„V„„"

+Berm. conj. ,

I p u(x)~(x'),
2J J ]x—x'J

g2

a. a„ at at

(' r (0 (x)4' (x))(A(x')4 (x'))
X)I Jl

d'xd'x'.
/x —x'/

The following notations have been used:

pt is the Dirac vector matrix (n, pt„, );tt
Ao is the vector potential of the external

field.
E„,P„are the eigenvalues and eigenfunc-

tions of the Dirac equation

(~ ((1/i)V eA,)+mP)—y„=E„y„;
a„*, a„are, respectively, the creation and

destruction operators of an electron in state n.
They satisfy a„*a„+a a„~= 8 „,etc. ;

c,*, c, are, respectively, the creation and de-
struction operators of a photon in a state with
momentum k, and polarization vector e,.
c,c, —c, c, =8„,etc. ;

A is the vector potential of the radiation
held—

A =g (A,/v2) (c,e'"'~+c,*e "'*)e„—

~ See reference 4, pp. 107—133.

*X l X l*X' X'
X xl x

/x —x'/

„*X l X l*X' „X'

[x—x'
[Be)0

L,Ei &0

"
~

(4-*(x)4-(x))(A*(x)A(x'))
+ep dxlx.

J ix —x'I
El &0

The third term represents the interaction be-
tween the vacuum charge density

up(= 2 Mt*(x')ft(x'))
t,Ei&0

and the charge density of the particle

t -(=el *(x)4-(x)).
This term may be dropped (as well as the corre-
sponding term from H~ for the interaction be-
tween the particle current and vacuum current),
since it is well known6 that a homogeneous mag-
netic field gives rise to no polarization of the
vacuum effects. From this value we must sub-
tract the corresponding value when only the
vacuum is present (negative energy states filled).
This gives:

(Hstattc(vac))A
rc,l

EA)0
Eg &0

fx —x'/

Defining now the electrostatic energy as

(Hpttttk(m))&v (Hptpttp(vac) )Av

I V. F. Weisskopf, Kgl. Danske Vid. Sels. Math. -Fys.
Medd. 14, 6 (1936).
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where
8t =+1, Zt) 0,

El &0.

To calculate the contribution from

Ht(Andy, ;,), one must use second-order per-
turbation theory. When this is done, the vacuum
value and polarization of the vacuum terms
removed, we are left with

iy
EEdynamic= (—2tre /G) P —g

™
. (7)

s Pz l ltil Ps+g l —g~

The total energy will be given by

p2

Mstatic = —Q 8t
l

~ (4 *(x)fr(x))(ft*(x')4 (x'))
d'xd'x', (6)

n=p, =p, =0, Z =m, and

0

0
v(x) =exp —[(eHp)x'/2](eH /pp)r&.

Let us hrst evaluate the electrostatic energy.
Substituting the above value for P and the
values of the eigenfunctions from the appendix,
we get:

Q=—Z ~t(4-*(x)A(x))(A*(x')4-(x'))

=(m/Gs") r. 2 (1/&-)(v(x)v'"'(x)
ps, pg n=0

Xexpp(Psy+P») ) (v(x') v'" (x')

Xexp —P(Ppy+P»))
where

Z„=(m'+ p p'+2eH pm) &

~+static +~+dynamic v'"'(x) =exp[ —&'/2]H„(&)

X [(eHp) &/pr&2s" (n!)&]

p = (eHp) &[x—(pp/eHp) ].
We now have to sum the series (6) and (7),

using the exact eigenfunctions and eigenvalues
of the Dirac equation. These are given in the
appendix. The state m in question is that with Therefore,

e' i t Q
~StRtiC d xd x

~ ~ (v(x)v'"'(x) expp(pay+ p»)) (v(x') v'"'(x') exP —p(ppy'+ p»'))
d xd x ~

2G4" is.ps a 8 " " ix —x'/

It is convenient to go over to momentum space Therefore
in order to evaluate these integrals. Define

and

p„(x) =—v(x) v&"&(x) exp[p(ppy+p»)],

p„(k) =— p„(x) exp[ —pk .x]d'x.
J

AEstatic = (2 e' sr/Gm' ') iP g (1/Z„)
ps, ps n=0

XE (1/k')p (k)p *(k).

The integrals giving p„(k) are easily evaluated:
Then, as is well known,

[p„(x)p (x')/ [x—x'
j
]d'xd'x'

J J

= (4x/G) 2 Lp-(k) p-*(k)/k']

(—)" (ps+pkt) "
p (k) =G i bpsypbpsys

2ais(n!)& 4 (eHp)&3

ps +kl +2$ppkt
Xexp—

4eHp
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01

~~static =
2~e2m 1—2 Z —2

G psp =o E„p t(k, '+ p22+ pp')

fp 2+k 2p

eII0
X —exp L

—(p, '+ ki')/2eHp]
2rpn t

p —' —' I

t'
fdkdpgp,

42r2 -on! E„"

f=s "2 (g(s)+(~ s)—g'(n)
n 0

(n t—t)
'+,—a"(v)+ )(~"/~i)

2!
=g(~)+ Lna" (n)/2]+
= [1/(m'+ p'+r') &]

+-'L(sHp) 'r/( m+p'+r')"']+ .
Therefore,

X
! fpp'+kt pl

(kt2+p22+p22) l, 2sHp j
++static =

e2m 1
dP I

rdr
22c " ~ ~p (r2+P2)(mp+P2+rp)&

)& exp L —(P22+ kt2) /2eHp]. *a

Going over to polar coordinates for the variable
ki, pp we get (Writing rp=kt2+p22 and p, =p)

++static =
e2m ~ 1

P —fdp f,d,
22r a-P 22! 0 „Jp r2+P2

( r l a
, gp.ss-

(2eHp j Imp+P'+2eHppp

dp rdr f
22r ~ ~

p (r'+P')

8 ")
-o 22!(m +P'+2eHpn) ~ 2eHp

Now we need f for vanishingly small values of
Hp, since it is the linear term (in Hp) of DE«a«c
which gives the change in g-factor of the electron.
Therefore, we seek to sum this series for II0~0,
i.e., for q—+~. The function q"/n! for q very
large has a sharp maximum at n=g. On the
other hand the function

g(22) = (m2+P2+2eHpn) &

is, under the same conditions, a very slowly vary-
ing function of n. We therefore expand it about
the point n =q, and get

3
X 1+— —+

4 (m2+p2+r2) 2

(&Hp)r'

3epm( I--
= AEstatic (0)+

I
d p rdr

8m E" "0
r2 lX

I (eHp) +
m(r2+P2) (m2+P2+r2) 2/2 j

=~static(0) + (e2/32r) (e/2m)Hp+ (8)

t20 00 00 ~'Bg

F(m) =—Q (e2/42r) dp I

+=0 ~ fl n!

&+ (p'/k')
X

E„+i(k+E„+i m)—
& —(p'/k')

The first term AE„„;,(0) is simply the electro-
static self-energy of an electron at rest. ' The
remaining term converges, and is to be inter-
preted as the change of the g-factor of the electron
due to its interaction with longitudinal photons.

Proceeding now to the expression for the dy-
namic self-energy, we find (after carrying out the
integration in V „&' several obvious summations,
and simplifying):

DEdy„. .. F(m) —F(—m——),
where

(22 —g) '
g(~) =g(n)+(~ —n) g'(~)+ g"(~)+

$2 —P2+r2

+
E„(k+E„—m)

**Here ere have replaced the sums by integrals

Z~(G&/2st) Jdkt, etc.
Ipt

Exactly the same method as before may be
used to carry out the summation over n. We

~ V. F. Weisskopf, Phys. Rev. 56, 72 (1939).
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shaH not enter into the details of this straight-
forward calculation, but shall only quote the
result:

~+dynamic ~~dynamic(0)
—(Se'/6n. ) (e/2m)Ho+ . (9)

The first term is simply the dynamic self-energy
of an electron at rest (cf. reference 7). What re-
mains converges and is the contribution of the
transverse photons to the magnetic moment of
the electron. Ke thus get for the energy of an
electron in the state m,

aZ =~Z„.„,(0) +~8„„.;,(0)
—(e'/2or) (e/2m) H, (10)

(dropping higher powers of Ho). The sum of the
first two terms of (10) is simply Z„ii(0), and ac-
cording to the ideas of the first section this is
to be subtracted. Therefore, we are left with

hE„,„,= —(e'/2 )s(e/2m) Ho (.11)***

(11) is to be regarded as the true change in

energy of an electron in an external magnetic
field, due to coupling with the radiation field.
To interpret this in terms of a change in g-factor
we note that if the electron had a g-factor of
g=2(1+6), then in the state m its energy
would be

E= eHo/2m(1 ——',g) = —(eHo/2m) b.

Equating 8 and ABt,„,we get

8 = (1/2or) e'

or 8 = (1/2or) (e'/hc) in conventional units. There-
fore

g =2(1+(1/2s) (e'/kc) ).
This corresponds exactly to the result of

Schwin ger.
In conclusion I should like to thank Professor

W. Pauli and Doctor Res Jost for many valuable
and stimulating discussions.

APPENDIX

The eigenfunctions fall into four classes, corresponding to the two different spins and signs of energy
They are

Zi = + [mo+P o+ 2@Ho(n+ 1)j»
(Zi+m)v'"'

ipi(n, po, po) =expi(poy+P»)IL2(~i'+m&i))»

Eo +[ m' +Poo+2eH——o(n)5»,

p ii(n)

—(eHo(2) (n+1) )»v'"+"

(1/~»),

(Zo+ m) v'"'
»t'o(n Po Po) =expi(poy+P»)/(2(~o'+m&o) 3' —(2eHon)»v i"—'i

Eo —[m'+ po'+ 2eHo(n——+1)j»,

wi
"&(—Zi+m)

0 (n, P P ) = expi(p y+P s)/L2(~ ' —m& )j'
p ~(n)

LeHo(2) (n+ 1)j»v'"+"j

(1/~»).

*~*It should be mentioned that in reality nothing is subtracted from the magnetic moment term. One could have
BE

defined M=——~, which would have given a finite result automatically. This consideration shows that we can
0 Ho~0

expect our result to be relativistically correct, since we have used a Lorentz invariant formalism throughout.
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Zo ———Lno'+ po'+2eHo(n) ]&,

&&&"&(—So+no)
&P4(n, Po, Po) = exPi(Poy+Pos)/L2(Eo' —noZo) j& (1/G&),—&&&" "(2eHon) &

p p(n)

&&&"' = e O"H ($) L(eHo) ~/~&2""(n!)&j, $ = (eHo) &!&oo (Po—/eHo) j
H are the ordinary Hermite polynomials.

The usual representations of the Dirac matrices have been used, with the exception that
e„and e, have been interchanged.
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A Geiger-Muller counter filled with argon and ethyl acetate was connected to a mass spec-
trometer, and spectra were obtained after predetermined numbers of counts. Results showed
that factors influencing the life of the counter were the disappearance of the quenching vapor
and the formation of non-quenching vapors. An argon-methane counter, studied by the same
method, showed that contamination of the insides of the counter, by the dissociation products,
limited its life. This process occurred before any appreciable fraction of the methane was
consumed.

INTRODUCTION

HE purpose of this investigation was to
examine the factors influencing the life of

self-quenching Geiger-Miiller counters. The life
of a counter is usually defined to be the number
of counts that the counter is capable of detecting
before becoming inoperative as a result of in-
ternal failure for any reason. Observed lives are
known to vary from 10' counts for a methane
counter to 10" counts for an argon-alcohol
counter.

PRESENT THEOMES FOR THE
OBSERVED LIFETIME

The 6nite life of self-quenching counters is
explained by theories proposed by S. A. KorE

*This paper is based partially on work done under
Contract N6ori-99 with the 0%ce of Naval Research.

*~ Now at the University of New Mexico, Albuquerque,
New Mexico.

and R. D. Present, ' by the Montgomerys, ' and
by Stever. ' The explanation lies in the quenching
mechanism of the counter. We first note that
there are three essential quenching mechanisms.
(a) Absorption of photons from the avalanche,
(b) quenching of secondary emission when the
positive ions reach the cathode, and (c) electro-
static quenching. The KorE-Present theory deals
with mechanism (a) and (b). They showed that
the polyatomic gas in a self-quenching counter
has two functions: (i) To quench the ultraviolet
photons that are emitted by the excited states of
the inert gas and (ii) to quench secondary emis-
sion by positive ions reaching the cathode. The
authors point out that the characteristic property
of a polyatomic molecule which is of importance

'S. A. Korff and R. D. Present, Phys. Rev. 65, 274
(&944).

~ C. G. Montgomery and D. D. Montgomery, Phys. Rev.
5V, ~O30 (~940}.' H. G. Stever, Phys. Rev. 01, 38 {1942).


