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Motion of an Electron in the Field of a Magnetic Pole
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The motion of an electron in the field of a magnetic pole is considered. It is shown that in
spite of its magnetic moment the electron has no bound states.

ECENTLY Dirac has revived interest in a
theory of the electromagnetic field proposed
by him some time ago! which allows the existence
of free magnetic poles. As a consequence of his
theory he is able to deduce the fact that the
charge of any elementary particle is always an
integral multiple of a certain fixed unit. The
motion of an electron in the field of a magnetic
pole was considered by Dirac! and he found that
the electron cannot have any bound states. How-
ever, Dirac did not take into account the spin of
the electron and since the spin gives rise to a
magnetic moment, it seemed conceivable that
the above conclusion might cease to hold if one
used the correct equation of motion. The object
of this note is to investigate this point. It turns
out that Dirac’s result is still valid and so the
electron cannot be bound to a magnetic pole.
We put the velocity of light and the Planck’s
constant equal to 1 and 27 respectively. It is
convenient to use tensor notation. Let (x, y, 2)
=(x!, x2, x%) be the Cartesian coordinates in
space and let €% be the antisymmetric tensor
such that €!?3=1. Further, let g; be the metric
tensor corresponding to the quadratic form

dx?*+dy*+dz? = gadxidx.

The equations determining the vector potential
Ay can then be written as

€'i*(0A j/9x%) = H¥, (1)

where Hj are the components of the magnetic
field. Now since we wish to consider the field of
a magnetic pole it is convenient to introduce
polar coordinates (7, 8, ¢) given by

x=rsind cose, y=r sinfsing, z=7r cosf,

so that
dx?+-dy*+dz® =dr2+r2d6%+r? sin%0d 2.
1 P. A. M. Dirac, Proc. Roy. Soc. 133, 60 (1931).

Therefore if g.s(a, 8 running over 7, 8, ¢) denotes
the metric tensor in the polar coordinates, we
have

gr=1, gu=r? oo =12 sin?%),
gr=1, g¥=1/r?, gee=1/r’sin?, (2)
gaﬁ=gaﬁ=0, a#B.

On transforming (1) to the new coordinate sys-
tem (r, 6, ¢) according to the usual rules of
tensor calculus we get

e?1(0Ap/08) =H?, ©)

where «, 8, v run over the three indices 7, 0, ¢
and (¢, &, £)=(r, 0, ¢). It follows from the
transformation laws that

ete=1/(g)*=1/r?sind,

where g=7r*sin% is the determinant of the matrix
formed by the components g.s. Let —e be the
charge of the electron and # an integer and con-
sider a magnetic pole of strength 3n/e at the ori-
gin. Then H?=H¢=0 and H*=1%n/er?. A possible
solution of (3) is now obtained by putting
A,=A4s=0 and choosing 4, such that

1 o4,

n
r2sing 90 2er?

(4)

This gives A,=(n/2e)(1 —cosf), the constant of
integration having been so chosen as to make
A,=0 for =0 so that the nodal line! runs from
the origin along the line §==. This is seen as
follows. Consider the integral

fAﬂﬂ=fAA?=fAﬁ%

taken round a closed curve ¢ surrounding the
line §=6,. Clearly if 8,0 or =, J:de=0 and
therefore the integral tends to zero as ¢ shrinks
to a point on §=0,. On the other hand if 6,=0
or 7, J:dp =27 and the value of the integral tends
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to (wn/e)(1 —cosby) i.e., 0 or 27n/e according as
6o=0 or .

Now we come to the equation of motion of
the electron. As usual let o1, a2, 03 and py, p2, p3
be two independent sets of Pauli matrices.?
Transform o1, 02, 03 as components of a vector
to polar coordinates so that

dxk
o= o—=—(0X),
ar r
dxk
79 =0— =———(%X(0%) — (XX)0)3, ©)
06 7 sinf
ox*
oo=0—=[x X0 5
de

where x = (x, %2, x3) and o= (01, 02, 03) and the
usual notations for scalar and vector products
are used. The Hamiltonian H for the electron
can now be written as

H= —py(op) —psn—prea*4,

[(xXo]sn (6)
= —p1(0p) = pau—pr———— ~(1 —cosf),
72 sin20 2

where p=1/1(d/9x, 9/9y, 9/32) is the momentum
and p the mass of the electron. Our problem is
to find a wave function ¢ such that

Hy=Ey, (7

where E is some eigenvalue of H. Now notice that
17 9 a 190

[(xXpls =7(x——-y—-) =<

1\ dy Ox 109

and [xXp]+3e commutes with Hy= —p;(op)
— pyewhile [xXpJs+40; commutes with [x Xo ]s.
Therefore

19
[xXp]s-i- 203=- _‘+ 203,
10¢

commutes with H. Hence we can choose ¢ in
such a way that

19
(T —+303 )y =My,
de

)
where M is half-an-odd integer. Therefore
¥= ei(M—ivx)le (8)

2See P. A. M. Dirac, Principles of Quantum Mechanics
(Clarendon Press, Oxford 1947), Chap. XI.
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where ¢/ is independent of ¢. Now
a a [¢]

gF—=0¢*—=0¢,—

oxt  agx  or

gp 0 g, 0

— 9

7290 r%sin% do

From (5) we get
o-=sinf(e1 cosp+ o sing)+ o3 cosd
= sinBalei"W—l— o3 cosf
=¢193¢12(g; cosf+ o, sinf)eiose/?
— g iv30l2p—ioa0 2 pioah2givsel?, (10a)
Similarly
o9 =7 cosf(a; Cosp+ a3 sing) — o3 sind
=7 cosfo 163 — o7 sinfl
=re~73¢/2(g; cosf — g3 sinf)eiose/?
=re~73¢0/2g— 02012 pi020/2pio30/2 (10b)
g,=7 sinf(oy CosSp — o sing)

=7 sinfe—i3¢/2g—i028/25,pio2f/2pic50/2

lé] i) a2
ei720/2_= (___,l:_)ewzﬁ/ﬁy
a0 a0 2

6 g3
eiazd/2eiﬂstp/2_ ___,L___ eiu.w/‘.’
do do 2
9 1
— ____eiazdo.s eiazB/geia;;\a/?

do

(10¢)
Also

= gio20/2

a 1
= l—‘—(aa cosf — o sinf) }ei”"/“’ei“am.
do 2

Hence

d o01/9 o2
a"a/ax"=e‘i"29/2e‘i”“’/2[¢73——+— ____)
ar 7 \df r

a2 a 7, . .
’— ——(o3 cosf — g sinf) } eiri2giosel2,
rsinflde 2
Similarly
. - n
ieg¥4 ,=1——— —(1 —cosb)
72 sin%0 2
={eio3vl2gioab]2 —(1 —cosf)
7 sinf 2
X ei¢2012ei63¢/2
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Hence on substituting (8) in (7) and putting
eP/ Y =, we get

0 1
()
ar r

g1 a g3
+- ————{M-I— —(1—cosb)
90 sinf
a3

—? cosﬁl) }+93M+E]¢0=0~ (11)

_Ke= [

sind

1 (0
———{———— cot0+-—(M+ (1 —'COSO)) }
sinf {6 sinf
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It is clear that

a
o
a0

- M+— (1 —cosf) —

sinf

o3 cos@)] }2
2 ’

commutes with the operator acting on ¥, in (11).
Hence we can choose ¢, to be an eigenvector of
K2 But

+1 cot0+——(M+ (1—cosO))H-—+2 cot0———(M-|— (1—cos0))}
a9 sinf

d n
sin(}%—{—% cosf — ag(AM—FE(l — cosf) ) }

il () G el e (a64) - (oot

n n 2
(oi(43) = (G )
d? d 2 2 n

1—u?

2
()
2

n n o3 2
()G
d? d 2 2 2 n g3

where #=cosf. Now it is known that if m and j

are both integral or both half-integral the only
eigenfunctions of the operator
d? d (m
(1—u?)——2u——-

du? du

—ju)? )
2,
1—u?

(13)

corresponding to the interval —1 <% <1 are the
Jacobi polynomials P*,, j(#) and the correspond-
ing eigenvalues are —k(k+1), where % is to be
so chosen that k2 |m|, |j|, and £—j is an
integer. P¥,, j(cosf) is defined by the identity

/] g\ k-7 9 2] k+7
(tl cos—+1; sin—) (—t1 sin—+1{; cos—)
2 2 2 2

(k—jlk+jNH}
tlk—mlzk+'"

—y P, (cosh),
gn:(k—m!k—{—m!)* (cost)

where m runs through the set of values &, k—1,

(14)

2 n2__1
—(—+—) Py (12)
2 2 4
, —k. Write

w1 =11 cosf/2 -+t sinf/2,
Wy =1ty cosf/2 —t, sinf/2.

If we observe that dw;/30 = w,, dw./d0 = —w,, we
get immediately on differentiating (14) with re-
spect to 6

((k—j) (B+j+1)) P, ;11(cosh)
—((k47)(k—j+1))}P*,, ;_1(cosb)

d
=2—P*,, ;(cosf). (15)
dé

Now keep 8 fixed and transform from the vari-
ables ¢, t2 to w;, we. Then

9 i} 9 0
bh——ty—= cosG(wl——— - ‘Z/U2——)
6!1 atg 6w1 a‘w2

9 7]
- sin0(w1——+'w2—
ows
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On applying this operator to (14) we get
—2j cosfP*,, j(cosf)
—sind(((k—7) (k+j+1))*P¥n, j+1(cost)
+ ((k+7) (k—j+1)) P*n, j_1(cosb))
= —2mP*,, j(cosf). (16)

From (15) and (16) we find at once that
d
{(1-—-u2)—+m——ju Pr,, i(u)
du

= ((k+7) (k—j+ 1)) A — ) Php j1(u), (17a)

d
l (1 —u?)——m-+ju ; Pt, j(u)
du

= ((k—7) (k+j+ 1)1 —u?) Py jia(u).
Now for (12) m=M-+n/2 and
n+1
2

(17b)

i=(n/2)+(03/2) =

—

N

2
if we choose a representation in which o3 is

diagonal. Therefore the eigenfunction ¢, can be
written as

v (P kMt (n2), (n1)/2(COSH) ¢+)

0= ,
P¥ary(ny2), (n—nyj2(cosf) ¢~

where ¢+, Y~ depend only on r and

n+1

n—1

2 ’

n+1

k? and k+—2——

is an integer. Making use of (17) we find that

9 o3 n ntoz
01[—————( M+ cosﬂ)]
86 sind 2 2

y (P'“M+(n/2), (nt1)/2 ¢+)

Pryrynio), (nmyjz ¥~

()

X(PkM+(n/2). (n—1)/2 EV’)

Prary iy, nrvyiz ¥
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3
—((+5+3)(+5)
(P"M+(n/2>'(n+1)/2 '//—)
X .
Ptprynmy, (n—vye ¥
Therefore (11) now becomes

()2
(- )0-5))

+
If we write ¢=(:l!:_) this equation may be

written as

{( ) wz] =ios(ips—Ep)¥.  (19)

Choose p; diagonal and split ¢ into (:l;l) with
2

respect to p3 so that

o))
0

1 1

ptE=—, u—E=—.
an (12

Then

0
(tpau— Ep2)y = (
—u

Put

Then (19) can be written as

6 1 'io'z ’1:0'3
[(Z) k-
ar r r Qs
6 1 1:0'2
(G
ar r r

Now choose a representation in which o is

diagonal so that
0 1 0 —:
(o) ()
10 1 0

(20a)

’io’s
}w=——%. (20b)
ax

1 0
0'2=( )’
0 -1
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Write
‘Pl+ ) ‘I’2+
Y= ) V2= .
Y1~ 7

Then (20) is equivalent to the set of equations

9 1 1K 1

—F—t— ¥t =—y, (21a)
ar r r az

0 1 1K 1

—F——— = ——yiT, (21b)
ar r r as

d 1 1K 7

———— Y =—t, (21¢)
ar r r Qas

d 1 K 1
——f—rt=——¢~. (21d)
ar r r 123

Put a=(aia2)? the square root being positive in
case @1a2>0. Then we get

d 1 iK\Nys90 1 K
(—+———)(—+—+— yit

ar r r ar r r
1 —1
O
ay as

ie.,
2 249 K2—4K 1
‘—— -— ——t1t=0. (22a)
ar: r or r? a?
Similarly
92 20 K2*+iK 1
{——+—— ——ly=0, (22m)
ar2 ror r? a?

(22) is completely equivalent to (21) since (21a)
and (21c) can be regarded as the definitions of
Y.~ and ¢t respectively. Since the operator

92 | 290 K2+iK

oar?

r dr 72

is homogeneous in 7 it is clear that if ¢(7) is one
of its eigenfunctions corresponding to the eigen-
value 1/a? and « is any real constant, the func-
tion Y(ar) is another eigenfunction corresponding
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to the eigenvalue a?/a?. Hence the eigenvalues
E=(u2—1/a?? cannot form a discrete spectrum.
We shall now show that for all permissible solu-
tions of (22) a?<0. It is sufficient to consider
(22a). Put o1t =fe~"/s. Then

{ 92 (2 2\d K2:—iK 2

or?

f=0.
r a/or r? ra

The point =0 is a singular point of this equa-
tion. According to the usual procedure for solving
second-order linear differential equations with
analytic coefficients, we make the substitution

f = Z Cl‘ry_hl)

v=0

where ¢o=1 and » runs over all non-negative
integers. The indical equation is

ala—1)+2a+K2—1K =0,

i.e.,

(atty+(K-2) =o.
2

Hence a =1K or —iK — 1. However the boundary
condition at =0 requires® that r¢,+—0 as r—0.
Hence only a=1K is permissible. On substituting
f= Z crrtik,
v =0
in (23) and equating the coefficients of the vari-
ous powers of r to zero we get the recurrence
relation
2 v+iK+1

Cv+l =

a (v+1)(+2iK+2)

Since K is real it is clear that the series cannot
terminate. It converges like e*/* and therefore
for large 7, Y1+ = fe—"/* behaves like e"/2. Therefore
from the boundary condition at infinity it follows
that only those solutions are permissible for
which a is pure imaginary, i.e., a2<0, or E2>pu?
Thus the electron is never bound to the mag-
netic pole.

3 See reference 2, p. 269.



