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Motion of an Electron in the Field of a Magnetic Pole
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The motion of an electron in the field of a magnetic pole is considered. It is shown that in
spite of its magnetic moment the electron has no bound states.

ECENTLY Dirac has revived interest in a
theory of the electromagnetic field proposed

by him some time ago' which allows the existence
of free magnetic poles. As a consequence of his
theory he is able to deduce the fact that the
charge of any elementary particle is always an
integral multiple of a certain fixed unit. The
motion of an electron in the field of a magnetic
pole was considered by Dirac' and he found that
the electron cannot have any bound states. How-
ever, Dirac did not take into account the spin of
the electron and since the spin gives rise to a
magnetic moment, it seemed conceivable that
the above conclusion might cease to hold if one
used the correct equation of motion. The object
of this note is to investigate this point. It turns
out that Dirac's result is still valid and so the
electron cannot be bound to a magnetic pole.

We put the velocity of hght and the Planck's
constant equal to 1 and 2x respectively. It is
convenient to use tensor notation. Let (x, y, s)
=(x', x', x') be the Cartesian coordinates in
space and let e'&~ be the antisymmetric tensor
such that ~l2'=1. Further, let g;I, be the metric
tensor corresponding to the quadratic form

dx +dy +ds =g~dx'dx

The equations determining the vector potential
A~ can then be written as

i(gg ./g'x ') —~
where IIg, are the components of the magnetic
field. Now since we wish to consider the field of
a magnetic pole it is convenient to introduce
polar coordinates (r, 8, q) given by

Therefore if g s(a, p running over r, tt, y) denotes
the metric tensor in the polar coordinates, we
have

gyp = 1y ggy = r'j gyp =r' sin'Hf

g~ = 1, g"= 1/r', g++ = 1/r' sin'tt, (2)
g-s=g'=0, «P

On transforming (1) to the new coordinate sys-
tem (r, 8, y) according to the usual rules of
tensor calculus we get

g~&»(gpss/gP) =II», (3)

where n, p, y run over the three indices r, 8, y
and (p, P, p) =(r, 8, q). It follows from the
transformation laws that

e'~ = I/(g) & =1/r' sin8,

where g = r4 sin'8 is the determinant of the matrix
formed by the components g p. Let —e be the
charge oF the electron and rI, an integer and con-
sider a magnetic pole of strength ~~n/e at the ori-
gin. Then II'=H»'=0 and II'= ~n/er' Apossi. ble
solution of (3) is now obtained by putting
A„=Ay=0 and choosing A„such that

1 BA„n
r' sin8 88 2er2

This gives A„= (n/2e)(1 —cos8), the constant of
integration having been so chosen as to make
A„=O for 8=0 so that the nodal line' runs from
the origin along the line H=x. This is seen as
follows. Consider the integral

~Apex" = AQ$ = Aqrdy,
4c ~c

x= r sin8 cosy, y =r sin8siny, s = r cos8,

so that

dg2+dy2+dg2 dr2+r2d82+r2 sin28d~2

' P. A. M. Dirac, Proc. Roy. Soc. 133, 60 (1931).

taken round a closed curve c surrounding the
line tt=80. Clearly if 8040 or s., J+s =0 and
therefore the integral tends to zero as c shrinks
to a point on 8=8p. On the other hand if 80=0
or s, J;d y =2s and the value of the integral tends
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to (urn/e)(1 —cos8o) i.e. , 0 or 2 urn/e according as
8o=o or m.

Now we come to the equation of motion of
the electron. As usual let oi, o2, o3 and pi, p2, pa

be two independent sets of Pauli matrices. '
Transform oi, 172, o.3 as components of a vector
to polar coordinates so that

8x' 1
a, =ai ———(ax),

r

8x'
(x(ax) —(xx)e) 3,

88 r sin8

Bx'
a„=ag„——[.x Xe]3,

Bp

o „=sin8(o i cosy+ ai sin y) +ai cos8

= sin8aie*"~+ a3 cos8

=e "'4"(ai cos8+oi sin8)e' 3«

O3e—io 3V'/2e —io'&8/2O eirr28/2eirr3&/2 (10a)

Similarly

ae = r cos8(o. i cosy+ai siny) —o ir sin8

= r COS8o ie"3~ —o-3r Sin8

=re """(oi-'cos8. —o3 sin8)e"'«2

where i/' is independent of y. iiow

8 8 8 O 8 8 O'(p 8
o' = o = o., + + —.(9)

Bx" BP Br r' B8 r' sin'8 By

From (5) we get

where x = (xi, x2, x&) and e = (ai, ai, o 3) and the
usual notations for scalar and vector products
are used. The Hamiltonian II for the electron
can now be written as

re—iver'ly/2e —i028/2O eio'28/2ei03y/2
1

o, =r sin8(ai cosy —oi siny)

(10h)

H = —pi(ep) pip —pica—&A„

[xXe]3 n (6)
pi(ap) pi p—i .— -(1—cos8)

r' sin28 2

Also

= r sin8e —'"«'e—' 2"'O- e' »/'e" 3«2
2

B /B
bio&8/2 j eio»/2

B8 (B8 2)

(10c)

where p= 1/i(B/Bx, B/By, B/Bs) is the momentum
and p, the mass of the electron. Our problem is e;,»/2e 3+/2 —e ~28/' ——i—e'"«
to find a wave function i/ such that By (By 2)

where E is some eigenvalue of II. Now notice that

1~ B B~ 1B
[xXpli=-.

(
~——y—I

=-.—,
z & By Bx& ~By'

( B———ei+'28O
3 e ~~28/2e'i&N'/2

&By 2

8———(aa cos8 —o i sin8) e' ""e*'"".
Bp 2

B o'i(B lo
a"B/Bx'=e * ~'I'e '3«' a,-—+—

(
———

~

Br r (B8 r)1 8
[xXP)3+ 2as= . + ~a3,

z Bp O2 8
+ (0 3 cos8 —o i sin8) e"""e"3«'

r sin8 Bq 2commutes with II. Hence we can choose P in
such a way that

Similarly
(I 8

Ei gq
O„n

ieo&A„=i —(1—cos8)
r' sin'8 2

and [xXpj+—',e commutes with Iro= —pi(ap) Hence
—p3& while [xXpj3+ 2a3 comm-utes with [xXir]3.
Therefore

where M is half-an-odd integer. Therefore

1t
—e&(iir k~s) i i/,

'—
2 See P. A. M. Dirac, Principles of Quantum Mechanics

(Clarendon Press, Oxford, 1947), Chap. XI.

O'2

=ie ~o~«"e ~~mn2 (1 cos8)
r sin82
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Hence on substituting (8) in (7) and putting It is clear that
e"""P'=&0,we get

8
(8 iq

l~ ~
I
—+-

I

Egr r)

Oy(i9 0'3 S
+—

I
—— M+ —(1—cosg)

r &89 sin8 2

03 ( n 0 q cos8'!I
!I

cV+—(1 —cosg)—
sin8 E 2 2 )

commutes with the operator acting on Po in (11).
03

+ „+~ ~ 0 (11) Hence we can choose 1t 0 to be an eigenvector of
E'. But

8 oq 8 03 ( n-&'= —+l cotg+ . I
~+-(I-cosg)

I

—+l co«-
I
~+-(I-«sg)

I

86j sin8 & 2 88 sing ( 21 gag(n 8 ( n——-', cotg+ . I m+ —(1 —cosg)
I

sin8 —+-', cosg —
~~l ~+ (1 —«sg)

I

sin8 88 sin8 E 2 88 4 2

1 d ( n) d ( n) (n
(1 —u")——'~I ~+- I+I —.3+2 Iu (1 —u') —+~3I ~+-

I
—

I
—.3+-' Iu

(1 —u') du ( 2) (2 du ( 2) E2 )

= (1 —u') —2u——
du du

n$ (nf+- I-I -"+
2) k2 )

1 —u
—

I

—~3+-,'
Ii

d' d
= (1 —u') —2u——

du du

n) (n 03)

2) E2 2j
1 —u'

(n 03) ' n' —1-I -+—I+
42 2j 4

where u=cos8. Now it is known that if m and j
are both integral or both half-integral the only
eigenfunctions of the operator

d2 d (m —ju) '
(1 —u') —2u——, ——j2,

du du 1 —Q2

corresponding to the interval —1 «& u &«1 are the
Jacobi polynomials P";(u) and the correspond-
ing eigenvalues are —k(k+1), where k is to be
so chosen that k~& lml, I jl, and k —j is an
integer. P', ;(cosg) is defined by the identity

g g)& j( g g)k+i-
tf cos—+ tm sin —

I I
t~ sin —+ t2 cos—

(k —j!k+j!)~

] |'e—mgk+m

P', ;(cosg), (14)
(k —m!k+m!) &

where m runs through the set of values k, k —1,

~ —k. Write

wz =tz cosg/2+tm smg/2,
w2= tm cosg/2 t~ sing/2. —

If we observe that Bw~/88 =w2, Bwm/88 = —w~, we
get immediately on differentiating (14) with re-
spect to 8

((k j)(k+j+ 1))&P—~,;+~(cosg)
—((k+j)(k —j+1)) 'P"-.~-l(cosg)

= 2—P",, (cosg) . (15)
d8

Now keep 8 fixed and transform from the vari-
ables t~, t2 to w~, w2. Then

8 (
tg —t2 =cosgl wy——w2-

Bt~ Bt. 4 Bw& Bw2)

( 8 8
-sngl w,

Bw2 gwy)
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On applying this operator to (14) we get

2j—cos8P",;(cos8)

—sin8(((k —j)(k+j+1))&P', /+1(cos8)

+ ((0+j)(k —j+1))&P",; 1(cos8))

n 1) ( n iq q
*

= —
I I

~+-+- II ~--+-
I I

2 2) ( 2 2) )

xl
(P M~(n/2), (n+1)/2

( P M+(n/2), (n 1)/2-

= —2mP", ;(cos8). (16) Therefore (11) now becomes

From (15) and (16) we find at once that

d
(1—u') —+m —ju P" (u)

dQ

= ((k+j)(k —j+1))&(1 —u') &P' 1(u), (17a)

(1 —u')——m+ju P' (u)

1 (8 1) 01 (f+)
.» ~2I +-

I
——I): +»&+E I

i &ar r) r &y)

where

n+iy ( n —iq q1
I):=I

I
~+

EE 2 )& 2 ij
dQ (y+'(

If we write )I/=
I I

this equation may be= ((&—j)(&+j+1))'(1—u')'P'-, +1(u) (17b)

Now for (12) m = M+n/2 and

=( / )+( / )=

'n+1'

n —i

written as

1' 8 1) ioq
I

—+—I+—I( P =io2(ip2 Epa—)4' (19)
&8r r) r

Choose p2 diagonal and split p into
I I with
(, 2)

respect to p3 so that
if we choose a representation in which 03 is
diagonal. Therefore the eigenfunction P() can be
written as

(P"M+(n/», (n+1)/2(cos8)

iP M+(n/2), (n—1)/2(COS8) lp )
where )f+, P depend only on r and

Then

( 0 /1
—E) ($1)

(2P2/1 EP2)4' =I——E 0) &P)
Put

n n 1n—+1
k)~ M+—,

2 2 2

n+1
and k+

2
/2+E = /1 E=- —

G~ G2

is an integer. Making use of (17) we find that

8 (r2 ( n n+ 112

01 ——
I

3/r+ —— cos8
I

88 sin8 0 2 2

Then (19) can be written as

( 8 1) i02 i02
I
—+-I+—&a=—a,

) Br r) r a2
(20a)

xl
t P M+(n/2), (n+1)/2

(P M+(n/2), (n—1)/2

n iq ( n iy q
~

=-I
I
~+-+- II &—+-

I I

2 2& ( 2 2) )

x
(P M+(n/2), (n—1)/2

iP M+(n/2), (n+1)/2

I
—+—I+—& P2= )I)-—

Ear r) r a~
(20b)

Now choose a representation in which 02 is
diagonal so that

(1 0 q (0 1q (0 i&—
0'3= s

0'y=
&0 —Ii &1 Oj (i 0 i
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Write
(& 'l

w =I
Egg ) ($2 )

Then (20) is equivalent to the set of equations

to the eigenvalue n'/a'. Hence the eigenvalues
E= (p' —1/a') & cannot form a discrete spectrum.
Ke shall now show that for all permissible solu-
tions of (22) a'&0. It is sufficient to consider
(22a). Put q&+= fe "' Th.en

8 1 zX
+ + 4i+=—6,

62
(21a)

8' (2 2q 8 K' —iK 2
I+I —-I—+ ——f=0.

arm &r ai ar r2 ral~

1 iE i
+ —6 = ——k~+

Br r r G2

1 iE i
+ fi = A+, —

lar r r
'

a,
''

1 iKI i
+ + 42+= ——4i

Br r r 62

(21b)

(21c)

The point r =0 is a singular point of this equa-
tion. According to the usual procedure for solving
second-order linear differential equations with
analytic coeScients, we make the substitution

f Q—e re+a
vZO

where co=1 and v runs over all non-negative
integers. The indical equation is

Put a= (a~a2)& the square root being positive in

case a~c2&0. Then we get

p8 1 iKy p& 1 iKy
+ II ++

&ar r r) &ar r r)

n(a —1)+2a+K' iK =0—,

t Z)2
(n+~)2+I K—

I
=O.

2)

1.e.,

Hence n =iK or iK 1.—How—ever the boundary

I/i+, condition at r =0 requires' that rP~+ 4as r 4——
Hence only n =iK is permissible. On substituting

82 2 8 E2—iE
+——+ ——fg+ =0. (22a)

Br r Br r g

Similarly

8' 2 8 K'+iK 1I+——+ = (fg =0—, —(22b-)
gr2 r gr r2 g2J

(22) is completely equivalent to (21) since (21a)
and (21c) can be regarded as the definitions of

and $2+ respectively. Since the operator

82 2 8 E2+iX
+——+

Br r Br r

is homogeneous in r it is clear that if f(r) is one
of its eigenfunctions corresponding to the eigen-
value 1/a' and a is any real constant, the func-
tion P(nr) is another eigenfunction corresponding

f Qe r~+ix-
v&0

v+iK+12
Cv+i =

a (v+1) (v+2iK+2)

Since X is real it is clear that the series cannot
terminate. It converges like e2"f and therefore
for large r, f~+=fe 'i' behaves like e'~. Therefore
from the boundary condition at infinity it follows
that only those solutions are permissible for
which a is pure imaginary, i.e., e2(0, or Z2& p,2.

Thus the electron is never bound to the mag-
netic pole.

' See reference 2, p. 269.

in (23) and equating the coeScients of the vari-
ous powers of r to zero we get the recurrence
relation


